Defining parameters
| Level: | \( N \) | \(=\) | \( 5408 = 2^{5} \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5408.de (of order \(78\) and degree \(24\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 169 \) |
| Character field: | \(\Q(\zeta_{78})\) | ||
| Sturm bound: | \(1456\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5408, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 17664 | 4368 | 13296 |
| Cusp forms | 17280 | 4368 | 12912 |
| Eisenstein series | 384 | 0 | 384 |
Decomposition of \(S_{2}^{\mathrm{new}}(5408, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5408, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5408, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1352, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2704, [\chi])\)\(^{\oplus 2}\)