Properties

Label 5415.2.a.j
Level $5415$
Weight $2$
Character orbit 5415.a
Self dual yes
Analytic conductor $43.239$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5415,2,Mod(1,5415)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5415, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5415.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5415 = 3 \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5415.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.2389926945\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 3 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{3} - q^{4} + q^{5} + q^{6} - 3 q^{8} + q^{9} + q^{10} - 4 q^{11} - q^{12} + 2 q^{13} + q^{15} - q^{16} + 2 q^{17} + q^{18} - q^{20} - 4 q^{22} - 3 q^{24} + q^{25} + 2 q^{26} + q^{27} + 2 q^{29} + q^{30} + 5 q^{32} - 4 q^{33} + 2 q^{34} - q^{36} + 10 q^{37} + 2 q^{39} - 3 q^{40} - 10 q^{41} + 4 q^{43} + 4 q^{44} + q^{45} + 8 q^{47} - q^{48} - 7 q^{49} + q^{50} + 2 q^{51} - 2 q^{52} + 10 q^{53} + q^{54} - 4 q^{55} + 2 q^{58} + 4 q^{59} - q^{60} - 2 q^{61} + 7 q^{64} + 2 q^{65} - 4 q^{66} - 12 q^{67} - 2 q^{68} + 8 q^{71} - 3 q^{72} + 10 q^{73} + 10 q^{74} + q^{75} + 2 q^{78} - q^{80} + q^{81} - 10 q^{82} + 12 q^{83} + 2 q^{85} + 4 q^{86} + 2 q^{87} + 12 q^{88} + 6 q^{89} + q^{90} + 8 q^{94} + 5 q^{96} - 2 q^{97} - 7 q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 −1.00000 1.00000 1.00000 0 −3.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(-1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5415.2.a.j 1
19.b odd 2 1 15.2.a.a 1
57.d even 2 1 45.2.a.a 1
76.d even 2 1 240.2.a.d 1
95.d odd 2 1 75.2.a.b 1
95.g even 4 2 75.2.b.b 2
133.c even 2 1 735.2.a.c 1
133.o even 6 2 735.2.i.d 2
133.r odd 6 2 735.2.i.e 2
152.b even 2 1 960.2.a.a 1
152.g odd 2 1 960.2.a.l 1
171.l even 6 2 405.2.e.c 2
171.o odd 6 2 405.2.e.f 2
209.d even 2 1 1815.2.a.d 1
228.b odd 2 1 720.2.a.c 1
247.d odd 2 1 2535.2.a.j 1
285.b even 2 1 225.2.a.b 1
285.j odd 4 2 225.2.b.b 2
304.j odd 4 2 3840.2.k.m 2
304.m even 4 2 3840.2.k.r 2
323.c odd 2 1 4335.2.a.c 1
380.d even 2 1 1200.2.a.e 1
380.j odd 4 2 1200.2.f.h 2
399.h odd 2 1 2205.2.a.i 1
437.b even 2 1 7935.2.a.d 1
456.l odd 2 1 2880.2.a.bc 1
456.p even 2 1 2880.2.a.y 1
627.b odd 2 1 5445.2.a.c 1
665.g even 2 1 3675.2.a.j 1
741.d even 2 1 7605.2.a.g 1
760.b odd 2 1 4800.2.a.t 1
760.p even 2 1 4800.2.a.bz 1
760.t even 4 2 4800.2.f.bf 2
760.y odd 4 2 4800.2.f.c 2
1045.e even 2 1 9075.2.a.g 1
1140.p odd 2 1 3600.2.a.u 1
1140.w even 4 2 3600.2.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.2.a.a 1 19.b odd 2 1
45.2.a.a 1 57.d even 2 1
75.2.a.b 1 95.d odd 2 1
75.2.b.b 2 95.g even 4 2
225.2.a.b 1 285.b even 2 1
225.2.b.b 2 285.j odd 4 2
240.2.a.d 1 76.d even 2 1
405.2.e.c 2 171.l even 6 2
405.2.e.f 2 171.o odd 6 2
720.2.a.c 1 228.b odd 2 1
735.2.a.c 1 133.c even 2 1
735.2.i.d 2 133.o even 6 2
735.2.i.e 2 133.r odd 6 2
960.2.a.a 1 152.b even 2 1
960.2.a.l 1 152.g odd 2 1
1200.2.a.e 1 380.d even 2 1
1200.2.f.h 2 380.j odd 4 2
1815.2.a.d 1 209.d even 2 1
2205.2.a.i 1 399.h odd 2 1
2535.2.a.j 1 247.d odd 2 1
2880.2.a.y 1 456.p even 2 1
2880.2.a.bc 1 456.l odd 2 1
3600.2.a.u 1 1140.p odd 2 1
3600.2.f.e 2 1140.w even 4 2
3675.2.a.j 1 665.g even 2 1
3840.2.k.m 2 304.j odd 4 2
3840.2.k.r 2 304.m even 4 2
4335.2.a.c 1 323.c odd 2 1
4800.2.a.t 1 760.b odd 2 1
4800.2.a.bz 1 760.p even 2 1
4800.2.f.c 2 760.y odd 4 2
4800.2.f.bf 2 760.t even 4 2
5415.2.a.j 1 1.a even 1 1 trivial
5445.2.a.c 1 627.b odd 2 1
7605.2.a.g 1 741.d even 2 1
7935.2.a.d 1 437.b even 2 1
9075.2.a.g 1 1045.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5415))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{13} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 2 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 10 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T - 10 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 12 \) Copy content Toggle raw display
$71$ \( T - 8 \) Copy content Toggle raw display
$73$ \( T - 10 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less