Properties

Label 5408.2.a.bf.1.2
Level $5408$
Weight $2$
Character 5408.1
Self dual yes
Analytic conductor $43.183$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 5408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421 q^{3} -2.82843 q^{5} +4.41421 q^{7} +2.82843 q^{9} +O(q^{10})\) \(q+2.41421 q^{3} -2.82843 q^{5} +4.41421 q^{7} +2.82843 q^{9} +3.24264 q^{11} -6.82843 q^{15} -5.82843 q^{17} -1.24264 q^{19} +10.6569 q^{21} -1.24264 q^{23} +3.00000 q^{25} -0.414214 q^{27} +8.65685 q^{29} +5.65685 q^{31} +7.82843 q^{33} -12.4853 q^{35} +7.48528 q^{37} +5.82843 q^{41} -4.07107 q^{43} -8.00000 q^{45} +6.00000 q^{47} +12.4853 q^{49} -14.0711 q^{51} -2.82843 q^{53} -9.17157 q^{55} -3.00000 q^{57} -1.24264 q^{59} +7.00000 q^{61} +12.4853 q^{63} +13.2426 q^{67} -3.00000 q^{69} -7.24264 q^{71} -12.4853 q^{73} +7.24264 q^{75} +14.3137 q^{77} +6.00000 q^{79} -9.48528 q^{81} +4.00000 q^{83} +16.4853 q^{85} +20.8995 q^{87} +3.34315 q^{89} +13.6569 q^{93} +3.51472 q^{95} +9.00000 q^{97} +9.17157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 6 q^{7} - 2 q^{11} - 8 q^{15} - 6 q^{17} + 6 q^{19} + 10 q^{21} + 6 q^{23} + 6 q^{25} + 2 q^{27} + 6 q^{29} + 10 q^{33} - 8 q^{35} - 2 q^{37} + 6 q^{41} + 6 q^{43} - 16 q^{45} + 12 q^{47} + 8 q^{49} - 14 q^{51} - 24 q^{55} - 6 q^{57} + 6 q^{59} + 14 q^{61} + 8 q^{63} + 18 q^{67} - 6 q^{69} - 6 q^{71} - 8 q^{73} + 6 q^{75} + 6 q^{77} + 12 q^{79} - 2 q^{81} + 8 q^{83} + 16 q^{85} + 22 q^{87} + 18 q^{89} + 16 q^{93} + 24 q^{95} + 18 q^{97} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.41421 1.39385 0.696923 0.717146i \(-0.254552\pi\)
0.696923 + 0.717146i \(0.254552\pi\)
\(4\) 0 0
\(5\) −2.82843 −1.26491 −0.632456 0.774597i \(-0.717953\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) 4.41421 1.66842 0.834208 0.551450i \(-0.185925\pi\)
0.834208 + 0.551450i \(0.185925\pi\)
\(8\) 0 0
\(9\) 2.82843 0.942809
\(10\) 0 0
\(11\) 3.24264 0.977693 0.488846 0.872370i \(-0.337418\pi\)
0.488846 + 0.872370i \(0.337418\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −6.82843 −1.76309
\(16\) 0 0
\(17\) −5.82843 −1.41360 −0.706801 0.707413i \(-0.749862\pi\)
−0.706801 + 0.707413i \(0.749862\pi\)
\(18\) 0 0
\(19\) −1.24264 −0.285081 −0.142541 0.989789i \(-0.545527\pi\)
−0.142541 + 0.989789i \(0.545527\pi\)
\(20\) 0 0
\(21\) 10.6569 2.32552
\(22\) 0 0
\(23\) −1.24264 −0.259108 −0.129554 0.991572i \(-0.541355\pi\)
−0.129554 + 0.991572i \(0.541355\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) −0.414214 −0.0797154
\(28\) 0 0
\(29\) 8.65685 1.60754 0.803769 0.594942i \(-0.202825\pi\)
0.803769 + 0.594942i \(0.202825\pi\)
\(30\) 0 0
\(31\) 5.65685 1.01600 0.508001 0.861357i \(-0.330385\pi\)
0.508001 + 0.861357i \(0.330385\pi\)
\(32\) 0 0
\(33\) 7.82843 1.36275
\(34\) 0 0
\(35\) −12.4853 −2.11040
\(36\) 0 0
\(37\) 7.48528 1.23057 0.615286 0.788304i \(-0.289040\pi\)
0.615286 + 0.788304i \(0.289040\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.82843 0.910247 0.455124 0.890428i \(-0.349595\pi\)
0.455124 + 0.890428i \(0.349595\pi\)
\(42\) 0 0
\(43\) −4.07107 −0.620832 −0.310416 0.950601i \(-0.600468\pi\)
−0.310416 + 0.950601i \(0.600468\pi\)
\(44\) 0 0
\(45\) −8.00000 −1.19257
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) 12.4853 1.78361
\(50\) 0 0
\(51\) −14.0711 −1.97034
\(52\) 0 0
\(53\) −2.82843 −0.388514 −0.194257 0.980951i \(-0.562230\pi\)
−0.194257 + 0.980951i \(0.562230\pi\)
\(54\) 0 0
\(55\) −9.17157 −1.23669
\(56\) 0 0
\(57\) −3.00000 −0.397360
\(58\) 0 0
\(59\) −1.24264 −0.161778 −0.0808890 0.996723i \(-0.525776\pi\)
−0.0808890 + 0.996723i \(0.525776\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 0 0
\(63\) 12.4853 1.57300
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 13.2426 1.61785 0.808923 0.587915i \(-0.200051\pi\)
0.808923 + 0.587915i \(0.200051\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) −7.24264 −0.859543 −0.429772 0.902938i \(-0.641406\pi\)
−0.429772 + 0.902938i \(0.641406\pi\)
\(72\) 0 0
\(73\) −12.4853 −1.46129 −0.730646 0.682757i \(-0.760781\pi\)
−0.730646 + 0.682757i \(0.760781\pi\)
\(74\) 0 0
\(75\) 7.24264 0.836308
\(76\) 0 0
\(77\) 14.3137 1.63120
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) −9.48528 −1.05392
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 16.4853 1.78808
\(86\) 0 0
\(87\) 20.8995 2.24066
\(88\) 0 0
\(89\) 3.34315 0.354373 0.177186 0.984177i \(-0.443300\pi\)
0.177186 + 0.984177i \(0.443300\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 13.6569 1.41615
\(94\) 0 0
\(95\) 3.51472 0.360603
\(96\) 0 0
\(97\) 9.00000 0.913812 0.456906 0.889515i \(-0.348958\pi\)
0.456906 + 0.889515i \(0.348958\pi\)
\(98\) 0 0
\(99\) 9.17157 0.921778
\(100\) 0 0
\(101\) 11.8284 1.17697 0.588486 0.808507i \(-0.299724\pi\)
0.588486 + 0.808507i \(0.299724\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −30.1421 −2.94157
\(106\) 0 0
\(107\) −19.2426 −1.86026 −0.930128 0.367235i \(-0.880304\pi\)
−0.930128 + 0.367235i \(0.880304\pi\)
\(108\) 0 0
\(109\) 8.48528 0.812743 0.406371 0.913708i \(-0.366794\pi\)
0.406371 + 0.913708i \(0.366794\pi\)
\(110\) 0 0
\(111\) 18.0711 1.71523
\(112\) 0 0
\(113\) −0.171573 −0.0161402 −0.00807011 0.999967i \(-0.502569\pi\)
−0.00807011 + 0.999967i \(0.502569\pi\)
\(114\) 0 0
\(115\) 3.51472 0.327749
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −25.7279 −2.35847
\(120\) 0 0
\(121\) −0.485281 −0.0441165
\(122\) 0 0
\(123\) 14.0711 1.26875
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) −1.58579 −0.140716 −0.0703579 0.997522i \(-0.522414\pi\)
−0.0703579 + 0.997522i \(0.522414\pi\)
\(128\) 0 0
\(129\) −9.82843 −0.865345
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) −5.48528 −0.475634
\(134\) 0 0
\(135\) 1.17157 0.100833
\(136\) 0 0
\(137\) −9.34315 −0.798239 −0.399119 0.916899i \(-0.630684\pi\)
−0.399119 + 0.916899i \(0.630684\pi\)
\(138\) 0 0
\(139\) 1.24264 0.105399 0.0526997 0.998610i \(-0.483217\pi\)
0.0526997 + 0.998610i \(0.483217\pi\)
\(140\) 0 0
\(141\) 14.4853 1.21988
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −24.4853 −2.03339
\(146\) 0 0
\(147\) 30.1421 2.48608
\(148\) 0 0
\(149\) 3.34315 0.273881 0.136941 0.990579i \(-0.456273\pi\)
0.136941 + 0.990579i \(0.456273\pi\)
\(150\) 0 0
\(151\) −16.9706 −1.38104 −0.690522 0.723311i \(-0.742619\pi\)
−0.690522 + 0.723311i \(0.742619\pi\)
\(152\) 0 0
\(153\) −16.4853 −1.33276
\(154\) 0 0
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) −0.485281 −0.0387297 −0.0193648 0.999812i \(-0.506164\pi\)
−0.0193648 + 0.999812i \(0.506164\pi\)
\(158\) 0 0
\(159\) −6.82843 −0.541529
\(160\) 0 0
\(161\) −5.48528 −0.432301
\(162\) 0 0
\(163\) 16.7574 1.31254 0.656269 0.754527i \(-0.272134\pi\)
0.656269 + 0.754527i \(0.272134\pi\)
\(164\) 0 0
\(165\) −22.1421 −1.72376
\(166\) 0 0
\(167\) −15.7279 −1.21706 −0.608532 0.793530i \(-0.708241\pi\)
−0.608532 + 0.793530i \(0.708241\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −3.51472 −0.268777
\(172\) 0 0
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) 0 0
\(175\) 13.2426 1.00105
\(176\) 0 0
\(177\) −3.00000 −0.225494
\(178\) 0 0
\(179\) 12.7574 0.953530 0.476765 0.879031i \(-0.341809\pi\)
0.476765 + 0.879031i \(0.341809\pi\)
\(180\) 0 0
\(181\) −0.485281 −0.0360707 −0.0180353 0.999837i \(-0.505741\pi\)
−0.0180353 + 0.999837i \(0.505741\pi\)
\(182\) 0 0
\(183\) 16.8995 1.24925
\(184\) 0 0
\(185\) −21.1716 −1.55656
\(186\) 0 0
\(187\) −18.8995 −1.38207
\(188\) 0 0
\(189\) −1.82843 −0.132999
\(190\) 0 0
\(191\) −6.75736 −0.488945 −0.244473 0.969656i \(-0.578615\pi\)
−0.244473 + 0.969656i \(0.578615\pi\)
\(192\) 0 0
\(193\) 19.4853 1.40258 0.701291 0.712875i \(-0.252608\pi\)
0.701291 + 0.712875i \(0.252608\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.00000 −0.213741 −0.106871 0.994273i \(-0.534083\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(198\) 0 0
\(199\) 24.2132 1.71643 0.858214 0.513292i \(-0.171574\pi\)
0.858214 + 0.513292i \(0.171574\pi\)
\(200\) 0 0
\(201\) 31.9706 2.25503
\(202\) 0 0
\(203\) 38.2132 2.68204
\(204\) 0 0
\(205\) −16.4853 −1.15138
\(206\) 0 0
\(207\) −3.51472 −0.244290
\(208\) 0 0
\(209\) −4.02944 −0.278722
\(210\) 0 0
\(211\) −13.5858 −0.935284 −0.467642 0.883918i \(-0.654896\pi\)
−0.467642 + 0.883918i \(0.654896\pi\)
\(212\) 0 0
\(213\) −17.4853 −1.19807
\(214\) 0 0
\(215\) 11.5147 0.785297
\(216\) 0 0
\(217\) 24.9706 1.69511
\(218\) 0 0
\(219\) −30.1421 −2.03682
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 6.89949 0.462024 0.231012 0.972951i \(-0.425796\pi\)
0.231012 + 0.972951i \(0.425796\pi\)
\(224\) 0 0
\(225\) 8.48528 0.565685
\(226\) 0 0
\(227\) 15.7279 1.04390 0.521949 0.852976i \(-0.325205\pi\)
0.521949 + 0.852976i \(0.325205\pi\)
\(228\) 0 0
\(229\) −8.48528 −0.560723 −0.280362 0.959894i \(-0.590454\pi\)
−0.280362 + 0.959894i \(0.590454\pi\)
\(230\) 0 0
\(231\) 34.5563 2.27364
\(232\) 0 0
\(233\) −20.4853 −1.34204 −0.671018 0.741441i \(-0.734143\pi\)
−0.671018 + 0.741441i \(0.734143\pi\)
\(234\) 0 0
\(235\) −16.9706 −1.10704
\(236\) 0 0
\(237\) 14.4853 0.940920
\(238\) 0 0
\(239\) −8.97056 −0.580257 −0.290129 0.956988i \(-0.593698\pi\)
−0.290129 + 0.956988i \(0.593698\pi\)
\(240\) 0 0
\(241\) −30.4558 −1.96183 −0.980917 0.194429i \(-0.937715\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) 0 0
\(243\) −21.6569 −1.38929
\(244\) 0 0
\(245\) −35.3137 −2.25611
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 9.65685 0.611978
\(250\) 0 0
\(251\) −17.7279 −1.11898 −0.559488 0.828838i \(-0.689002\pi\)
−0.559488 + 0.828838i \(0.689002\pi\)
\(252\) 0 0
\(253\) −4.02944 −0.253329
\(254\) 0 0
\(255\) 39.7990 2.49231
\(256\) 0 0
\(257\) 16.7990 1.04789 0.523946 0.851751i \(-0.324459\pi\)
0.523946 + 0.851751i \(0.324459\pi\)
\(258\) 0 0
\(259\) 33.0416 2.05311
\(260\) 0 0
\(261\) 24.4853 1.51560
\(262\) 0 0
\(263\) −9.24264 −0.569926 −0.284963 0.958539i \(-0.591981\pi\)
−0.284963 + 0.958539i \(0.591981\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 8.07107 0.493941
\(268\) 0 0
\(269\) 5.48528 0.334444 0.167222 0.985919i \(-0.446520\pi\)
0.167222 + 0.985919i \(0.446520\pi\)
\(270\) 0 0
\(271\) 25.2426 1.53338 0.766691 0.642017i \(-0.221902\pi\)
0.766691 + 0.642017i \(0.221902\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.72792 0.586616
\(276\) 0 0
\(277\) 13.4853 0.810252 0.405126 0.914261i \(-0.367228\pi\)
0.405126 + 0.914261i \(0.367228\pi\)
\(278\) 0 0
\(279\) 16.0000 0.957895
\(280\) 0 0
\(281\) 2.14214 0.127789 0.0638945 0.997957i \(-0.479648\pi\)
0.0638945 + 0.997957i \(0.479648\pi\)
\(282\) 0 0
\(283\) 10.4142 0.619061 0.309530 0.950890i \(-0.399828\pi\)
0.309530 + 0.950890i \(0.399828\pi\)
\(284\) 0 0
\(285\) 8.48528 0.502625
\(286\) 0 0
\(287\) 25.7279 1.51867
\(288\) 0 0
\(289\) 16.9706 0.998268
\(290\) 0 0
\(291\) 21.7279 1.27371
\(292\) 0 0
\(293\) −2.31371 −0.135168 −0.0675841 0.997714i \(-0.521529\pi\)
−0.0675841 + 0.997714i \(0.521529\pi\)
\(294\) 0 0
\(295\) 3.51472 0.204635
\(296\) 0 0
\(297\) −1.34315 −0.0779372
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −17.9706 −1.03581
\(302\) 0 0
\(303\) 28.5563 1.64052
\(304\) 0 0
\(305\) −19.7990 −1.13369
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 20.4853 1.15790 0.578948 0.815364i \(-0.303463\pi\)
0.578948 + 0.815364i \(0.303463\pi\)
\(314\) 0 0
\(315\) −35.3137 −1.98970
\(316\) 0 0
\(317\) 17.3137 0.972435 0.486217 0.873838i \(-0.338376\pi\)
0.486217 + 0.873838i \(0.338376\pi\)
\(318\) 0 0
\(319\) 28.0711 1.57168
\(320\) 0 0
\(321\) −46.4558 −2.59291
\(322\) 0 0
\(323\) 7.24264 0.402991
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 20.4853 1.13284
\(328\) 0 0
\(329\) 26.4853 1.46018
\(330\) 0 0
\(331\) −7.24264 −0.398092 −0.199046 0.979990i \(-0.563784\pi\)
−0.199046 + 0.979990i \(0.563784\pi\)
\(332\) 0 0
\(333\) 21.1716 1.16020
\(334\) 0 0
\(335\) −37.4558 −2.04643
\(336\) 0 0
\(337\) 4.48528 0.244329 0.122164 0.992510i \(-0.461016\pi\)
0.122164 + 0.992510i \(0.461016\pi\)
\(338\) 0 0
\(339\) −0.414214 −0.0224970
\(340\) 0 0
\(341\) 18.3431 0.993337
\(342\) 0 0
\(343\) 24.2132 1.30739
\(344\) 0 0
\(345\) 8.48528 0.456832
\(346\) 0 0
\(347\) 31.2426 1.67719 0.838596 0.544753i \(-0.183377\pi\)
0.838596 + 0.544753i \(0.183377\pi\)
\(348\) 0 0
\(349\) −34.4558 −1.84438 −0.922190 0.386738i \(-0.873602\pi\)
−0.922190 + 0.386738i \(0.873602\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.6569 0.780106 0.390053 0.920792i \(-0.372457\pi\)
0.390053 + 0.920792i \(0.372457\pi\)
\(354\) 0 0
\(355\) 20.4853 1.08725
\(356\) 0 0
\(357\) −62.1127 −3.28735
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −17.4558 −0.918729
\(362\) 0 0
\(363\) −1.17157 −0.0614916
\(364\) 0 0
\(365\) 35.3137 1.84840
\(366\) 0 0
\(367\) −8.27208 −0.431799 −0.215899 0.976416i \(-0.569268\pi\)
−0.215899 + 0.976416i \(0.569268\pi\)
\(368\) 0 0
\(369\) 16.4853 0.858189
\(370\) 0 0
\(371\) −12.4853 −0.648204
\(372\) 0 0
\(373\) 37.4853 1.94091 0.970457 0.241274i \(-0.0775651\pi\)
0.970457 + 0.241274i \(0.0775651\pi\)
\(374\) 0 0
\(375\) 13.6569 0.705237
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −27.3848 −1.40666 −0.703331 0.710863i \(-0.748305\pi\)
−0.703331 + 0.710863i \(0.748305\pi\)
\(380\) 0 0
\(381\) −3.82843 −0.196136
\(382\) 0 0
\(383\) 15.7279 0.803659 0.401830 0.915714i \(-0.368374\pi\)
0.401830 + 0.915714i \(0.368374\pi\)
\(384\) 0 0
\(385\) −40.4853 −2.06332
\(386\) 0 0
\(387\) −11.5147 −0.585326
\(388\) 0 0
\(389\) −16.6274 −0.843044 −0.421522 0.906818i \(-0.638504\pi\)
−0.421522 + 0.906818i \(0.638504\pi\)
\(390\) 0 0
\(391\) 7.24264 0.366276
\(392\) 0 0
\(393\) 9.65685 0.487124
\(394\) 0 0
\(395\) −16.9706 −0.853882
\(396\) 0 0
\(397\) 11.4853 0.576430 0.288215 0.957566i \(-0.406938\pi\)
0.288215 + 0.957566i \(0.406938\pi\)
\(398\) 0 0
\(399\) −13.2426 −0.662961
\(400\) 0 0
\(401\) −11.1421 −0.556412 −0.278206 0.960521i \(-0.589740\pi\)
−0.278206 + 0.960521i \(0.589740\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 26.8284 1.33312
\(406\) 0 0
\(407\) 24.2721 1.20312
\(408\) 0 0
\(409\) 10.5147 0.519919 0.259960 0.965619i \(-0.416291\pi\)
0.259960 + 0.965619i \(0.416291\pi\)
\(410\) 0 0
\(411\) −22.5563 −1.11262
\(412\) 0 0
\(413\) −5.48528 −0.269913
\(414\) 0 0
\(415\) −11.3137 −0.555368
\(416\) 0 0
\(417\) 3.00000 0.146911
\(418\) 0 0
\(419\) 11.7279 0.572946 0.286473 0.958088i \(-0.407517\pi\)
0.286473 + 0.958088i \(0.407517\pi\)
\(420\) 0 0
\(421\) −0.485281 −0.0236512 −0.0118256 0.999930i \(-0.503764\pi\)
−0.0118256 + 0.999930i \(0.503764\pi\)
\(422\) 0 0
\(423\) 16.9706 0.825137
\(424\) 0 0
\(425\) −17.4853 −0.848161
\(426\) 0 0
\(427\) 30.8995 1.49533
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −34.6985 −1.67137 −0.835684 0.549211i \(-0.814928\pi\)
−0.835684 + 0.549211i \(0.814928\pi\)
\(432\) 0 0
\(433\) −2.51472 −0.120850 −0.0604248 0.998173i \(-0.519246\pi\)
−0.0604248 + 0.998173i \(0.519246\pi\)
\(434\) 0 0
\(435\) −59.1127 −2.83424
\(436\) 0 0
\(437\) 1.54416 0.0738670
\(438\) 0 0
\(439\) 28.0711 1.33976 0.669879 0.742470i \(-0.266346\pi\)
0.669879 + 0.742470i \(0.266346\pi\)
\(440\) 0 0
\(441\) 35.3137 1.68161
\(442\) 0 0
\(443\) 28.9706 1.37643 0.688216 0.725505i \(-0.258394\pi\)
0.688216 + 0.725505i \(0.258394\pi\)
\(444\) 0 0
\(445\) −9.45584 −0.448250
\(446\) 0 0
\(447\) 8.07107 0.381748
\(448\) 0 0
\(449\) −12.5147 −0.590606 −0.295303 0.955404i \(-0.595421\pi\)
−0.295303 + 0.955404i \(0.595421\pi\)
\(450\) 0 0
\(451\) 18.8995 0.889942
\(452\) 0 0
\(453\) −40.9706 −1.92496
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −31.0000 −1.45012 −0.725059 0.688686i \(-0.758188\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) 0 0
\(459\) 2.41421 0.112686
\(460\) 0 0
\(461\) −1.20101 −0.0559366 −0.0279683 0.999609i \(-0.508904\pi\)
−0.0279683 + 0.999609i \(0.508904\pi\)
\(462\) 0 0
\(463\) 18.3431 0.852478 0.426239 0.904611i \(-0.359838\pi\)
0.426239 + 0.904611i \(0.359838\pi\)
\(464\) 0 0
\(465\) −38.6274 −1.79130
\(466\) 0 0
\(467\) −6.97056 −0.322559 −0.161280 0.986909i \(-0.551562\pi\)
−0.161280 + 0.986909i \(0.551562\pi\)
\(468\) 0 0
\(469\) 58.4558 2.69924
\(470\) 0 0
\(471\) −1.17157 −0.0539832
\(472\) 0 0
\(473\) −13.2010 −0.606983
\(474\) 0 0
\(475\) −3.72792 −0.171049
\(476\) 0 0
\(477\) −8.00000 −0.366295
\(478\) 0 0
\(479\) −8.75736 −0.400134 −0.200067 0.979782i \(-0.564116\pi\)
−0.200067 + 0.979782i \(0.564116\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −13.2426 −0.602561
\(484\) 0 0
\(485\) −25.4558 −1.15589
\(486\) 0 0
\(487\) −12.8995 −0.584532 −0.292266 0.956337i \(-0.594409\pi\)
−0.292266 + 0.956337i \(0.594409\pi\)
\(488\) 0 0
\(489\) 40.4558 1.82948
\(490\) 0 0
\(491\) −22.2132 −1.00247 −0.501234 0.865312i \(-0.667120\pi\)
−0.501234 + 0.865312i \(0.667120\pi\)
\(492\) 0 0
\(493\) −50.4558 −2.27242
\(494\) 0 0
\(495\) −25.9411 −1.16597
\(496\) 0 0
\(497\) −31.9706 −1.43408
\(498\) 0 0
\(499\) −17.6569 −0.790429 −0.395215 0.918589i \(-0.629330\pi\)
−0.395215 + 0.918589i \(0.629330\pi\)
\(500\) 0 0
\(501\) −37.9706 −1.69640
\(502\) 0 0
\(503\) −14.7574 −0.657998 −0.328999 0.944330i \(-0.606711\pi\)
−0.328999 + 0.944330i \(0.606711\pi\)
\(504\) 0 0
\(505\) −33.4558 −1.48877
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.14214 0.227921 0.113961 0.993485i \(-0.463646\pi\)
0.113961 + 0.993485i \(0.463646\pi\)
\(510\) 0 0
\(511\) −55.1127 −2.43804
\(512\) 0 0
\(513\) 0.514719 0.0227254
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 19.4558 0.855667
\(518\) 0 0
\(519\) −21.7279 −0.953750
\(520\) 0 0
\(521\) −9.17157 −0.401814 −0.200907 0.979610i \(-0.564389\pi\)
−0.200907 + 0.979610i \(0.564389\pi\)
\(522\) 0 0
\(523\) 16.4142 0.717743 0.358872 0.933387i \(-0.383162\pi\)
0.358872 + 0.933387i \(0.383162\pi\)
\(524\) 0 0
\(525\) 31.9706 1.39531
\(526\) 0 0
\(527\) −32.9706 −1.43622
\(528\) 0 0
\(529\) −21.4558 −0.932863
\(530\) 0 0
\(531\) −3.51472 −0.152526
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 54.4264 2.35306
\(536\) 0 0
\(537\) 30.7990 1.32907
\(538\) 0 0
\(539\) 40.4853 1.74382
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) −1.17157 −0.0502770
\(544\) 0 0
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) 0 0
\(549\) 19.7990 0.845000
\(550\) 0 0
\(551\) −10.7574 −0.458279
\(552\) 0 0
\(553\) 26.4853 1.12627
\(554\) 0 0
\(555\) −51.1127 −2.16961
\(556\) 0 0
\(557\) −8.65685 −0.366803 −0.183401 0.983038i \(-0.558711\pi\)
−0.183401 + 0.983038i \(0.558711\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −45.6274 −1.92639
\(562\) 0 0
\(563\) −32.6985 −1.37808 −0.689038 0.724725i \(-0.741967\pi\)
−0.689038 + 0.724725i \(0.741967\pi\)
\(564\) 0 0
\(565\) 0.485281 0.0204159
\(566\) 0 0
\(567\) −41.8701 −1.75838
\(568\) 0 0
\(569\) −25.9706 −1.08874 −0.544371 0.838844i \(-0.683232\pi\)
−0.544371 + 0.838844i \(0.683232\pi\)
\(570\) 0 0
\(571\) −40.2843 −1.68584 −0.842922 0.538036i \(-0.819167\pi\)
−0.842922 + 0.538036i \(0.819167\pi\)
\(572\) 0 0
\(573\) −16.3137 −0.681515
\(574\) 0 0
\(575\) −3.72792 −0.155465
\(576\) 0 0
\(577\) −4.48528 −0.186725 −0.0933624 0.995632i \(-0.529762\pi\)
−0.0933624 + 0.995632i \(0.529762\pi\)
\(578\) 0 0
\(579\) 47.0416 1.95498
\(580\) 0 0
\(581\) 17.6569 0.732530
\(582\) 0 0
\(583\) −9.17157 −0.379848
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.6985 −0.854318 −0.427159 0.904177i \(-0.640486\pi\)
−0.427159 + 0.904177i \(0.640486\pi\)
\(588\) 0 0
\(589\) −7.02944 −0.289643
\(590\) 0 0
\(591\) −7.24264 −0.297922
\(592\) 0 0
\(593\) −14.8284 −0.608931 −0.304465 0.952523i \(-0.598478\pi\)
−0.304465 + 0.952523i \(0.598478\pi\)
\(594\) 0 0
\(595\) 72.7696 2.98326
\(596\) 0 0
\(597\) 58.4558 2.39244
\(598\) 0 0
\(599\) −47.9411 −1.95882 −0.979411 0.201878i \(-0.935295\pi\)
−0.979411 + 0.201878i \(0.935295\pi\)
\(600\) 0 0
\(601\) −10.5147 −0.428904 −0.214452 0.976734i \(-0.568797\pi\)
−0.214452 + 0.976734i \(0.568797\pi\)
\(602\) 0 0
\(603\) 37.4558 1.52532
\(604\) 0 0
\(605\) 1.37258 0.0558034
\(606\) 0 0
\(607\) 1.58579 0.0643651 0.0321825 0.999482i \(-0.489754\pi\)
0.0321825 + 0.999482i \(0.489754\pi\)
\(608\) 0 0
\(609\) 92.2548 3.73835
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 14.5147 0.586244 0.293122 0.956075i \(-0.405306\pi\)
0.293122 + 0.956075i \(0.405306\pi\)
\(614\) 0 0
\(615\) −39.7990 −1.60485
\(616\) 0 0
\(617\) 44.3137 1.78400 0.892001 0.452033i \(-0.149301\pi\)
0.892001 + 0.452033i \(0.149301\pi\)
\(618\) 0 0
\(619\) −4.97056 −0.199784 −0.0998919 0.994998i \(-0.531850\pi\)
−0.0998919 + 0.994998i \(0.531850\pi\)
\(620\) 0 0
\(621\) 0.514719 0.0206549
\(622\) 0 0
\(623\) 14.7574 0.591241
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) −9.72792 −0.388496
\(628\) 0 0
\(629\) −43.6274 −1.73954
\(630\) 0 0
\(631\) −7.24264 −0.288325 −0.144162 0.989554i \(-0.546049\pi\)
−0.144162 + 0.989554i \(0.546049\pi\)
\(632\) 0 0
\(633\) −32.7990 −1.30364
\(634\) 0 0
\(635\) 4.48528 0.177993
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −20.4853 −0.810385
\(640\) 0 0
\(641\) −22.7990 −0.900506 −0.450253 0.892901i \(-0.648666\pi\)
−0.450253 + 0.892901i \(0.648666\pi\)
\(642\) 0 0
\(643\) −0.213203 −0.00840792 −0.00420396 0.999991i \(-0.501338\pi\)
−0.00420396 + 0.999991i \(0.501338\pi\)
\(644\) 0 0
\(645\) 27.7990 1.09458
\(646\) 0 0
\(647\) −23.2426 −0.913762 −0.456881 0.889528i \(-0.651034\pi\)
−0.456881 + 0.889528i \(0.651034\pi\)
\(648\) 0 0
\(649\) −4.02944 −0.158169
\(650\) 0 0
\(651\) 60.2843 2.36273
\(652\) 0 0
\(653\) 23.1421 0.905622 0.452811 0.891607i \(-0.350421\pi\)
0.452811 + 0.891607i \(0.350421\pi\)
\(654\) 0 0
\(655\) −11.3137 −0.442063
\(656\) 0 0
\(657\) −35.3137 −1.37772
\(658\) 0 0
\(659\) 24.2132 0.943212 0.471606 0.881809i \(-0.343674\pi\)
0.471606 + 0.881809i \(0.343674\pi\)
\(660\) 0 0
\(661\) 24.4558 0.951222 0.475611 0.879656i \(-0.342227\pi\)
0.475611 + 0.879656i \(0.342227\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 15.5147 0.601635
\(666\) 0 0
\(667\) −10.7574 −0.416527
\(668\) 0 0
\(669\) 16.6569 0.643991
\(670\) 0 0
\(671\) 22.6985 0.876265
\(672\) 0 0
\(673\) −8.02944 −0.309512 −0.154756 0.987953i \(-0.549459\pi\)
−0.154756 + 0.987953i \(0.549459\pi\)
\(674\) 0 0
\(675\) −1.24264 −0.0478293
\(676\) 0 0
\(677\) −25.4558 −0.978348 −0.489174 0.872186i \(-0.662702\pi\)
−0.489174 + 0.872186i \(0.662702\pi\)
\(678\) 0 0
\(679\) 39.7279 1.52462
\(680\) 0 0
\(681\) 37.9706 1.45504
\(682\) 0 0
\(683\) −9.24264 −0.353660 −0.176830 0.984241i \(-0.556584\pi\)
−0.176830 + 0.984241i \(0.556584\pi\)
\(684\) 0 0
\(685\) 26.4264 1.00970
\(686\) 0 0
\(687\) −20.4853 −0.781562
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −16.0711 −0.611372 −0.305686 0.952132i \(-0.598886\pi\)
−0.305686 + 0.952132i \(0.598886\pi\)
\(692\) 0 0
\(693\) 40.4853 1.53791
\(694\) 0 0
\(695\) −3.51472 −0.133321
\(696\) 0 0
\(697\) −33.9706 −1.28673
\(698\) 0 0
\(699\) −49.4558 −1.87059
\(700\) 0 0
\(701\) −8.48528 −0.320485 −0.160242 0.987078i \(-0.551228\pi\)
−0.160242 + 0.987078i \(0.551228\pi\)
\(702\) 0 0
\(703\) −9.30152 −0.350813
\(704\) 0 0
\(705\) −40.9706 −1.54304
\(706\) 0 0
\(707\) 52.2132 1.96368
\(708\) 0 0
\(709\) 19.4853 0.731785 0.365893 0.930657i \(-0.380764\pi\)
0.365893 + 0.930657i \(0.380764\pi\)
\(710\) 0 0
\(711\) 16.9706 0.636446
\(712\) 0 0
\(713\) −7.02944 −0.263254
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −21.6569 −0.808790
\(718\) 0 0
\(719\) −22.7574 −0.848706 −0.424353 0.905497i \(-0.639498\pi\)
−0.424353 + 0.905497i \(0.639498\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −73.5269 −2.73450
\(724\) 0 0
\(725\) 25.9706 0.964522
\(726\) 0 0
\(727\) 35.3137 1.30971 0.654856 0.755753i \(-0.272729\pi\)
0.654856 + 0.755753i \(0.272729\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) 0 0
\(731\) 23.7279 0.877609
\(732\) 0 0
\(733\) −43.9411 −1.62300 −0.811501 0.584351i \(-0.801349\pi\)
−0.811501 + 0.584351i \(0.801349\pi\)
\(734\) 0 0
\(735\) −85.2548 −3.14467
\(736\) 0 0
\(737\) 42.9411 1.58176
\(738\) 0 0
\(739\) 30.2132 1.11141 0.555705 0.831379i \(-0.312448\pi\)
0.555705 + 0.831379i \(0.312448\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.24264 0.265707 0.132853 0.991136i \(-0.457586\pi\)
0.132853 + 0.991136i \(0.457586\pi\)
\(744\) 0 0
\(745\) −9.45584 −0.346435
\(746\) 0 0
\(747\) 11.3137 0.413947
\(748\) 0 0
\(749\) −84.9411 −3.10368
\(750\) 0 0
\(751\) 17.1005 0.624006 0.312003 0.950081i \(-0.399000\pi\)
0.312003 + 0.950081i \(0.399000\pi\)
\(752\) 0 0
\(753\) −42.7990 −1.55968
\(754\) 0 0
\(755\) 48.0000 1.74690
\(756\) 0 0
\(757\) −23.4853 −0.853587 −0.426794 0.904349i \(-0.640357\pi\)
−0.426794 + 0.904349i \(0.640357\pi\)
\(758\) 0 0
\(759\) −9.72792 −0.353101
\(760\) 0 0
\(761\) −29.4853 −1.06884 −0.534420 0.845219i \(-0.679470\pi\)
−0.534420 + 0.845219i \(0.679470\pi\)
\(762\) 0 0
\(763\) 37.4558 1.35599
\(764\) 0 0
\(765\) 46.6274 1.68582
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 45.4264 1.63812 0.819059 0.573709i \(-0.194496\pi\)
0.819059 + 0.573709i \(0.194496\pi\)
\(770\) 0 0
\(771\) 40.5563 1.46060
\(772\) 0 0
\(773\) 11.4853 0.413097 0.206548 0.978436i \(-0.433777\pi\)
0.206548 + 0.978436i \(0.433777\pi\)
\(774\) 0 0
\(775\) 16.9706 0.609601
\(776\) 0 0
\(777\) 79.7696 2.86172
\(778\) 0 0
\(779\) −7.24264 −0.259495
\(780\) 0 0
\(781\) −23.4853 −0.840369
\(782\) 0 0
\(783\) −3.58579 −0.128146
\(784\) 0 0
\(785\) 1.37258 0.0489896
\(786\) 0 0
\(787\) 38.0122 1.35499 0.677494 0.735528i \(-0.263066\pi\)
0.677494 + 0.735528i \(0.263066\pi\)
\(788\) 0 0
\(789\) −22.3137 −0.794389
\(790\) 0 0
\(791\) −0.757359 −0.0269286
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 19.3137 0.684987
\(796\) 0 0
\(797\) −33.0000 −1.16892 −0.584460 0.811423i \(-0.698694\pi\)
−0.584460 + 0.811423i \(0.698694\pi\)
\(798\) 0 0
\(799\) −34.9706 −1.23717
\(800\) 0 0
\(801\) 9.45584 0.334106
\(802\) 0 0
\(803\) −40.4853 −1.42869
\(804\) 0 0
\(805\) 15.5147 0.546822
\(806\) 0 0
\(807\) 13.2426 0.466163
\(808\) 0 0
\(809\) −5.82843 −0.204917 −0.102458 0.994737i \(-0.532671\pi\)
−0.102458 + 0.994737i \(0.532671\pi\)
\(810\) 0 0
\(811\) −12.3431 −0.433426 −0.216713 0.976235i \(-0.569534\pi\)
−0.216713 + 0.976235i \(0.569534\pi\)
\(812\) 0 0
\(813\) 60.9411 2.13730
\(814\) 0 0
\(815\) −47.3970 −1.66024
\(816\) 0 0
\(817\) 5.05887 0.176988
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.9706 −0.696977 −0.348489 0.937313i \(-0.613305\pi\)
−0.348489 + 0.937313i \(0.613305\pi\)
\(822\) 0 0
\(823\) 0.213203 0.00743180 0.00371590 0.999993i \(-0.498817\pi\)
0.00371590 + 0.999993i \(0.498817\pi\)
\(824\) 0 0
\(825\) 23.4853 0.817653
\(826\) 0 0
\(827\) 21.9411 0.762968 0.381484 0.924376i \(-0.375413\pi\)
0.381484 + 0.924376i \(0.375413\pi\)
\(828\) 0 0
\(829\) 35.9706 1.24931 0.624655 0.780901i \(-0.285240\pi\)
0.624655 + 0.780901i \(0.285240\pi\)
\(830\) 0 0
\(831\) 32.5563 1.12937
\(832\) 0 0
\(833\) −72.7696 −2.52132
\(834\) 0 0
\(835\) 44.4853 1.53948
\(836\) 0 0
\(837\) −2.34315 −0.0809910
\(838\) 0 0
\(839\) 10.6985 0.369353 0.184676 0.982799i \(-0.440876\pi\)
0.184676 + 0.982799i \(0.440876\pi\)
\(840\) 0 0
\(841\) 45.9411 1.58418
\(842\) 0 0
\(843\) 5.17157 0.178118
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.14214 −0.0736047
\(848\) 0 0
\(849\) 25.1421 0.862876
\(850\) 0 0
\(851\) −9.30152 −0.318852
\(852\) 0 0
\(853\) 41.4558 1.41942 0.709711 0.704493i \(-0.248826\pi\)
0.709711 + 0.704493i \(0.248826\pi\)
\(854\) 0 0
\(855\) 9.94113 0.339979
\(856\) 0 0
\(857\) 33.1716 1.13312 0.566560 0.824021i \(-0.308274\pi\)
0.566560 + 0.824021i \(0.308274\pi\)
\(858\) 0 0
\(859\) −36.0000 −1.22830 −0.614152 0.789188i \(-0.710502\pi\)
−0.614152 + 0.789188i \(0.710502\pi\)
\(860\) 0 0
\(861\) 62.1127 2.11680
\(862\) 0 0
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) 25.4558 0.865525
\(866\) 0 0
\(867\) 40.9706 1.39143
\(868\) 0 0
\(869\) 19.4558 0.659994
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 25.4558 0.861550
\(874\) 0 0
\(875\) 24.9706 0.844159
\(876\) 0 0
\(877\) −23.9706 −0.809428 −0.404714 0.914443i \(-0.632629\pi\)
−0.404714 + 0.914443i \(0.632629\pi\)
\(878\) 0 0
\(879\) −5.58579 −0.188404
\(880\) 0 0
\(881\) 18.1716 0.612216 0.306108 0.951997i \(-0.400973\pi\)
0.306108 + 0.951997i \(0.400973\pi\)
\(882\) 0 0
\(883\) 27.5980 0.928746 0.464373 0.885640i \(-0.346280\pi\)
0.464373 + 0.885640i \(0.346280\pi\)
\(884\) 0 0
\(885\) 8.48528 0.285230
\(886\) 0 0
\(887\) −24.2132 −0.813000 −0.406500 0.913651i \(-0.633251\pi\)
−0.406500 + 0.913651i \(0.633251\pi\)
\(888\) 0 0
\(889\) −7.00000 −0.234772
\(890\) 0 0
\(891\) −30.7574 −1.03041
\(892\) 0 0
\(893\) −7.45584 −0.249500
\(894\) 0 0
\(895\) −36.0833 −1.20613
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 48.9706 1.63326
\(900\) 0 0
\(901\) 16.4853 0.549204
\(902\) 0 0
\(903\) −43.3848 −1.44375
\(904\) 0 0
\(905\) 1.37258 0.0456262
\(906\) 0 0
\(907\) −36.2132 −1.20244 −0.601220 0.799084i \(-0.705318\pi\)
−0.601220 + 0.799084i \(0.705318\pi\)
\(908\) 0 0
\(909\) 33.4558 1.10966
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 12.9706 0.429263
\(914\) 0 0
\(915\) −47.7990 −1.58019
\(916\) 0 0
\(917\) 17.6569 0.583081
\(918\) 0 0
\(919\) −38.3553 −1.26523 −0.632613 0.774468i \(-0.718018\pi\)
−0.632613 + 0.774468i \(0.718018\pi\)
\(920\) 0 0
\(921\) 28.9706 0.954612
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 22.4558 0.738344
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.1127 0.331787 0.165893 0.986144i \(-0.446949\pi\)
0.165893 + 0.986144i \(0.446949\pi\)
\(930\) 0 0
\(931\) −15.5147 −0.508474
\(932\) 0 0
\(933\) −57.9411 −1.89691
\(934\) 0 0
\(935\) 53.4558 1.74819
\(936\) 0 0
\(937\) −45.4558 −1.48498 −0.742489 0.669858i \(-0.766355\pi\)
−0.742489 + 0.669858i \(0.766355\pi\)
\(938\) 0 0
\(939\) 49.4558 1.61393
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) −7.24264 −0.235853
\(944\) 0 0
\(945\) 5.17157 0.168231
\(946\) 0 0
\(947\) 3.24264 0.105372 0.0526858 0.998611i \(-0.483222\pi\)
0.0526858 + 0.998611i \(0.483222\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 41.7990 1.35543
\(952\) 0 0
\(953\) −3.34315 −0.108295 −0.0541476 0.998533i \(-0.517244\pi\)
−0.0541476 + 0.998533i \(0.517244\pi\)
\(954\) 0 0
\(955\) 19.1127 0.618472
\(956\) 0 0
\(957\) 67.7696 2.19068
\(958\) 0 0
\(959\) −41.2426 −1.33179
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −54.4264 −1.75387
\(964\) 0 0
\(965\) −55.1127 −1.77414
\(966\) 0 0
\(967\) 7.02944 0.226051 0.113026 0.993592i \(-0.463946\pi\)
0.113026 + 0.993592i \(0.463946\pi\)
\(968\) 0 0
\(969\) 17.4853 0.561708
\(970\) 0 0
\(971\) −32.7574 −1.05123 −0.525617 0.850721i \(-0.676165\pi\)
−0.525617 + 0.850721i \(0.676165\pi\)
\(972\) 0 0
\(973\) 5.48528 0.175850
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −43.2843 −1.38479 −0.692393 0.721520i \(-0.743444\pi\)
−0.692393 + 0.721520i \(0.743444\pi\)
\(978\) 0 0
\(979\) 10.8406 0.346468
\(980\) 0 0
\(981\) 24.0000 0.766261
\(982\) 0 0
\(983\) 0.970563 0.0309561 0.0154781 0.999880i \(-0.495073\pi\)
0.0154781 + 0.999880i \(0.495073\pi\)
\(984\) 0 0
\(985\) 8.48528 0.270364
\(986\) 0 0
\(987\) 63.9411 2.03527
\(988\) 0 0
\(989\) 5.05887 0.160863
\(990\) 0 0
\(991\) −58.1543 −1.84733 −0.923667 0.383197i \(-0.874823\pi\)
−0.923667 + 0.383197i \(0.874823\pi\)
\(992\) 0 0
\(993\) −17.4853 −0.554879
\(994\) 0 0
\(995\) −68.4853 −2.17113
\(996\) 0 0
\(997\) −34.9411 −1.10660 −0.553298 0.832983i \(-0.686631\pi\)
−0.553298 + 0.832983i \(0.686631\pi\)
\(998\) 0 0
\(999\) −3.10051 −0.0980956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.bf.1.2 2
4.3 odd 2 5408.2.a.n.1.1 2
13.4 even 6 416.2.i.c.289.1 4
13.10 even 6 416.2.i.c.321.1 yes 4
13.12 even 2 5408.2.a.be.1.2 2
52.23 odd 6 416.2.i.f.321.2 yes 4
52.43 odd 6 416.2.i.f.289.2 yes 4
52.51 odd 2 5408.2.a.o.1.1 2
104.43 odd 6 832.2.i.k.705.1 4
104.69 even 6 832.2.i.p.705.2 4
104.75 odd 6 832.2.i.k.321.1 4
104.101 even 6 832.2.i.p.321.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.c.289.1 4 13.4 even 6
416.2.i.c.321.1 yes 4 13.10 even 6
416.2.i.f.289.2 yes 4 52.43 odd 6
416.2.i.f.321.2 yes 4 52.23 odd 6
832.2.i.k.321.1 4 104.75 odd 6
832.2.i.k.705.1 4 104.43 odd 6
832.2.i.p.321.2 4 104.101 even 6
832.2.i.p.705.2 4 104.69 even 6
5408.2.a.n.1.1 2 4.3 odd 2
5408.2.a.o.1.1 2 52.51 odd 2
5408.2.a.be.1.2 2 13.12 even 2
5408.2.a.bf.1.2 2 1.1 even 1 trivial