Defining parameters
Level: | \( N \) | \(=\) | \( 5415 = 3 \cdot 5 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5415.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 46 \) | ||
Sturm bound: | \(1520\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5415))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 800 | 228 | 572 |
Cusp forms | 721 | 228 | 493 |
Eisenstein series | 79 | 0 | 79 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(27\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(30\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(35\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(21\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(30\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(27\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(22\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(36\) |
Plus space | \(+\) | \(97\) | ||
Minus space | \(-\) | \(131\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5415))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5415))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5415)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1805))\)\(^{\oplus 2}\)