Properties

Label 5408.2.a.bm
Level $5408$
Weight $2$
Character orbit 5408.a
Self dual yes
Analytic conductor $43.183$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.134509248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 15x^{4} + 60x^{2} - 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{3} - \beta_1) q^{5} + ( - \beta_{2} - 1) q^{7} + (\beta_{2} + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + (\beta_{3} - \beta_1) q^{5} + ( - \beta_{2} - 1) q^{7} + (\beta_{2} + 2) q^{9} + (\beta_{2} + 1) q^{11} + (\beta_{4} - \beta_{2} - 4) q^{15} - q^{17} + ( - \beta_{4} - 1) q^{19} + ( - \beta_{5} - \beta_{3} - 3 \beta_1) q^{21} + ( - 4 \beta_{3} + \beta_1) q^{23} + ( - 2 \beta_{4} + \beta_{2} + 1) q^{25} + (\beta_{5} + \beta_{3} + \beta_1) q^{27} + (\beta_{4} - \beta_{2} + 1) q^{29} + (\beta_{4} - \beta_{2} - 4) q^{31} + (\beta_{5} + \beta_{3} + 3 \beta_1) q^{33} + 2 \beta_1 q^{35} + \beta_{5} q^{37} + ( - \beta_{3} - 2 \beta_1) q^{41} + ( - \beta_{5} - \beta_{3} + \beta_1) q^{43} + (\beta_{3} - 3 \beta_1) q^{45} + ( - \beta_{4} - \beta_{2} + 2) q^{47} + (2 \beta_{4} + \beta_{2} + 4) q^{49} - \beta_1 q^{51} + (\beta_{4} - 4) q^{53} - 2 \beta_1 q^{55} + ( - \beta_{5} - 5 \beta_{3} - \beta_1) q^{57} + ( - 2 \beta_{4} + \beta_{2} - 1) q^{59} + (\beta_{4} + \beta_{2} - 3) q^{61} + ( - 2 \beta_{4} - 2 \beta_{2} - 12) q^{63} + (\beta_{4} + 2 \beta_{2} - 5) q^{67} + ( - 4 \beta_{4} + \beta_{2} + 1) q^{69} + (\beta_{4} - 3) q^{71} + (\beta_{5} - 3 \beta_1) q^{73} + ( - \beta_{5} - 9 \beta_{3} + 3 \beta_1) q^{75} + ( - 2 \beta_{4} - \beta_{2} - 11) q^{77} + ( - 2 \beta_{5} - 2 \beta_{3} + 2 \beta_1) q^{79} + (2 \beta_{4} - 1) q^{81} + (2 \beta_{2} - 6) q^{83} + ( - \beta_{3} + \beta_1) q^{85} + (4 \beta_{3} - \beta_1) q^{87} + ( - \beta_{5} + 3 \beta_{3} - 5 \beta_1) q^{89} + (4 \beta_{3} - 6 \beta_1) q^{93} + (\beta_{5} + 5 \beta_{3} - 2 \beta_1) q^{95} + ( - \beta_{5} - 5 \beta_{3} - \beta_1) q^{97} + (2 \beta_{4} + 2 \beta_{2} + 12) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{7} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{7} + 12 q^{9} + 6 q^{11} - 24 q^{15} - 6 q^{17} - 6 q^{19} + 6 q^{25} + 6 q^{29} - 24 q^{31} + 12 q^{47} + 24 q^{49} - 24 q^{53} - 6 q^{59} - 18 q^{61} - 72 q^{63} - 30 q^{67} + 6 q^{69} - 18 q^{71} - 66 q^{77} - 6 q^{81} - 36 q^{83} + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 15x^{4} + 60x^{2} - 48 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 11\nu^{3} + 24\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 9\nu^{2} + 10 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 19\nu^{3} - 80\nu ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{3} + 7\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 9\beta_{2} + 35 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 11\beta_{5} + 19\beta_{3} + 53\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.96724
−2.26572
−1.03053
1.03053
2.26572
2.96724
0 −2.96724 0 1.23519 0 −4.80451 0 5.80451 0
1.2 0 −2.26572 0 3.99777 0 −1.13349 0 2.13349 0
1.3 0 −1.03053 0 −0.701519 0 2.93800 0 −1.93800 0
1.4 0 1.03053 0 0.701519 0 2.93800 0 −1.93800 0
1.5 0 2.26572 0 −3.99777 0 −1.13349 0 2.13349 0
1.6 0 2.96724 0 −1.23519 0 −4.80451 0 5.80451 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
52.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5408.2.a.bm 6
4.b odd 2 1 5408.2.a.bn 6
13.b even 2 1 5408.2.a.bn 6
13.f odd 12 2 416.2.w.d 12
52.b odd 2 1 inner 5408.2.a.bm 6
52.l even 12 2 416.2.w.d 12
104.u even 12 2 832.2.w.j 12
104.x odd 12 2 832.2.w.j 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.w.d 12 13.f odd 12 2
416.2.w.d 12 52.l even 12 2
832.2.w.j 12 104.u even 12 2
832.2.w.j 12 104.x odd 12 2
5408.2.a.bm 6 1.a even 1 1 trivial
5408.2.a.bm 6 52.b odd 2 1 inner
5408.2.a.bn 6 4.b odd 2 1
5408.2.a.bn 6 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5408))\):

\( T_{3}^{6} - 15T_{3}^{4} + 60T_{3}^{2} - 48 \) Copy content Toggle raw display
\( T_{5}^{6} - 18T_{5}^{4} + 33T_{5}^{2} - 12 \) Copy content Toggle raw display
\( T_{7}^{3} + 3T_{7}^{2} - 12T_{7} - 16 \) Copy content Toggle raw display
\( T_{37}^{6} - 81T_{37}^{4} + 1275T_{37}^{2} - 5043 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 15 T^{4} + \cdots - 48 \) Copy content Toggle raw display
$5$ \( T^{6} - 18 T^{4} + \cdots - 12 \) Copy content Toggle raw display
$7$ \( (T^{3} + 3 T^{2} - 12 T - 16)^{2} \) Copy content Toggle raw display
$11$ \( (T^{3} - 3 T^{2} - 12 T + 16)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( (T + 1)^{6} \) Copy content Toggle raw display
$19$ \( (T^{3} + 3 T^{2} - 18 T - 36)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} - 135 T^{4} + \cdots - 46128 \) Copy content Toggle raw display
$29$ \( (T^{3} - 3 T^{2} - 21 T + 31)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 12 T^{2} + \cdots - 24)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} - 81 T^{4} + \cdots - 5043 \) Copy content Toggle raw display
$41$ \( T^{6} - 81 T^{4} + \cdots - 6627 \) Copy content Toggle raw display
$43$ \( T^{6} - 99 T^{4} + \cdots - 12288 \) Copy content Toggle raw display
$47$ \( (T^{3} - 6 T^{2} + \cdots + 208)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + 12 T^{2} + 27 T - 4)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} + 3 T^{2} + \cdots - 320)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 9 T^{2} + \cdots - 237)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + 15 T^{2} + \cdots - 788)^{2} \) Copy content Toggle raw display
$71$ \( (T^{3} + 9 T^{2} + 6 T - 20)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} - 234 T^{4} + \cdots - 288300 \) Copy content Toggle raw display
$79$ \( T^{6} - 396 T^{4} + \cdots - 786432 \) Copy content Toggle raw display
$83$ \( (T^{3} + 18 T^{2} + \cdots - 128)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - 435 T^{4} + \cdots - 2157312 \) Copy content Toggle raw display
$97$ \( T^{6} - 315 T^{4} + \cdots - 62208 \) Copy content Toggle raw display
show more
show less