# Properties

 Label 5415.2.a.j Level $5415$ Weight $2$ Character orbit 5415.a Self dual yes Analytic conductor $43.239$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$5415 = 3 \cdot 5 \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5415.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$43.2389926945$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 15) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 3 q^{8} + q^{9} + O(q^{10})$$ $$q + q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 3 q^{8} + q^{9} + q^{10} - 4 q^{11} - q^{12} + 2 q^{13} + q^{15} - q^{16} + 2 q^{17} + q^{18} - q^{20} - 4 q^{22} - 3 q^{24} + q^{25} + 2 q^{26} + q^{27} + 2 q^{29} + q^{30} + 5 q^{32} - 4 q^{33} + 2 q^{34} - q^{36} + 10 q^{37} + 2 q^{39} - 3 q^{40} - 10 q^{41} + 4 q^{43} + 4 q^{44} + q^{45} + 8 q^{47} - q^{48} - 7 q^{49} + q^{50} + 2 q^{51} - 2 q^{52} + 10 q^{53} + q^{54} - 4 q^{55} + 2 q^{58} + 4 q^{59} - q^{60} - 2 q^{61} + 7 q^{64} + 2 q^{65} - 4 q^{66} - 12 q^{67} - 2 q^{68} + 8 q^{71} - 3 q^{72} + 10 q^{73} + 10 q^{74} + q^{75} + 2 q^{78} - q^{80} + q^{81} - 10 q^{82} + 12 q^{83} + 2 q^{85} + 4 q^{86} + 2 q^{87} + 12 q^{88} + 6 q^{89} + q^{90} + 8 q^{94} + 5 q^{96} - 2 q^{97} - 7 q^{98} - 4 q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 1.00000 −1.00000 1.00000 1.00000 0 −3.00000 1.00000 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$-1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5415.2.a.j 1
19.b odd 2 1 15.2.a.a 1
57.d even 2 1 45.2.a.a 1
76.d even 2 1 240.2.a.d 1
95.d odd 2 1 75.2.a.b 1
95.g even 4 2 75.2.b.b 2
133.c even 2 1 735.2.a.c 1
133.o even 6 2 735.2.i.d 2
133.r odd 6 2 735.2.i.e 2
152.b even 2 1 960.2.a.a 1
152.g odd 2 1 960.2.a.l 1
171.l even 6 2 405.2.e.c 2
171.o odd 6 2 405.2.e.f 2
209.d even 2 1 1815.2.a.d 1
228.b odd 2 1 720.2.a.c 1
247.d odd 2 1 2535.2.a.j 1
285.b even 2 1 225.2.a.b 1
285.j odd 4 2 225.2.b.b 2
304.j odd 4 2 3840.2.k.m 2
304.m even 4 2 3840.2.k.r 2
323.c odd 2 1 4335.2.a.c 1
380.d even 2 1 1200.2.a.e 1
380.j odd 4 2 1200.2.f.h 2
399.h odd 2 1 2205.2.a.i 1
437.b even 2 1 7935.2.a.d 1
456.l odd 2 1 2880.2.a.bc 1
456.p even 2 1 2880.2.a.y 1
627.b odd 2 1 5445.2.a.c 1
665.g even 2 1 3675.2.a.j 1
741.d even 2 1 7605.2.a.g 1
760.b odd 2 1 4800.2.a.t 1
760.p even 2 1 4800.2.a.bz 1
760.t even 4 2 4800.2.f.bf 2
760.y odd 4 2 4800.2.f.c 2
1045.e even 2 1 9075.2.a.g 1
1140.p odd 2 1 3600.2.a.u 1
1140.w even 4 2 3600.2.f.e 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.2.a.a 1 19.b odd 2 1
45.2.a.a 1 57.d even 2 1
75.2.a.b 1 95.d odd 2 1
75.2.b.b 2 95.g even 4 2
225.2.a.b 1 285.b even 2 1
225.2.b.b 2 285.j odd 4 2
240.2.a.d 1 76.d even 2 1
405.2.e.c 2 171.l even 6 2
405.2.e.f 2 171.o odd 6 2
720.2.a.c 1 228.b odd 2 1
735.2.a.c 1 133.c even 2 1
735.2.i.d 2 133.o even 6 2
735.2.i.e 2 133.r odd 6 2
960.2.a.a 1 152.b even 2 1
960.2.a.l 1 152.g odd 2 1
1200.2.a.e 1 380.d even 2 1
1200.2.f.h 2 380.j odd 4 2
1815.2.a.d 1 209.d even 2 1
2205.2.a.i 1 399.h odd 2 1
2535.2.a.j 1 247.d odd 2 1
2880.2.a.y 1 456.p even 2 1
2880.2.a.bc 1 456.l odd 2 1
3600.2.a.u 1 1140.p odd 2 1
3600.2.f.e 2 1140.w even 4 2
3675.2.a.j 1 665.g even 2 1
3840.2.k.m 2 304.j odd 4 2
3840.2.k.r 2 304.m even 4 2
4335.2.a.c 1 323.c odd 2 1
4800.2.a.t 1 760.b odd 2 1
4800.2.a.bz 1 760.p even 2 1
4800.2.f.c 2 760.y odd 4 2
4800.2.f.bf 2 760.t even 4 2
5415.2.a.j 1 1.a even 1 1 trivial
5445.2.a.c 1 627.b odd 2 1
7605.2.a.g 1 741.d even 2 1
7935.2.a.d 1 437.b even 2 1
9075.2.a.g 1 1045.e even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5415))$$:

 $$T_{2} - 1$$ $$T_{7}$$ $$T_{11} + 4$$ $$T_{13} - 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$-1 + T$$
$3$ $$-1 + T$$
$5$ $$-1 + T$$
$7$ $$T$$
$11$ $$4 + T$$
$13$ $$-2 + T$$
$17$ $$-2 + T$$
$19$ $$T$$
$23$ $$T$$
$29$ $$-2 + T$$
$31$ $$T$$
$37$ $$-10 + T$$
$41$ $$10 + T$$
$43$ $$-4 + T$$
$47$ $$-8 + T$$
$53$ $$-10 + T$$
$59$ $$-4 + T$$
$61$ $$2 + T$$
$67$ $$12 + T$$
$71$ $$-8 + T$$
$73$ $$-10 + T$$
$79$ $$T$$
$83$ $$-12 + T$$
$89$ $$-6 + T$$
$97$ $$2 + T$$