Properties

Label 5408.2.a.be.1.2
Level $5408$
Weight $2$
Character 5408.1
Self dual yes
Analytic conductor $43.183$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 5408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421 q^{3} +2.82843 q^{5} -4.41421 q^{7} +2.82843 q^{9} +O(q^{10})\) \(q+2.41421 q^{3} +2.82843 q^{5} -4.41421 q^{7} +2.82843 q^{9} -3.24264 q^{11} +6.82843 q^{15} -5.82843 q^{17} +1.24264 q^{19} -10.6569 q^{21} -1.24264 q^{23} +3.00000 q^{25} -0.414214 q^{27} +8.65685 q^{29} -5.65685 q^{31} -7.82843 q^{33} -12.4853 q^{35} -7.48528 q^{37} -5.82843 q^{41} -4.07107 q^{43} +8.00000 q^{45} -6.00000 q^{47} +12.4853 q^{49} -14.0711 q^{51} -2.82843 q^{53} -9.17157 q^{55} +3.00000 q^{57} +1.24264 q^{59} +7.00000 q^{61} -12.4853 q^{63} -13.2426 q^{67} -3.00000 q^{69} +7.24264 q^{71} +12.4853 q^{73} +7.24264 q^{75} +14.3137 q^{77} +6.00000 q^{79} -9.48528 q^{81} -4.00000 q^{83} -16.4853 q^{85} +20.8995 q^{87} -3.34315 q^{89} -13.6569 q^{93} +3.51472 q^{95} -9.00000 q^{97} -9.17157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} - 6 q^{7} + 2 q^{11} + 8 q^{15} - 6 q^{17} - 6 q^{19} - 10 q^{21} + 6 q^{23} + 6 q^{25} + 2 q^{27} + 6 q^{29} - 10 q^{33} - 8 q^{35} + 2 q^{37} - 6 q^{41} + 6 q^{43} + 16 q^{45} - 12 q^{47} + 8 q^{49} - 14 q^{51} - 24 q^{55} + 6 q^{57} - 6 q^{59} + 14 q^{61} - 8 q^{63} - 18 q^{67} - 6 q^{69} + 6 q^{71} + 8 q^{73} + 6 q^{75} + 6 q^{77} + 12 q^{79} - 2 q^{81} - 8 q^{83} - 16 q^{85} + 22 q^{87} - 18 q^{89} - 16 q^{93} + 24 q^{95} - 18 q^{97} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.41421 1.39385 0.696923 0.717146i \(-0.254552\pi\)
0.696923 + 0.717146i \(0.254552\pi\)
\(4\) 0 0
\(5\) 2.82843 1.26491 0.632456 0.774597i \(-0.282047\pi\)
0.632456 + 0.774597i \(0.282047\pi\)
\(6\) 0 0
\(7\) −4.41421 −1.66842 −0.834208 0.551450i \(-0.814075\pi\)
−0.834208 + 0.551450i \(0.814075\pi\)
\(8\) 0 0
\(9\) 2.82843 0.942809
\(10\) 0 0
\(11\) −3.24264 −0.977693 −0.488846 0.872370i \(-0.662582\pi\)
−0.488846 + 0.872370i \(0.662582\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 6.82843 1.76309
\(16\) 0 0
\(17\) −5.82843 −1.41360 −0.706801 0.707413i \(-0.749862\pi\)
−0.706801 + 0.707413i \(0.749862\pi\)
\(18\) 0 0
\(19\) 1.24264 0.285081 0.142541 0.989789i \(-0.454473\pi\)
0.142541 + 0.989789i \(0.454473\pi\)
\(20\) 0 0
\(21\) −10.6569 −2.32552
\(22\) 0 0
\(23\) −1.24264 −0.259108 −0.129554 0.991572i \(-0.541355\pi\)
−0.129554 + 0.991572i \(0.541355\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) −0.414214 −0.0797154
\(28\) 0 0
\(29\) 8.65685 1.60754 0.803769 0.594942i \(-0.202825\pi\)
0.803769 + 0.594942i \(0.202825\pi\)
\(30\) 0 0
\(31\) −5.65685 −1.01600 −0.508001 0.861357i \(-0.669615\pi\)
−0.508001 + 0.861357i \(0.669615\pi\)
\(32\) 0 0
\(33\) −7.82843 −1.36275
\(34\) 0 0
\(35\) −12.4853 −2.11040
\(36\) 0 0
\(37\) −7.48528 −1.23057 −0.615286 0.788304i \(-0.710960\pi\)
−0.615286 + 0.788304i \(0.710960\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.82843 −0.910247 −0.455124 0.890428i \(-0.650405\pi\)
−0.455124 + 0.890428i \(0.650405\pi\)
\(42\) 0 0
\(43\) −4.07107 −0.620832 −0.310416 0.950601i \(-0.600468\pi\)
−0.310416 + 0.950601i \(0.600468\pi\)
\(44\) 0 0
\(45\) 8.00000 1.19257
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 12.4853 1.78361
\(50\) 0 0
\(51\) −14.0711 −1.97034
\(52\) 0 0
\(53\) −2.82843 −0.388514 −0.194257 0.980951i \(-0.562230\pi\)
−0.194257 + 0.980951i \(0.562230\pi\)
\(54\) 0 0
\(55\) −9.17157 −1.23669
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 1.24264 0.161778 0.0808890 0.996723i \(-0.474224\pi\)
0.0808890 + 0.996723i \(0.474224\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 0 0
\(63\) −12.4853 −1.57300
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −13.2426 −1.61785 −0.808923 0.587915i \(-0.799949\pi\)
−0.808923 + 0.587915i \(0.799949\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 7.24264 0.859543 0.429772 0.902938i \(-0.358594\pi\)
0.429772 + 0.902938i \(0.358594\pi\)
\(72\) 0 0
\(73\) 12.4853 1.46129 0.730646 0.682757i \(-0.239219\pi\)
0.730646 + 0.682757i \(0.239219\pi\)
\(74\) 0 0
\(75\) 7.24264 0.836308
\(76\) 0 0
\(77\) 14.3137 1.63120
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) −9.48528 −1.05392
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) −16.4853 −1.78808
\(86\) 0 0
\(87\) 20.8995 2.24066
\(88\) 0 0
\(89\) −3.34315 −0.354373 −0.177186 0.984177i \(-0.556700\pi\)
−0.177186 + 0.984177i \(0.556700\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −13.6569 −1.41615
\(94\) 0 0
\(95\) 3.51472 0.360603
\(96\) 0 0
\(97\) −9.00000 −0.913812 −0.456906 0.889515i \(-0.651042\pi\)
−0.456906 + 0.889515i \(0.651042\pi\)
\(98\) 0 0
\(99\) −9.17157 −0.921778
\(100\) 0 0
\(101\) 11.8284 1.17697 0.588486 0.808507i \(-0.299724\pi\)
0.588486 + 0.808507i \(0.299724\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −30.1421 −2.94157
\(106\) 0 0
\(107\) −19.2426 −1.86026 −0.930128 0.367235i \(-0.880304\pi\)
−0.930128 + 0.367235i \(0.880304\pi\)
\(108\) 0 0
\(109\) −8.48528 −0.812743 −0.406371 0.913708i \(-0.633206\pi\)
−0.406371 + 0.913708i \(0.633206\pi\)
\(110\) 0 0
\(111\) −18.0711 −1.71523
\(112\) 0 0
\(113\) −0.171573 −0.0161402 −0.00807011 0.999967i \(-0.502569\pi\)
−0.00807011 + 0.999967i \(0.502569\pi\)
\(114\) 0 0
\(115\) −3.51472 −0.327749
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 25.7279 2.35847
\(120\) 0 0
\(121\) −0.485281 −0.0441165
\(122\) 0 0
\(123\) −14.0711 −1.26875
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) −1.58579 −0.140716 −0.0703579 0.997522i \(-0.522414\pi\)
−0.0703579 + 0.997522i \(0.522414\pi\)
\(128\) 0 0
\(129\) −9.82843 −0.865345
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) −5.48528 −0.475634
\(134\) 0 0
\(135\) −1.17157 −0.100833
\(136\) 0 0
\(137\) 9.34315 0.798239 0.399119 0.916899i \(-0.369316\pi\)
0.399119 + 0.916899i \(0.369316\pi\)
\(138\) 0 0
\(139\) 1.24264 0.105399 0.0526997 0.998610i \(-0.483217\pi\)
0.0526997 + 0.998610i \(0.483217\pi\)
\(140\) 0 0
\(141\) −14.4853 −1.21988
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 24.4853 2.03339
\(146\) 0 0
\(147\) 30.1421 2.48608
\(148\) 0 0
\(149\) −3.34315 −0.273881 −0.136941 0.990579i \(-0.543727\pi\)
−0.136941 + 0.990579i \(0.543727\pi\)
\(150\) 0 0
\(151\) 16.9706 1.38104 0.690522 0.723311i \(-0.257381\pi\)
0.690522 + 0.723311i \(0.257381\pi\)
\(152\) 0 0
\(153\) −16.4853 −1.33276
\(154\) 0 0
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) −0.485281 −0.0387297 −0.0193648 0.999812i \(-0.506164\pi\)
−0.0193648 + 0.999812i \(0.506164\pi\)
\(158\) 0 0
\(159\) −6.82843 −0.541529
\(160\) 0 0
\(161\) 5.48528 0.432301
\(162\) 0 0
\(163\) −16.7574 −1.31254 −0.656269 0.754527i \(-0.727866\pi\)
−0.656269 + 0.754527i \(0.727866\pi\)
\(164\) 0 0
\(165\) −22.1421 −1.72376
\(166\) 0 0
\(167\) 15.7279 1.21706 0.608532 0.793530i \(-0.291759\pi\)
0.608532 + 0.793530i \(0.291759\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 3.51472 0.268777
\(172\) 0 0
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) 0 0
\(175\) −13.2426 −1.00105
\(176\) 0 0
\(177\) 3.00000 0.225494
\(178\) 0 0
\(179\) 12.7574 0.953530 0.476765 0.879031i \(-0.341809\pi\)
0.476765 + 0.879031i \(0.341809\pi\)
\(180\) 0 0
\(181\) −0.485281 −0.0360707 −0.0180353 0.999837i \(-0.505741\pi\)
−0.0180353 + 0.999837i \(0.505741\pi\)
\(182\) 0 0
\(183\) 16.8995 1.24925
\(184\) 0 0
\(185\) −21.1716 −1.55656
\(186\) 0 0
\(187\) 18.8995 1.38207
\(188\) 0 0
\(189\) 1.82843 0.132999
\(190\) 0 0
\(191\) −6.75736 −0.488945 −0.244473 0.969656i \(-0.578615\pi\)
−0.244473 + 0.969656i \(0.578615\pi\)
\(192\) 0 0
\(193\) −19.4853 −1.40258 −0.701291 0.712875i \(-0.747392\pi\)
−0.701291 + 0.712875i \(0.747392\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.00000 0.213741 0.106871 0.994273i \(-0.465917\pi\)
0.106871 + 0.994273i \(0.465917\pi\)
\(198\) 0 0
\(199\) 24.2132 1.71643 0.858214 0.513292i \(-0.171574\pi\)
0.858214 + 0.513292i \(0.171574\pi\)
\(200\) 0 0
\(201\) −31.9706 −2.25503
\(202\) 0 0
\(203\) −38.2132 −2.68204
\(204\) 0 0
\(205\) −16.4853 −1.15138
\(206\) 0 0
\(207\) −3.51472 −0.244290
\(208\) 0 0
\(209\) −4.02944 −0.278722
\(210\) 0 0
\(211\) −13.5858 −0.935284 −0.467642 0.883918i \(-0.654896\pi\)
−0.467642 + 0.883918i \(0.654896\pi\)
\(212\) 0 0
\(213\) 17.4853 1.19807
\(214\) 0 0
\(215\) −11.5147 −0.785297
\(216\) 0 0
\(217\) 24.9706 1.69511
\(218\) 0 0
\(219\) 30.1421 2.03682
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −6.89949 −0.462024 −0.231012 0.972951i \(-0.574204\pi\)
−0.231012 + 0.972951i \(0.574204\pi\)
\(224\) 0 0
\(225\) 8.48528 0.565685
\(226\) 0 0
\(227\) −15.7279 −1.04390 −0.521949 0.852976i \(-0.674795\pi\)
−0.521949 + 0.852976i \(0.674795\pi\)
\(228\) 0 0
\(229\) 8.48528 0.560723 0.280362 0.959894i \(-0.409546\pi\)
0.280362 + 0.959894i \(0.409546\pi\)
\(230\) 0 0
\(231\) 34.5563 2.27364
\(232\) 0 0
\(233\) −20.4853 −1.34204 −0.671018 0.741441i \(-0.734143\pi\)
−0.671018 + 0.741441i \(0.734143\pi\)
\(234\) 0 0
\(235\) −16.9706 −1.10704
\(236\) 0 0
\(237\) 14.4853 0.940920
\(238\) 0 0
\(239\) 8.97056 0.580257 0.290129 0.956988i \(-0.406302\pi\)
0.290129 + 0.956988i \(0.406302\pi\)
\(240\) 0 0
\(241\) 30.4558 1.96183 0.980917 0.194429i \(-0.0622852\pi\)
0.980917 + 0.194429i \(0.0622852\pi\)
\(242\) 0 0
\(243\) −21.6569 −1.38929
\(244\) 0 0
\(245\) 35.3137 2.25611
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −9.65685 −0.611978
\(250\) 0 0
\(251\) −17.7279 −1.11898 −0.559488 0.828838i \(-0.689002\pi\)
−0.559488 + 0.828838i \(0.689002\pi\)
\(252\) 0 0
\(253\) 4.02944 0.253329
\(254\) 0 0
\(255\) −39.7990 −2.49231
\(256\) 0 0
\(257\) 16.7990 1.04789 0.523946 0.851751i \(-0.324459\pi\)
0.523946 + 0.851751i \(0.324459\pi\)
\(258\) 0 0
\(259\) 33.0416 2.05311
\(260\) 0 0
\(261\) 24.4853 1.51560
\(262\) 0 0
\(263\) −9.24264 −0.569926 −0.284963 0.958539i \(-0.591981\pi\)
−0.284963 + 0.958539i \(0.591981\pi\)
\(264\) 0 0
\(265\) −8.00000 −0.491436
\(266\) 0 0
\(267\) −8.07107 −0.493941
\(268\) 0 0
\(269\) 5.48528 0.334444 0.167222 0.985919i \(-0.446520\pi\)
0.167222 + 0.985919i \(0.446520\pi\)
\(270\) 0 0
\(271\) −25.2426 −1.53338 −0.766691 0.642017i \(-0.778098\pi\)
−0.766691 + 0.642017i \(0.778098\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.72792 −0.586616
\(276\) 0 0
\(277\) 13.4853 0.810252 0.405126 0.914261i \(-0.367228\pi\)
0.405126 + 0.914261i \(0.367228\pi\)
\(278\) 0 0
\(279\) −16.0000 −0.957895
\(280\) 0 0
\(281\) −2.14214 −0.127789 −0.0638945 0.997957i \(-0.520352\pi\)
−0.0638945 + 0.997957i \(0.520352\pi\)
\(282\) 0 0
\(283\) 10.4142 0.619061 0.309530 0.950890i \(-0.399828\pi\)
0.309530 + 0.950890i \(0.399828\pi\)
\(284\) 0 0
\(285\) 8.48528 0.502625
\(286\) 0 0
\(287\) 25.7279 1.51867
\(288\) 0 0
\(289\) 16.9706 0.998268
\(290\) 0 0
\(291\) −21.7279 −1.27371
\(292\) 0 0
\(293\) 2.31371 0.135168 0.0675841 0.997714i \(-0.478471\pi\)
0.0675841 + 0.997714i \(0.478471\pi\)
\(294\) 0 0
\(295\) 3.51472 0.204635
\(296\) 0 0
\(297\) 1.34315 0.0779372
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 17.9706 1.03581
\(302\) 0 0
\(303\) 28.5563 1.64052
\(304\) 0 0
\(305\) 19.7990 1.13369
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 20.4853 1.15790 0.578948 0.815364i \(-0.303463\pi\)
0.578948 + 0.815364i \(0.303463\pi\)
\(314\) 0 0
\(315\) −35.3137 −1.98970
\(316\) 0 0
\(317\) −17.3137 −0.972435 −0.486217 0.873838i \(-0.661624\pi\)
−0.486217 + 0.873838i \(0.661624\pi\)
\(318\) 0 0
\(319\) −28.0711 −1.57168
\(320\) 0 0
\(321\) −46.4558 −2.59291
\(322\) 0 0
\(323\) −7.24264 −0.402991
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −20.4853 −1.13284
\(328\) 0 0
\(329\) 26.4853 1.46018
\(330\) 0 0
\(331\) 7.24264 0.398092 0.199046 0.979990i \(-0.436216\pi\)
0.199046 + 0.979990i \(0.436216\pi\)
\(332\) 0 0
\(333\) −21.1716 −1.16020
\(334\) 0 0
\(335\) −37.4558 −2.04643
\(336\) 0 0
\(337\) 4.48528 0.244329 0.122164 0.992510i \(-0.461016\pi\)
0.122164 + 0.992510i \(0.461016\pi\)
\(338\) 0 0
\(339\) −0.414214 −0.0224970
\(340\) 0 0
\(341\) 18.3431 0.993337
\(342\) 0 0
\(343\) −24.2132 −1.30739
\(344\) 0 0
\(345\) −8.48528 −0.456832
\(346\) 0 0
\(347\) 31.2426 1.67719 0.838596 0.544753i \(-0.183377\pi\)
0.838596 + 0.544753i \(0.183377\pi\)
\(348\) 0 0
\(349\) 34.4558 1.84438 0.922190 0.386738i \(-0.126398\pi\)
0.922190 + 0.386738i \(0.126398\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.6569 −0.780106 −0.390053 0.920792i \(-0.627543\pi\)
−0.390053 + 0.920792i \(0.627543\pi\)
\(354\) 0 0
\(355\) 20.4853 1.08725
\(356\) 0 0
\(357\) 62.1127 3.28735
\(358\) 0 0
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −17.4558 −0.918729
\(362\) 0 0
\(363\) −1.17157 −0.0614916
\(364\) 0 0
\(365\) 35.3137 1.84840
\(366\) 0 0
\(367\) −8.27208 −0.431799 −0.215899 0.976416i \(-0.569268\pi\)
−0.215899 + 0.976416i \(0.569268\pi\)
\(368\) 0 0
\(369\) −16.4853 −0.858189
\(370\) 0 0
\(371\) 12.4853 0.648204
\(372\) 0 0
\(373\) 37.4853 1.94091 0.970457 0.241274i \(-0.0775651\pi\)
0.970457 + 0.241274i \(0.0775651\pi\)
\(374\) 0 0
\(375\) −13.6569 −0.705237
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 27.3848 1.40666 0.703331 0.710863i \(-0.251695\pi\)
0.703331 + 0.710863i \(0.251695\pi\)
\(380\) 0 0
\(381\) −3.82843 −0.196136
\(382\) 0 0
\(383\) −15.7279 −0.803659 −0.401830 0.915714i \(-0.631626\pi\)
−0.401830 + 0.915714i \(0.631626\pi\)
\(384\) 0 0
\(385\) 40.4853 2.06332
\(386\) 0 0
\(387\) −11.5147 −0.585326
\(388\) 0 0
\(389\) −16.6274 −0.843044 −0.421522 0.906818i \(-0.638504\pi\)
−0.421522 + 0.906818i \(0.638504\pi\)
\(390\) 0 0
\(391\) 7.24264 0.366276
\(392\) 0 0
\(393\) 9.65685 0.487124
\(394\) 0 0
\(395\) 16.9706 0.853882
\(396\) 0 0
\(397\) −11.4853 −0.576430 −0.288215 0.957566i \(-0.593062\pi\)
−0.288215 + 0.957566i \(0.593062\pi\)
\(398\) 0 0
\(399\) −13.2426 −0.662961
\(400\) 0 0
\(401\) 11.1421 0.556412 0.278206 0.960521i \(-0.410260\pi\)
0.278206 + 0.960521i \(0.410260\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −26.8284 −1.33312
\(406\) 0 0
\(407\) 24.2721 1.20312
\(408\) 0 0
\(409\) −10.5147 −0.519919 −0.259960 0.965619i \(-0.583709\pi\)
−0.259960 + 0.965619i \(0.583709\pi\)
\(410\) 0 0
\(411\) 22.5563 1.11262
\(412\) 0 0
\(413\) −5.48528 −0.269913
\(414\) 0 0
\(415\) −11.3137 −0.555368
\(416\) 0 0
\(417\) 3.00000 0.146911
\(418\) 0 0
\(419\) 11.7279 0.572946 0.286473 0.958088i \(-0.407517\pi\)
0.286473 + 0.958088i \(0.407517\pi\)
\(420\) 0 0
\(421\) 0.485281 0.0236512 0.0118256 0.999930i \(-0.496236\pi\)
0.0118256 + 0.999930i \(0.496236\pi\)
\(422\) 0 0
\(423\) −16.9706 −0.825137
\(424\) 0 0
\(425\) −17.4853 −0.848161
\(426\) 0 0
\(427\) −30.8995 −1.49533
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 34.6985 1.67137 0.835684 0.549211i \(-0.185072\pi\)
0.835684 + 0.549211i \(0.185072\pi\)
\(432\) 0 0
\(433\) −2.51472 −0.120850 −0.0604248 0.998173i \(-0.519246\pi\)
−0.0604248 + 0.998173i \(0.519246\pi\)
\(434\) 0 0
\(435\) 59.1127 2.83424
\(436\) 0 0
\(437\) −1.54416 −0.0738670
\(438\) 0 0
\(439\) 28.0711 1.33976 0.669879 0.742470i \(-0.266346\pi\)
0.669879 + 0.742470i \(0.266346\pi\)
\(440\) 0 0
\(441\) 35.3137 1.68161
\(442\) 0 0
\(443\) 28.9706 1.37643 0.688216 0.725505i \(-0.258394\pi\)
0.688216 + 0.725505i \(0.258394\pi\)
\(444\) 0 0
\(445\) −9.45584 −0.448250
\(446\) 0 0
\(447\) −8.07107 −0.381748
\(448\) 0 0
\(449\) 12.5147 0.590606 0.295303 0.955404i \(-0.404579\pi\)
0.295303 + 0.955404i \(0.404579\pi\)
\(450\) 0 0
\(451\) 18.8995 0.889942
\(452\) 0 0
\(453\) 40.9706 1.92496
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.0000 1.45012 0.725059 0.688686i \(-0.241812\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) 0 0
\(459\) 2.41421 0.112686
\(460\) 0 0
\(461\) 1.20101 0.0559366 0.0279683 0.999609i \(-0.491096\pi\)
0.0279683 + 0.999609i \(0.491096\pi\)
\(462\) 0 0
\(463\) −18.3431 −0.852478 −0.426239 0.904611i \(-0.640162\pi\)
−0.426239 + 0.904611i \(0.640162\pi\)
\(464\) 0 0
\(465\) −38.6274 −1.79130
\(466\) 0 0
\(467\) −6.97056 −0.322559 −0.161280 0.986909i \(-0.551562\pi\)
−0.161280 + 0.986909i \(0.551562\pi\)
\(468\) 0 0
\(469\) 58.4558 2.69924
\(470\) 0 0
\(471\) −1.17157 −0.0539832
\(472\) 0 0
\(473\) 13.2010 0.606983
\(474\) 0 0
\(475\) 3.72792 0.171049
\(476\) 0 0
\(477\) −8.00000 −0.366295
\(478\) 0 0
\(479\) 8.75736 0.400134 0.200067 0.979782i \(-0.435884\pi\)
0.200067 + 0.979782i \(0.435884\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 13.2426 0.602561
\(484\) 0 0
\(485\) −25.4558 −1.15589
\(486\) 0 0
\(487\) 12.8995 0.584532 0.292266 0.956337i \(-0.405591\pi\)
0.292266 + 0.956337i \(0.405591\pi\)
\(488\) 0 0
\(489\) −40.4558 −1.82948
\(490\) 0 0
\(491\) −22.2132 −1.00247 −0.501234 0.865312i \(-0.667120\pi\)
−0.501234 + 0.865312i \(0.667120\pi\)
\(492\) 0 0
\(493\) −50.4558 −2.27242
\(494\) 0 0
\(495\) −25.9411 −1.16597
\(496\) 0 0
\(497\) −31.9706 −1.43408
\(498\) 0 0
\(499\) 17.6569 0.790429 0.395215 0.918589i \(-0.370670\pi\)
0.395215 + 0.918589i \(0.370670\pi\)
\(500\) 0 0
\(501\) 37.9706 1.69640
\(502\) 0 0
\(503\) −14.7574 −0.657998 −0.328999 0.944330i \(-0.606711\pi\)
−0.328999 + 0.944330i \(0.606711\pi\)
\(504\) 0 0
\(505\) 33.4558 1.48877
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.14214 −0.227921 −0.113961 0.993485i \(-0.536354\pi\)
−0.113961 + 0.993485i \(0.536354\pi\)
\(510\) 0 0
\(511\) −55.1127 −2.43804
\(512\) 0 0
\(513\) −0.514719 −0.0227254
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 19.4558 0.855667
\(518\) 0 0
\(519\) −21.7279 −0.953750
\(520\) 0 0
\(521\) −9.17157 −0.401814 −0.200907 0.979610i \(-0.564389\pi\)
−0.200907 + 0.979610i \(0.564389\pi\)
\(522\) 0 0
\(523\) 16.4142 0.717743 0.358872 0.933387i \(-0.383162\pi\)
0.358872 + 0.933387i \(0.383162\pi\)
\(524\) 0 0
\(525\) −31.9706 −1.39531
\(526\) 0 0
\(527\) 32.9706 1.43622
\(528\) 0 0
\(529\) −21.4558 −0.932863
\(530\) 0 0
\(531\) 3.51472 0.152526
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −54.4264 −2.35306
\(536\) 0 0
\(537\) 30.7990 1.32907
\(538\) 0 0
\(539\) −40.4853 −1.74382
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) −1.17157 −0.0502770
\(544\) 0 0
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) 0 0
\(549\) 19.7990 0.845000
\(550\) 0 0
\(551\) 10.7574 0.458279
\(552\) 0 0
\(553\) −26.4853 −1.12627
\(554\) 0 0
\(555\) −51.1127 −2.16961
\(556\) 0 0
\(557\) 8.65685 0.366803 0.183401 0.983038i \(-0.441289\pi\)
0.183401 + 0.983038i \(0.441289\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 45.6274 1.92639
\(562\) 0 0
\(563\) −32.6985 −1.37808 −0.689038 0.724725i \(-0.741967\pi\)
−0.689038 + 0.724725i \(0.741967\pi\)
\(564\) 0 0
\(565\) −0.485281 −0.0204159
\(566\) 0 0
\(567\) 41.8701 1.75838
\(568\) 0 0
\(569\) −25.9706 −1.08874 −0.544371 0.838844i \(-0.683232\pi\)
−0.544371 + 0.838844i \(0.683232\pi\)
\(570\) 0 0
\(571\) −40.2843 −1.68584 −0.842922 0.538036i \(-0.819167\pi\)
−0.842922 + 0.538036i \(0.819167\pi\)
\(572\) 0 0
\(573\) −16.3137 −0.681515
\(574\) 0 0
\(575\) −3.72792 −0.155465
\(576\) 0 0
\(577\) 4.48528 0.186725 0.0933624 0.995632i \(-0.470238\pi\)
0.0933624 + 0.995632i \(0.470238\pi\)
\(578\) 0 0
\(579\) −47.0416 −1.95498
\(580\) 0 0
\(581\) 17.6569 0.732530
\(582\) 0 0
\(583\) 9.17157 0.379848
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.6985 0.854318 0.427159 0.904177i \(-0.359514\pi\)
0.427159 + 0.904177i \(0.359514\pi\)
\(588\) 0 0
\(589\) −7.02944 −0.289643
\(590\) 0 0
\(591\) 7.24264 0.297922
\(592\) 0 0
\(593\) 14.8284 0.608931 0.304465 0.952523i \(-0.401522\pi\)
0.304465 + 0.952523i \(0.401522\pi\)
\(594\) 0 0
\(595\) 72.7696 2.98326
\(596\) 0 0
\(597\) 58.4558 2.39244
\(598\) 0 0
\(599\) −47.9411 −1.95882 −0.979411 0.201878i \(-0.935295\pi\)
−0.979411 + 0.201878i \(0.935295\pi\)
\(600\) 0 0
\(601\) −10.5147 −0.428904 −0.214452 0.976734i \(-0.568797\pi\)
−0.214452 + 0.976734i \(0.568797\pi\)
\(602\) 0 0
\(603\) −37.4558 −1.52532
\(604\) 0 0
\(605\) −1.37258 −0.0558034
\(606\) 0 0
\(607\) 1.58579 0.0643651 0.0321825 0.999482i \(-0.489754\pi\)
0.0321825 + 0.999482i \(0.489754\pi\)
\(608\) 0 0
\(609\) −92.2548 −3.73835
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −14.5147 −0.586244 −0.293122 0.956075i \(-0.594694\pi\)
−0.293122 + 0.956075i \(0.594694\pi\)
\(614\) 0 0
\(615\) −39.7990 −1.60485
\(616\) 0 0
\(617\) −44.3137 −1.78400 −0.892001 0.452033i \(-0.850699\pi\)
−0.892001 + 0.452033i \(0.850699\pi\)
\(618\) 0 0
\(619\) 4.97056 0.199784 0.0998919 0.994998i \(-0.468150\pi\)
0.0998919 + 0.994998i \(0.468150\pi\)
\(620\) 0 0
\(621\) 0.514719 0.0206549
\(622\) 0 0
\(623\) 14.7574 0.591241
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) −9.72792 −0.388496
\(628\) 0 0
\(629\) 43.6274 1.73954
\(630\) 0 0
\(631\) 7.24264 0.288325 0.144162 0.989554i \(-0.453951\pi\)
0.144162 + 0.989554i \(0.453951\pi\)
\(632\) 0 0
\(633\) −32.7990 −1.30364
\(634\) 0 0
\(635\) −4.48528 −0.177993
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 20.4853 0.810385
\(640\) 0 0
\(641\) −22.7990 −0.900506 −0.450253 0.892901i \(-0.648666\pi\)
−0.450253 + 0.892901i \(0.648666\pi\)
\(642\) 0 0
\(643\) 0.213203 0.00840792 0.00420396 0.999991i \(-0.498662\pi\)
0.00420396 + 0.999991i \(0.498662\pi\)
\(644\) 0 0
\(645\) −27.7990 −1.09458
\(646\) 0 0
\(647\) −23.2426 −0.913762 −0.456881 0.889528i \(-0.651034\pi\)
−0.456881 + 0.889528i \(0.651034\pi\)
\(648\) 0 0
\(649\) −4.02944 −0.158169
\(650\) 0 0
\(651\) 60.2843 2.36273
\(652\) 0 0
\(653\) 23.1421 0.905622 0.452811 0.891607i \(-0.350421\pi\)
0.452811 + 0.891607i \(0.350421\pi\)
\(654\) 0 0
\(655\) 11.3137 0.442063
\(656\) 0 0
\(657\) 35.3137 1.37772
\(658\) 0 0
\(659\) 24.2132 0.943212 0.471606 0.881809i \(-0.343674\pi\)
0.471606 + 0.881809i \(0.343674\pi\)
\(660\) 0 0
\(661\) −24.4558 −0.951222 −0.475611 0.879656i \(-0.657773\pi\)
−0.475611 + 0.879656i \(0.657773\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −15.5147 −0.601635
\(666\) 0 0
\(667\) −10.7574 −0.416527
\(668\) 0 0
\(669\) −16.6569 −0.643991
\(670\) 0 0
\(671\) −22.6985 −0.876265
\(672\) 0 0
\(673\) −8.02944 −0.309512 −0.154756 0.987953i \(-0.549459\pi\)
−0.154756 + 0.987953i \(0.549459\pi\)
\(674\) 0 0
\(675\) −1.24264 −0.0478293
\(676\) 0 0
\(677\) −25.4558 −0.978348 −0.489174 0.872186i \(-0.662702\pi\)
−0.489174 + 0.872186i \(0.662702\pi\)
\(678\) 0 0
\(679\) 39.7279 1.52462
\(680\) 0 0
\(681\) −37.9706 −1.45504
\(682\) 0 0
\(683\) 9.24264 0.353660 0.176830 0.984241i \(-0.443416\pi\)
0.176830 + 0.984241i \(0.443416\pi\)
\(684\) 0 0
\(685\) 26.4264 1.00970
\(686\) 0 0
\(687\) 20.4853 0.781562
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 16.0711 0.611372 0.305686 0.952132i \(-0.401114\pi\)
0.305686 + 0.952132i \(0.401114\pi\)
\(692\) 0 0
\(693\) 40.4853 1.53791
\(694\) 0 0
\(695\) 3.51472 0.133321
\(696\) 0 0
\(697\) 33.9706 1.28673
\(698\) 0 0
\(699\) −49.4558 −1.87059
\(700\) 0 0
\(701\) −8.48528 −0.320485 −0.160242 0.987078i \(-0.551228\pi\)
−0.160242 + 0.987078i \(0.551228\pi\)
\(702\) 0 0
\(703\) −9.30152 −0.350813
\(704\) 0 0
\(705\) −40.9706 −1.54304
\(706\) 0 0
\(707\) −52.2132 −1.96368
\(708\) 0 0
\(709\) −19.4853 −0.731785 −0.365893 0.930657i \(-0.619236\pi\)
−0.365893 + 0.930657i \(0.619236\pi\)
\(710\) 0 0
\(711\) 16.9706 0.636446
\(712\) 0 0
\(713\) 7.02944 0.263254
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 21.6569 0.808790
\(718\) 0 0
\(719\) −22.7574 −0.848706 −0.424353 0.905497i \(-0.639498\pi\)
−0.424353 + 0.905497i \(0.639498\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 73.5269 2.73450
\(724\) 0 0
\(725\) 25.9706 0.964522
\(726\) 0 0
\(727\) 35.3137 1.30971 0.654856 0.755753i \(-0.272729\pi\)
0.654856 + 0.755753i \(0.272729\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) 0 0
\(731\) 23.7279 0.877609
\(732\) 0 0
\(733\) 43.9411 1.62300 0.811501 0.584351i \(-0.198651\pi\)
0.811501 + 0.584351i \(0.198651\pi\)
\(734\) 0 0
\(735\) 85.2548 3.14467
\(736\) 0 0
\(737\) 42.9411 1.58176
\(738\) 0 0
\(739\) −30.2132 −1.11141 −0.555705 0.831379i \(-0.687552\pi\)
−0.555705 + 0.831379i \(0.687552\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.24264 −0.265707 −0.132853 0.991136i \(-0.542414\pi\)
−0.132853 + 0.991136i \(0.542414\pi\)
\(744\) 0 0
\(745\) −9.45584 −0.346435
\(746\) 0 0
\(747\) −11.3137 −0.413947
\(748\) 0 0
\(749\) 84.9411 3.10368
\(750\) 0 0
\(751\) 17.1005 0.624006 0.312003 0.950081i \(-0.399000\pi\)
0.312003 + 0.950081i \(0.399000\pi\)
\(752\) 0 0
\(753\) −42.7990 −1.55968
\(754\) 0 0
\(755\) 48.0000 1.74690
\(756\) 0 0
\(757\) −23.4853 −0.853587 −0.426794 0.904349i \(-0.640357\pi\)
−0.426794 + 0.904349i \(0.640357\pi\)
\(758\) 0 0
\(759\) 9.72792 0.353101
\(760\) 0 0
\(761\) 29.4853 1.06884 0.534420 0.845219i \(-0.320530\pi\)
0.534420 + 0.845219i \(0.320530\pi\)
\(762\) 0 0
\(763\) 37.4558 1.35599
\(764\) 0 0
\(765\) −46.6274 −1.68582
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −45.4264 −1.63812 −0.819059 0.573709i \(-0.805504\pi\)
−0.819059 + 0.573709i \(0.805504\pi\)
\(770\) 0 0
\(771\) 40.5563 1.46060
\(772\) 0 0
\(773\) −11.4853 −0.413097 −0.206548 0.978436i \(-0.566223\pi\)
−0.206548 + 0.978436i \(0.566223\pi\)
\(774\) 0 0
\(775\) −16.9706 −0.609601
\(776\) 0 0
\(777\) 79.7696 2.86172
\(778\) 0 0
\(779\) −7.24264 −0.259495
\(780\) 0 0
\(781\) −23.4853 −0.840369
\(782\) 0 0
\(783\) −3.58579 −0.128146
\(784\) 0 0
\(785\) −1.37258 −0.0489896
\(786\) 0 0
\(787\) −38.0122 −1.35499 −0.677494 0.735528i \(-0.736934\pi\)
−0.677494 + 0.735528i \(0.736934\pi\)
\(788\) 0 0
\(789\) −22.3137 −0.794389
\(790\) 0 0
\(791\) 0.757359 0.0269286
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −19.3137 −0.684987
\(796\) 0 0
\(797\) −33.0000 −1.16892 −0.584460 0.811423i \(-0.698694\pi\)
−0.584460 + 0.811423i \(0.698694\pi\)
\(798\) 0 0
\(799\) 34.9706 1.23717
\(800\) 0 0
\(801\) −9.45584 −0.334106
\(802\) 0 0
\(803\) −40.4853 −1.42869
\(804\) 0 0
\(805\) 15.5147 0.546822
\(806\) 0 0
\(807\) 13.2426 0.466163
\(808\) 0 0
\(809\) −5.82843 −0.204917 −0.102458 0.994737i \(-0.532671\pi\)
−0.102458 + 0.994737i \(0.532671\pi\)
\(810\) 0 0
\(811\) 12.3431 0.433426 0.216713 0.976235i \(-0.430466\pi\)
0.216713 + 0.976235i \(0.430466\pi\)
\(812\) 0 0
\(813\) −60.9411 −2.13730
\(814\) 0 0
\(815\) −47.3970 −1.66024
\(816\) 0 0
\(817\) −5.05887 −0.176988
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.9706 0.696977 0.348489 0.937313i \(-0.386695\pi\)
0.348489 + 0.937313i \(0.386695\pi\)
\(822\) 0 0
\(823\) 0.213203 0.00743180 0.00371590 0.999993i \(-0.498817\pi\)
0.00371590 + 0.999993i \(0.498817\pi\)
\(824\) 0 0
\(825\) −23.4853 −0.817653
\(826\) 0 0
\(827\) −21.9411 −0.762968 −0.381484 0.924376i \(-0.624587\pi\)
−0.381484 + 0.924376i \(0.624587\pi\)
\(828\) 0 0
\(829\) 35.9706 1.24931 0.624655 0.780901i \(-0.285240\pi\)
0.624655 + 0.780901i \(0.285240\pi\)
\(830\) 0 0
\(831\) 32.5563 1.12937
\(832\) 0 0
\(833\) −72.7696 −2.52132
\(834\) 0 0
\(835\) 44.4853 1.53948
\(836\) 0 0
\(837\) 2.34315 0.0809910
\(838\) 0 0
\(839\) −10.6985 −0.369353 −0.184676 0.982799i \(-0.559124\pi\)
−0.184676 + 0.982799i \(0.559124\pi\)
\(840\) 0 0
\(841\) 45.9411 1.58418
\(842\) 0 0
\(843\) −5.17157 −0.178118
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.14214 0.0736047
\(848\) 0 0
\(849\) 25.1421 0.862876
\(850\) 0 0
\(851\) 9.30152 0.318852
\(852\) 0 0
\(853\) −41.4558 −1.41942 −0.709711 0.704493i \(-0.751174\pi\)
−0.709711 + 0.704493i \(0.751174\pi\)
\(854\) 0 0
\(855\) 9.94113 0.339979
\(856\) 0 0
\(857\) 33.1716 1.13312 0.566560 0.824021i \(-0.308274\pi\)
0.566560 + 0.824021i \(0.308274\pi\)
\(858\) 0 0
\(859\) −36.0000 −1.22830 −0.614152 0.789188i \(-0.710502\pi\)
−0.614152 + 0.789188i \(0.710502\pi\)
\(860\) 0 0
\(861\) 62.1127 2.11680
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) −25.4558 −0.865525
\(866\) 0 0
\(867\) 40.9706 1.39143
\(868\) 0 0
\(869\) −19.4558 −0.659994
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −25.4558 −0.861550
\(874\) 0 0
\(875\) 24.9706 0.844159
\(876\) 0 0
\(877\) 23.9706 0.809428 0.404714 0.914443i \(-0.367371\pi\)
0.404714 + 0.914443i \(0.367371\pi\)
\(878\) 0 0
\(879\) 5.58579 0.188404
\(880\) 0 0
\(881\) 18.1716 0.612216 0.306108 0.951997i \(-0.400973\pi\)
0.306108 + 0.951997i \(0.400973\pi\)
\(882\) 0 0
\(883\) 27.5980 0.928746 0.464373 0.885640i \(-0.346280\pi\)
0.464373 + 0.885640i \(0.346280\pi\)
\(884\) 0 0
\(885\) 8.48528 0.285230
\(886\) 0 0
\(887\) −24.2132 −0.813000 −0.406500 0.913651i \(-0.633251\pi\)
−0.406500 + 0.913651i \(0.633251\pi\)
\(888\) 0 0
\(889\) 7.00000 0.234772
\(890\) 0 0
\(891\) 30.7574 1.03041
\(892\) 0 0
\(893\) −7.45584 −0.249500
\(894\) 0 0
\(895\) 36.0833 1.20613
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −48.9706 −1.63326
\(900\) 0 0
\(901\) 16.4853 0.549204
\(902\) 0 0
\(903\) 43.3848 1.44375
\(904\) 0 0
\(905\) −1.37258 −0.0456262
\(906\) 0 0
\(907\) −36.2132 −1.20244 −0.601220 0.799084i \(-0.705318\pi\)
−0.601220 + 0.799084i \(0.705318\pi\)
\(908\) 0 0
\(909\) 33.4558 1.10966
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 12.9706 0.429263
\(914\) 0 0
\(915\) 47.7990 1.58019
\(916\) 0 0
\(917\) −17.6569 −0.583081
\(918\) 0 0
\(919\) −38.3553 −1.26523 −0.632613 0.774468i \(-0.718018\pi\)
−0.632613 + 0.774468i \(0.718018\pi\)
\(920\) 0 0
\(921\) −28.9706 −0.954612
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −22.4558 −0.738344
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −10.1127 −0.331787 −0.165893 0.986144i \(-0.553051\pi\)
−0.165893 + 0.986144i \(0.553051\pi\)
\(930\) 0 0
\(931\) 15.5147 0.508474
\(932\) 0 0
\(933\) −57.9411 −1.89691
\(934\) 0 0
\(935\) 53.4558 1.74819
\(936\) 0 0
\(937\) −45.4558 −1.48498 −0.742489 0.669858i \(-0.766355\pi\)
−0.742489 + 0.669858i \(0.766355\pi\)
\(938\) 0 0
\(939\) 49.4558 1.61393
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 7.24264 0.235853
\(944\) 0 0
\(945\) 5.17157 0.168231
\(946\) 0 0
\(947\) −3.24264 −0.105372 −0.0526858 0.998611i \(-0.516778\pi\)
−0.0526858 + 0.998611i \(0.516778\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −41.7990 −1.35543
\(952\) 0 0
\(953\) −3.34315 −0.108295 −0.0541476 0.998533i \(-0.517244\pi\)
−0.0541476 + 0.998533i \(0.517244\pi\)
\(954\) 0 0
\(955\) −19.1127 −0.618472
\(956\) 0 0
\(957\) −67.7696 −2.19068
\(958\) 0 0
\(959\) −41.2426 −1.33179
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −54.4264 −1.75387
\(964\) 0 0
\(965\) −55.1127 −1.77414
\(966\) 0 0
\(967\) −7.02944 −0.226051 −0.113026 0.993592i \(-0.536054\pi\)
−0.113026 + 0.993592i \(0.536054\pi\)
\(968\) 0 0
\(969\) −17.4853 −0.561708
\(970\) 0 0
\(971\) −32.7574 −1.05123 −0.525617 0.850721i \(-0.676165\pi\)
−0.525617 + 0.850721i \(0.676165\pi\)
\(972\) 0 0
\(973\) −5.48528 −0.175850
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 43.2843 1.38479 0.692393 0.721520i \(-0.256556\pi\)
0.692393 + 0.721520i \(0.256556\pi\)
\(978\) 0 0
\(979\) 10.8406 0.346468
\(980\) 0 0
\(981\) −24.0000 −0.766261
\(982\) 0 0
\(983\) −0.970563 −0.0309561 −0.0154781 0.999880i \(-0.504927\pi\)
−0.0154781 + 0.999880i \(0.504927\pi\)
\(984\) 0 0
\(985\) 8.48528 0.270364
\(986\) 0 0
\(987\) 63.9411 2.03527
\(988\) 0 0
\(989\) 5.05887 0.160863
\(990\) 0 0
\(991\) −58.1543 −1.84733 −0.923667 0.383197i \(-0.874823\pi\)
−0.923667 + 0.383197i \(0.874823\pi\)
\(992\) 0 0
\(993\) 17.4853 0.554879
\(994\) 0 0
\(995\) 68.4853 2.17113
\(996\) 0 0
\(997\) −34.9411 −1.10660 −0.553298 0.832983i \(-0.686631\pi\)
−0.553298 + 0.832983i \(0.686631\pi\)
\(998\) 0 0
\(999\) 3.10051 0.0980956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.be.1.2 2
4.3 odd 2 5408.2.a.o.1.1 2
13.3 even 3 416.2.i.c.321.1 yes 4
13.9 even 3 416.2.i.c.289.1 4
13.12 even 2 5408.2.a.bf.1.2 2
52.3 odd 6 416.2.i.f.321.2 yes 4
52.35 odd 6 416.2.i.f.289.2 yes 4
52.51 odd 2 5408.2.a.n.1.1 2
104.3 odd 6 832.2.i.k.321.1 4
104.29 even 6 832.2.i.p.321.2 4
104.35 odd 6 832.2.i.k.705.1 4
104.61 even 6 832.2.i.p.705.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.c.289.1 4 13.9 even 3
416.2.i.c.321.1 yes 4 13.3 even 3
416.2.i.f.289.2 yes 4 52.35 odd 6
416.2.i.f.321.2 yes 4 52.3 odd 6
832.2.i.k.321.1 4 104.3 odd 6
832.2.i.k.705.1 4 104.35 odd 6
832.2.i.p.321.2 4 104.29 even 6
832.2.i.p.705.2 4 104.61 even 6
5408.2.a.n.1.1 2 52.51 odd 2
5408.2.a.o.1.1 2 4.3 odd 2
5408.2.a.be.1.2 2 1.1 even 1 trivial
5408.2.a.bf.1.2 2 13.12 even 2