Properties

Label 5408.2.a.be.1.1
Level $5408$
Weight $2$
Character 5408.1
Self dual yes
Analytic conductor $43.183$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 5408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.414214 q^{3} -2.82843 q^{5} -1.58579 q^{7} -2.82843 q^{9} +5.24264 q^{11} +1.17157 q^{15} -0.171573 q^{17} -7.24264 q^{19} +0.656854 q^{21} +7.24264 q^{23} +3.00000 q^{25} +2.41421 q^{27} -2.65685 q^{29} +5.65685 q^{31} -2.17157 q^{33} +4.48528 q^{35} +9.48528 q^{37} -0.171573 q^{41} +10.0711 q^{43} +8.00000 q^{45} -6.00000 q^{47} -4.48528 q^{49} +0.0710678 q^{51} +2.82843 q^{53} -14.8284 q^{55} +3.00000 q^{57} -7.24264 q^{59} +7.00000 q^{61} +4.48528 q^{63} -4.75736 q^{67} -3.00000 q^{69} -1.24264 q^{71} -4.48528 q^{73} -1.24264 q^{75} -8.31371 q^{77} +6.00000 q^{79} +7.48528 q^{81} -4.00000 q^{83} +0.485281 q^{85} +1.10051 q^{87} -14.6569 q^{89} -2.34315 q^{93} +20.4853 q^{95} -9.00000 q^{97} -14.8284 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 6 q^{7} + 2 q^{11} + 8 q^{15} - 6 q^{17} - 6 q^{19} - 10 q^{21} + 6 q^{23} + 6 q^{25} + 2 q^{27} + 6 q^{29} - 10 q^{33} - 8 q^{35} + 2 q^{37} - 6 q^{41} + 6 q^{43} + 16 q^{45} - 12 q^{47}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.414214 −0.239146 −0.119573 0.992825i \(-0.538153\pi\)
−0.119573 + 0.992825i \(0.538153\pi\)
\(4\) 0 0
\(5\) −2.82843 −1.26491 −0.632456 0.774597i \(-0.717953\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) −1.58579 −0.599371 −0.299685 0.954038i \(-0.596882\pi\)
−0.299685 + 0.954038i \(0.596882\pi\)
\(8\) 0 0
\(9\) −2.82843 −0.942809
\(10\) 0 0
\(11\) 5.24264 1.58072 0.790358 0.612646i \(-0.209895\pi\)
0.790358 + 0.612646i \(0.209895\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 1.17157 0.302499
\(16\) 0 0
\(17\) −0.171573 −0.0416125 −0.0208063 0.999784i \(-0.506623\pi\)
−0.0208063 + 0.999784i \(0.506623\pi\)
\(18\) 0 0
\(19\) −7.24264 −1.66158 −0.830788 0.556589i \(-0.812110\pi\)
−0.830788 + 0.556589i \(0.812110\pi\)
\(20\) 0 0
\(21\) 0.656854 0.143337
\(22\) 0 0
\(23\) 7.24264 1.51019 0.755097 0.655613i \(-0.227590\pi\)
0.755097 + 0.655613i \(0.227590\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 2.41421 0.464616
\(28\) 0 0
\(29\) −2.65685 −0.493365 −0.246683 0.969096i \(-0.579341\pi\)
−0.246683 + 0.969096i \(0.579341\pi\)
\(30\) 0 0
\(31\) 5.65685 1.01600 0.508001 0.861357i \(-0.330385\pi\)
0.508001 + 0.861357i \(0.330385\pi\)
\(32\) 0 0
\(33\) −2.17157 −0.378022
\(34\) 0 0
\(35\) 4.48528 0.758151
\(36\) 0 0
\(37\) 9.48528 1.55937 0.779685 0.626172i \(-0.215379\pi\)
0.779685 + 0.626172i \(0.215379\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.171573 −0.0267952 −0.0133976 0.999910i \(-0.504265\pi\)
−0.0133976 + 0.999910i \(0.504265\pi\)
\(42\) 0 0
\(43\) 10.0711 1.53582 0.767912 0.640556i \(-0.221296\pi\)
0.767912 + 0.640556i \(0.221296\pi\)
\(44\) 0 0
\(45\) 8.00000 1.19257
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −4.48528 −0.640754
\(50\) 0 0
\(51\) 0.0710678 0.00995148
\(52\) 0 0
\(53\) 2.82843 0.388514 0.194257 0.980951i \(-0.437770\pi\)
0.194257 + 0.980951i \(0.437770\pi\)
\(54\) 0 0
\(55\) −14.8284 −1.99946
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) −7.24264 −0.942912 −0.471456 0.881890i \(-0.656271\pi\)
−0.471456 + 0.881890i \(0.656271\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 0 0
\(63\) 4.48528 0.565092
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.75736 −0.581204 −0.290602 0.956844i \(-0.593856\pi\)
−0.290602 + 0.956844i \(0.593856\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) −1.24264 −0.147474 −0.0737372 0.997278i \(-0.523493\pi\)
−0.0737372 + 0.997278i \(0.523493\pi\)
\(72\) 0 0
\(73\) −4.48528 −0.524962 −0.262481 0.964937i \(-0.584541\pi\)
−0.262481 + 0.964937i \(0.584541\pi\)
\(74\) 0 0
\(75\) −1.24264 −0.143488
\(76\) 0 0
\(77\) −8.31371 −0.947435
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) 7.48528 0.831698
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 0.485281 0.0526362
\(86\) 0 0
\(87\) 1.10051 0.117987
\(88\) 0 0
\(89\) −14.6569 −1.55362 −0.776812 0.629733i \(-0.783164\pi\)
−0.776812 + 0.629733i \(0.783164\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.34315 −0.242973
\(94\) 0 0
\(95\) 20.4853 2.10175
\(96\) 0 0
\(97\) −9.00000 −0.913812 −0.456906 0.889515i \(-0.651042\pi\)
−0.456906 + 0.889515i \(0.651042\pi\)
\(98\) 0 0
\(99\) −14.8284 −1.49031
\(100\) 0 0
\(101\) 6.17157 0.614094 0.307047 0.951694i \(-0.400659\pi\)
0.307047 + 0.951694i \(0.400659\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −1.85786 −0.181309
\(106\) 0 0
\(107\) −10.7574 −1.03995 −0.519977 0.854181i \(-0.674059\pi\)
−0.519977 + 0.854181i \(0.674059\pi\)
\(108\) 0 0
\(109\) 8.48528 0.812743 0.406371 0.913708i \(-0.366794\pi\)
0.406371 + 0.913708i \(0.366794\pi\)
\(110\) 0 0
\(111\) −3.92893 −0.372918
\(112\) 0 0
\(113\) −5.82843 −0.548292 −0.274146 0.961688i \(-0.588395\pi\)
−0.274146 + 0.961688i \(0.588395\pi\)
\(114\) 0 0
\(115\) −20.4853 −1.91026
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.272078 0.0249413
\(120\) 0 0
\(121\) 16.4853 1.49866
\(122\) 0 0
\(123\) 0.0710678 0.00640797
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) −4.41421 −0.391698 −0.195849 0.980634i \(-0.562746\pi\)
−0.195849 + 0.980634i \(0.562746\pi\)
\(128\) 0 0
\(129\) −4.17157 −0.367287
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 11.4853 0.995900
\(134\) 0 0
\(135\) −6.82843 −0.587697
\(136\) 0 0
\(137\) 20.6569 1.76483 0.882417 0.470468i \(-0.155915\pi\)
0.882417 + 0.470468i \(0.155915\pi\)
\(138\) 0 0
\(139\) −7.24264 −0.614313 −0.307156 0.951659i \(-0.599377\pi\)
−0.307156 + 0.951659i \(0.599377\pi\)
\(140\) 0 0
\(141\) 2.48528 0.209298
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 7.51472 0.624063
\(146\) 0 0
\(147\) 1.85786 0.153234
\(148\) 0 0
\(149\) −14.6569 −1.20074 −0.600368 0.799724i \(-0.704979\pi\)
−0.600368 + 0.799724i \(0.704979\pi\)
\(150\) 0 0
\(151\) −16.9706 −1.38104 −0.690522 0.723311i \(-0.742619\pi\)
−0.690522 + 0.723311i \(0.742619\pi\)
\(152\) 0 0
\(153\) 0.485281 0.0392327
\(154\) 0 0
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) 16.4853 1.31567 0.657834 0.753163i \(-0.271473\pi\)
0.657834 + 0.753163i \(0.271473\pi\)
\(158\) 0 0
\(159\) −1.17157 −0.0929118
\(160\) 0 0
\(161\) −11.4853 −0.905167
\(162\) 0 0
\(163\) −25.2426 −1.97716 −0.988578 0.150709i \(-0.951844\pi\)
−0.988578 + 0.150709i \(0.951844\pi\)
\(164\) 0 0
\(165\) 6.14214 0.478165
\(166\) 0 0
\(167\) −9.72792 −0.752769 −0.376385 0.926464i \(-0.622833\pi\)
−0.376385 + 0.926464i \(0.622833\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 20.4853 1.56655
\(172\) 0 0
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) 0 0
\(175\) −4.75736 −0.359623
\(176\) 0 0
\(177\) 3.00000 0.225494
\(178\) 0 0
\(179\) 21.2426 1.58775 0.793875 0.608081i \(-0.208061\pi\)
0.793875 + 0.608081i \(0.208061\pi\)
\(180\) 0 0
\(181\) 16.4853 1.22534 0.612671 0.790338i \(-0.290095\pi\)
0.612671 + 0.790338i \(0.290095\pi\)
\(182\) 0 0
\(183\) −2.89949 −0.214337
\(184\) 0 0
\(185\) −26.8284 −1.97247
\(186\) 0 0
\(187\) −0.899495 −0.0657776
\(188\) 0 0
\(189\) −3.82843 −0.278477
\(190\) 0 0
\(191\) −15.2426 −1.10292 −0.551459 0.834202i \(-0.685929\pi\)
−0.551459 + 0.834202i \(0.685929\pi\)
\(192\) 0 0
\(193\) −2.51472 −0.181013 −0.0905067 0.995896i \(-0.528849\pi\)
−0.0905067 + 0.995896i \(0.528849\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.00000 0.213741 0.106871 0.994273i \(-0.465917\pi\)
0.106871 + 0.994273i \(0.465917\pi\)
\(198\) 0 0
\(199\) −18.2132 −1.29110 −0.645550 0.763718i \(-0.723372\pi\)
−0.645550 + 0.763718i \(0.723372\pi\)
\(200\) 0 0
\(201\) 1.97056 0.138993
\(202\) 0 0
\(203\) 4.21320 0.295709
\(204\) 0 0
\(205\) 0.485281 0.0338935
\(206\) 0 0
\(207\) −20.4853 −1.42383
\(208\) 0 0
\(209\) −37.9706 −2.62648
\(210\) 0 0
\(211\) −16.4142 −1.13000 −0.565001 0.825091i \(-0.691124\pi\)
−0.565001 + 0.825091i \(0.691124\pi\)
\(212\) 0 0
\(213\) 0.514719 0.0352679
\(214\) 0 0
\(215\) −28.4853 −1.94268
\(216\) 0 0
\(217\) −8.97056 −0.608961
\(218\) 0 0
\(219\) 1.85786 0.125543
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 12.8995 0.863814 0.431907 0.901918i \(-0.357841\pi\)
0.431907 + 0.901918i \(0.357841\pi\)
\(224\) 0 0
\(225\) −8.48528 −0.565685
\(226\) 0 0
\(227\) 9.72792 0.645665 0.322832 0.946456i \(-0.395365\pi\)
0.322832 + 0.946456i \(0.395365\pi\)
\(228\) 0 0
\(229\) −8.48528 −0.560723 −0.280362 0.959894i \(-0.590454\pi\)
−0.280362 + 0.959894i \(0.590454\pi\)
\(230\) 0 0
\(231\) 3.44365 0.226576
\(232\) 0 0
\(233\) −3.51472 −0.230257 −0.115128 0.993351i \(-0.536728\pi\)
−0.115128 + 0.993351i \(0.536728\pi\)
\(234\) 0 0
\(235\) 16.9706 1.10704
\(236\) 0 0
\(237\) −2.48528 −0.161436
\(238\) 0 0
\(239\) −24.9706 −1.61521 −0.807606 0.589723i \(-0.799237\pi\)
−0.807606 + 0.589723i \(0.799237\pi\)
\(240\) 0 0
\(241\) −20.4558 −1.31768 −0.658838 0.752285i \(-0.728952\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(242\) 0 0
\(243\) −10.3431 −0.663513
\(244\) 0 0
\(245\) 12.6863 0.810497
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.65685 0.104999
\(250\) 0 0
\(251\) 7.72792 0.487782 0.243891 0.969803i \(-0.421576\pi\)
0.243891 + 0.969803i \(0.421576\pi\)
\(252\) 0 0
\(253\) 37.9706 2.38719
\(254\) 0 0
\(255\) −0.201010 −0.0125877
\(256\) 0 0
\(257\) −22.7990 −1.42216 −0.711081 0.703110i \(-0.751794\pi\)
−0.711081 + 0.703110i \(0.751794\pi\)
\(258\) 0 0
\(259\) −15.0416 −0.934641
\(260\) 0 0
\(261\) 7.51472 0.465149
\(262\) 0 0
\(263\) −0.757359 −0.0467008 −0.0233504 0.999727i \(-0.507433\pi\)
−0.0233504 + 0.999727i \(0.507433\pi\)
\(264\) 0 0
\(265\) −8.00000 −0.491436
\(266\) 0 0
\(267\) 6.07107 0.371543
\(268\) 0 0
\(269\) −11.4853 −0.700270 −0.350135 0.936699i \(-0.613864\pi\)
−0.350135 + 0.936699i \(0.613864\pi\)
\(270\) 0 0
\(271\) −16.7574 −1.01794 −0.508969 0.860785i \(-0.669973\pi\)
−0.508969 + 0.860785i \(0.669973\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.7279 0.948429
\(276\) 0 0
\(277\) −3.48528 −0.209410 −0.104705 0.994503i \(-0.533390\pi\)
−0.104705 + 0.994503i \(0.533390\pi\)
\(278\) 0 0
\(279\) −16.0000 −0.957895
\(280\) 0 0
\(281\) 26.1421 1.55951 0.779755 0.626085i \(-0.215344\pi\)
0.779755 + 0.626085i \(0.215344\pi\)
\(282\) 0 0
\(283\) 7.58579 0.450928 0.225464 0.974251i \(-0.427610\pi\)
0.225464 + 0.974251i \(0.427610\pi\)
\(284\) 0 0
\(285\) −8.48528 −0.502625
\(286\) 0 0
\(287\) 0.272078 0.0160603
\(288\) 0 0
\(289\) −16.9706 −0.998268
\(290\) 0 0
\(291\) 3.72792 0.218535
\(292\) 0 0
\(293\) −20.3137 −1.18674 −0.593370 0.804930i \(-0.702203\pi\)
−0.593370 + 0.804930i \(0.702203\pi\)
\(294\) 0 0
\(295\) 20.4853 1.19270
\(296\) 0 0
\(297\) 12.6569 0.734425
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −15.9706 −0.920528
\(302\) 0 0
\(303\) −2.55635 −0.146858
\(304\) 0 0
\(305\) −19.7990 −1.13369
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 3.51472 0.198664 0.0993318 0.995054i \(-0.468329\pi\)
0.0993318 + 0.995054i \(0.468329\pi\)
\(314\) 0 0
\(315\) −12.6863 −0.714792
\(316\) 0 0
\(317\) 5.31371 0.298448 0.149224 0.988803i \(-0.452323\pi\)
0.149224 + 0.988803i \(0.452323\pi\)
\(318\) 0 0
\(319\) −13.9289 −0.779870
\(320\) 0 0
\(321\) 4.45584 0.248701
\(322\) 0 0
\(323\) 1.24264 0.0691424
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.51472 −0.194364
\(328\) 0 0
\(329\) 9.51472 0.524563
\(330\) 0 0
\(331\) −1.24264 −0.0683017 −0.0341509 0.999417i \(-0.510873\pi\)
−0.0341509 + 0.999417i \(0.510873\pi\)
\(332\) 0 0
\(333\) −26.8284 −1.47019
\(334\) 0 0
\(335\) 13.4558 0.735171
\(336\) 0 0
\(337\) −12.4853 −0.680117 −0.340058 0.940404i \(-0.610447\pi\)
−0.340058 + 0.940404i \(0.610447\pi\)
\(338\) 0 0
\(339\) 2.41421 0.131122
\(340\) 0 0
\(341\) 29.6569 1.60601
\(342\) 0 0
\(343\) 18.2132 0.983421
\(344\) 0 0
\(345\) 8.48528 0.456832
\(346\) 0 0
\(347\) 22.7574 1.22168 0.610840 0.791754i \(-0.290832\pi\)
0.610840 + 0.791754i \(0.290832\pi\)
\(348\) 0 0
\(349\) −16.4558 −0.880861 −0.440431 0.897787i \(-0.645174\pi\)
−0.440431 + 0.897787i \(0.645174\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.34315 −0.177938 −0.0889688 0.996034i \(-0.528357\pi\)
−0.0889688 + 0.996034i \(0.528357\pi\)
\(354\) 0 0
\(355\) 3.51472 0.186542
\(356\) 0 0
\(357\) −0.112698 −0.00596463
\(358\) 0 0
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) 33.4558 1.76083
\(362\) 0 0
\(363\) −6.82843 −0.358399
\(364\) 0 0
\(365\) 12.6863 0.664031
\(366\) 0 0
\(367\) −33.7279 −1.76058 −0.880292 0.474433i \(-0.842653\pi\)
−0.880292 + 0.474433i \(0.842653\pi\)
\(368\) 0 0
\(369\) 0.485281 0.0252627
\(370\) 0 0
\(371\) −4.48528 −0.232864
\(372\) 0 0
\(373\) 20.5147 1.06221 0.531106 0.847305i \(-0.321777\pi\)
0.531106 + 0.847305i \(0.321777\pi\)
\(374\) 0 0
\(375\) −2.34315 −0.121000
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −9.38478 −0.482064 −0.241032 0.970517i \(-0.577486\pi\)
−0.241032 + 0.970517i \(0.577486\pi\)
\(380\) 0 0
\(381\) 1.82843 0.0936732
\(382\) 0 0
\(383\) 9.72792 0.497074 0.248537 0.968622i \(-0.420050\pi\)
0.248537 + 0.968622i \(0.420050\pi\)
\(384\) 0 0
\(385\) 23.5147 1.19842
\(386\) 0 0
\(387\) −28.4853 −1.44799
\(388\) 0 0
\(389\) 28.6274 1.45147 0.725734 0.687976i \(-0.241500\pi\)
0.725734 + 0.687976i \(0.241500\pi\)
\(390\) 0 0
\(391\) −1.24264 −0.0628430
\(392\) 0 0
\(393\) −1.65685 −0.0835772
\(394\) 0 0
\(395\) −16.9706 −0.853882
\(396\) 0 0
\(397\) 5.48528 0.275298 0.137649 0.990481i \(-0.456045\pi\)
0.137649 + 0.990481i \(0.456045\pi\)
\(398\) 0 0
\(399\) −4.75736 −0.238166
\(400\) 0 0
\(401\) −17.1421 −0.856037 −0.428019 0.903770i \(-0.640788\pi\)
−0.428019 + 0.903770i \(0.640788\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −21.1716 −1.05202
\(406\) 0 0
\(407\) 49.7279 2.46492
\(408\) 0 0
\(409\) −27.4853 −1.35906 −0.679530 0.733648i \(-0.737816\pi\)
−0.679530 + 0.733648i \(0.737816\pi\)
\(410\) 0 0
\(411\) −8.55635 −0.422054
\(412\) 0 0
\(413\) 11.4853 0.565154
\(414\) 0 0
\(415\) 11.3137 0.555368
\(416\) 0 0
\(417\) 3.00000 0.146911
\(418\) 0 0
\(419\) −13.7279 −0.670653 −0.335326 0.942102i \(-0.608847\pi\)
−0.335326 + 0.942102i \(0.608847\pi\)
\(420\) 0 0
\(421\) −16.4853 −0.803443 −0.401722 0.915762i \(-0.631588\pi\)
−0.401722 + 0.915762i \(0.631588\pi\)
\(422\) 0 0
\(423\) 16.9706 0.825137
\(424\) 0 0
\(425\) −0.514719 −0.0249675
\(426\) 0 0
\(427\) −11.1005 −0.537191
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.6985 −1.18968 −0.594842 0.803843i \(-0.702785\pi\)
−0.594842 + 0.803843i \(0.702785\pi\)
\(432\) 0 0
\(433\) −19.4853 −0.936403 −0.468201 0.883622i \(-0.655098\pi\)
−0.468201 + 0.883622i \(0.655098\pi\)
\(434\) 0 0
\(435\) −3.11270 −0.149242
\(436\) 0 0
\(437\) −52.4558 −2.50930
\(438\) 0 0
\(439\) 13.9289 0.664792 0.332396 0.943140i \(-0.392143\pi\)
0.332396 + 0.943140i \(0.392143\pi\)
\(440\) 0 0
\(441\) 12.6863 0.604109
\(442\) 0 0
\(443\) −4.97056 −0.236159 −0.118079 0.993004i \(-0.537674\pi\)
−0.118079 + 0.993004i \(0.537674\pi\)
\(444\) 0 0
\(445\) 41.4558 1.96520
\(446\) 0 0
\(447\) 6.07107 0.287152
\(448\) 0 0
\(449\) 29.4853 1.39150 0.695748 0.718286i \(-0.255073\pi\)
0.695748 + 0.718286i \(0.255073\pi\)
\(450\) 0 0
\(451\) −0.899495 −0.0423556
\(452\) 0 0
\(453\) 7.02944 0.330272
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.0000 1.45012 0.725059 0.688686i \(-0.241812\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) 0 0
\(459\) −0.414214 −0.0193338
\(460\) 0 0
\(461\) 40.7990 1.90020 0.950099 0.311948i \(-0.100981\pi\)
0.950099 + 0.311948i \(0.100981\pi\)
\(462\) 0 0
\(463\) −29.6569 −1.37827 −0.689135 0.724633i \(-0.742010\pi\)
−0.689135 + 0.724633i \(0.742010\pi\)
\(464\) 0 0
\(465\) 6.62742 0.307339
\(466\) 0 0
\(467\) 26.9706 1.24805 0.624024 0.781405i \(-0.285497\pi\)
0.624024 + 0.781405i \(0.285497\pi\)
\(468\) 0 0
\(469\) 7.54416 0.348357
\(470\) 0 0
\(471\) −6.82843 −0.314637
\(472\) 0 0
\(473\) 52.7990 2.42770
\(474\) 0 0
\(475\) −21.7279 −0.996945
\(476\) 0 0
\(477\) −8.00000 −0.366295
\(478\) 0 0
\(479\) 17.2426 0.787836 0.393918 0.919146i \(-0.371119\pi\)
0.393918 + 0.919146i \(0.371119\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 4.75736 0.216467
\(484\) 0 0
\(485\) 25.4558 1.15589
\(486\) 0 0
\(487\) −6.89949 −0.312646 −0.156323 0.987706i \(-0.549964\pi\)
−0.156323 + 0.987706i \(0.549964\pi\)
\(488\) 0 0
\(489\) 10.4558 0.472830
\(490\) 0 0
\(491\) 20.2132 0.912209 0.456105 0.889926i \(-0.349244\pi\)
0.456105 + 0.889926i \(0.349244\pi\)
\(492\) 0 0
\(493\) 0.455844 0.0205302
\(494\) 0 0
\(495\) 41.9411 1.88511
\(496\) 0 0
\(497\) 1.97056 0.0883918
\(498\) 0 0
\(499\) 6.34315 0.283958 0.141979 0.989870i \(-0.454653\pi\)
0.141979 + 0.989870i \(0.454653\pi\)
\(500\) 0 0
\(501\) 4.02944 0.180022
\(502\) 0 0
\(503\) −23.2426 −1.03634 −0.518169 0.855278i \(-0.673386\pi\)
−0.518169 + 0.855278i \(0.673386\pi\)
\(504\) 0 0
\(505\) −17.4558 −0.776775
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 23.1421 1.02576 0.512879 0.858461i \(-0.328579\pi\)
0.512879 + 0.858461i \(0.328579\pi\)
\(510\) 0 0
\(511\) 7.11270 0.314647
\(512\) 0 0
\(513\) −17.4853 −0.771994
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −31.4558 −1.38343
\(518\) 0 0
\(519\) 3.72792 0.163638
\(520\) 0 0
\(521\) −14.8284 −0.649645 −0.324823 0.945775i \(-0.605305\pi\)
−0.324823 + 0.945775i \(0.605305\pi\)
\(522\) 0 0
\(523\) 13.5858 0.594065 0.297032 0.954867i \(-0.404003\pi\)
0.297032 + 0.954867i \(0.404003\pi\)
\(524\) 0 0
\(525\) 1.97056 0.0860024
\(526\) 0 0
\(527\) −0.970563 −0.0422784
\(528\) 0 0
\(529\) 29.4558 1.28069
\(530\) 0 0
\(531\) 20.4853 0.888985
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 30.4264 1.31545
\(536\) 0 0
\(537\) −8.79899 −0.379704
\(538\) 0 0
\(539\) −23.5147 −1.01285
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) −6.82843 −0.293036
\(544\) 0 0
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) 0 0
\(549\) −19.7990 −0.845000
\(550\) 0 0
\(551\) 19.2426 0.819764
\(552\) 0 0
\(553\) −9.51472 −0.404607
\(554\) 0 0
\(555\) 11.1127 0.471708
\(556\) 0 0
\(557\) −2.65685 −0.112575 −0.0562873 0.998415i \(-0.517926\pi\)
−0.0562873 + 0.998415i \(0.517926\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.372583 0.0157305
\(562\) 0 0
\(563\) 26.6985 1.12521 0.562603 0.826727i \(-0.309800\pi\)
0.562603 + 0.826727i \(0.309800\pi\)
\(564\) 0 0
\(565\) 16.4853 0.693541
\(566\) 0 0
\(567\) −11.8701 −0.498496
\(568\) 0 0
\(569\) 7.97056 0.334143 0.167072 0.985945i \(-0.446569\pi\)
0.167072 + 0.985945i \(0.446569\pi\)
\(570\) 0 0
\(571\) 16.2843 0.681476 0.340738 0.940158i \(-0.389323\pi\)
0.340738 + 0.940158i \(0.389323\pi\)
\(572\) 0 0
\(573\) 6.31371 0.263759
\(574\) 0 0
\(575\) 21.7279 0.906117
\(576\) 0 0
\(577\) −12.4853 −0.519769 −0.259885 0.965640i \(-0.583685\pi\)
−0.259885 + 0.965640i \(0.583685\pi\)
\(578\) 0 0
\(579\) 1.04163 0.0432887
\(580\) 0 0
\(581\) 6.34315 0.263158
\(582\) 0 0
\(583\) 14.8284 0.614131
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −38.6985 −1.59726 −0.798629 0.601824i \(-0.794441\pi\)
−0.798629 + 0.601824i \(0.794441\pi\)
\(588\) 0 0
\(589\) −40.9706 −1.68816
\(590\) 0 0
\(591\) −1.24264 −0.0511154
\(592\) 0 0
\(593\) 9.17157 0.376631 0.188316 0.982109i \(-0.439697\pi\)
0.188316 + 0.982109i \(0.439697\pi\)
\(594\) 0 0
\(595\) −0.769553 −0.0315486
\(596\) 0 0
\(597\) 7.54416 0.308762
\(598\) 0 0
\(599\) 19.9411 0.814772 0.407386 0.913256i \(-0.366440\pi\)
0.407386 + 0.913256i \(0.366440\pi\)
\(600\) 0 0
\(601\) −27.4853 −1.12115 −0.560574 0.828104i \(-0.689419\pi\)
−0.560574 + 0.828104i \(0.689419\pi\)
\(602\) 0 0
\(603\) 13.4558 0.547964
\(604\) 0 0
\(605\) −46.6274 −1.89567
\(606\) 0 0
\(607\) 4.41421 0.179167 0.0895837 0.995979i \(-0.471446\pi\)
0.0895837 + 0.995979i \(0.471446\pi\)
\(608\) 0 0
\(609\) −1.74517 −0.0707177
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −31.4853 −1.27168 −0.635839 0.771821i \(-0.719346\pi\)
−0.635839 + 0.771821i \(0.719346\pi\)
\(614\) 0 0
\(615\) −0.201010 −0.00810551
\(616\) 0 0
\(617\) −21.6863 −0.873057 −0.436529 0.899690i \(-0.643792\pi\)
−0.436529 + 0.899690i \(0.643792\pi\)
\(618\) 0 0
\(619\) −28.9706 −1.16443 −0.582213 0.813037i \(-0.697813\pi\)
−0.582213 + 0.813037i \(0.697813\pi\)
\(620\) 0 0
\(621\) 17.4853 0.701660
\(622\) 0 0
\(623\) 23.2426 0.931197
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 15.7279 0.628113
\(628\) 0 0
\(629\) −1.62742 −0.0648894
\(630\) 0 0
\(631\) −1.24264 −0.0494687 −0.0247344 0.999694i \(-0.507874\pi\)
−0.0247344 + 0.999694i \(0.507874\pi\)
\(632\) 0 0
\(633\) 6.79899 0.270236
\(634\) 0 0
\(635\) 12.4853 0.495463
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.51472 0.139040
\(640\) 0 0
\(641\) 16.7990 0.663520 0.331760 0.943364i \(-0.392358\pi\)
0.331760 + 0.943364i \(0.392358\pi\)
\(642\) 0 0
\(643\) −42.2132 −1.66473 −0.832363 0.554231i \(-0.813013\pi\)
−0.832363 + 0.554231i \(0.813013\pi\)
\(644\) 0 0
\(645\) 11.7990 0.464585
\(646\) 0 0
\(647\) −14.7574 −0.580172 −0.290086 0.957001i \(-0.593684\pi\)
−0.290086 + 0.957001i \(0.593684\pi\)
\(648\) 0 0
\(649\) −37.9706 −1.49047
\(650\) 0 0
\(651\) 3.71573 0.145631
\(652\) 0 0
\(653\) −5.14214 −0.201227 −0.100614 0.994926i \(-0.532081\pi\)
−0.100614 + 0.994926i \(0.532081\pi\)
\(654\) 0 0
\(655\) −11.3137 −0.442063
\(656\) 0 0
\(657\) 12.6863 0.494939
\(658\) 0 0
\(659\) −18.2132 −0.709486 −0.354743 0.934964i \(-0.615432\pi\)
−0.354743 + 0.934964i \(0.615432\pi\)
\(660\) 0 0
\(661\) 26.4558 1.02901 0.514507 0.857486i \(-0.327975\pi\)
0.514507 + 0.857486i \(0.327975\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −32.4853 −1.25973
\(666\) 0 0
\(667\) −19.2426 −0.745078
\(668\) 0 0
\(669\) −5.34315 −0.206578
\(670\) 0 0
\(671\) 36.6985 1.41673
\(672\) 0 0
\(673\) −41.9706 −1.61785 −0.808923 0.587914i \(-0.799949\pi\)
−0.808923 + 0.587914i \(0.799949\pi\)
\(674\) 0 0
\(675\) 7.24264 0.278769
\(676\) 0 0
\(677\) 25.4558 0.978348 0.489174 0.872186i \(-0.337298\pi\)
0.489174 + 0.872186i \(0.337298\pi\)
\(678\) 0 0
\(679\) 14.2721 0.547712
\(680\) 0 0
\(681\) −4.02944 −0.154408
\(682\) 0 0
\(683\) 0.757359 0.0289795 0.0144898 0.999895i \(-0.495388\pi\)
0.0144898 + 0.999895i \(0.495388\pi\)
\(684\) 0 0
\(685\) −58.4264 −2.23236
\(686\) 0 0
\(687\) 3.51472 0.134095
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.92893 0.0733800 0.0366900 0.999327i \(-0.488319\pi\)
0.0366900 + 0.999327i \(0.488319\pi\)
\(692\) 0 0
\(693\) 23.5147 0.893250
\(694\) 0 0
\(695\) 20.4853 0.777051
\(696\) 0 0
\(697\) 0.0294373 0.00111502
\(698\) 0 0
\(699\) 1.45584 0.0550651
\(700\) 0 0
\(701\) 8.48528 0.320485 0.160242 0.987078i \(-0.448772\pi\)
0.160242 + 0.987078i \(0.448772\pi\)
\(702\) 0 0
\(703\) −68.6985 −2.59101
\(704\) 0 0
\(705\) −7.02944 −0.264744
\(706\) 0 0
\(707\) −9.78680 −0.368070
\(708\) 0 0
\(709\) −2.51472 −0.0944422 −0.0472211 0.998884i \(-0.515037\pi\)
−0.0472211 + 0.998884i \(0.515037\pi\)
\(710\) 0 0
\(711\) −16.9706 −0.636446
\(712\) 0 0
\(713\) 40.9706 1.53436
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.3431 0.386272
\(718\) 0 0
\(719\) −31.2426 −1.16515 −0.582577 0.812776i \(-0.697956\pi\)
−0.582577 + 0.812776i \(0.697956\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 8.47309 0.315118
\(724\) 0 0
\(725\) −7.97056 −0.296019
\(726\) 0 0
\(727\) 12.6863 0.470509 0.235254 0.971934i \(-0.424408\pi\)
0.235254 + 0.971934i \(0.424408\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) −1.72792 −0.0639095
\(732\) 0 0
\(733\) −23.9411 −0.884286 −0.442143 0.896945i \(-0.645782\pi\)
−0.442143 + 0.896945i \(0.645782\pi\)
\(734\) 0 0
\(735\) −5.25483 −0.193827
\(736\) 0 0
\(737\) −24.9411 −0.918718
\(738\) 0 0
\(739\) 12.2132 0.449270 0.224635 0.974443i \(-0.427881\pi\)
0.224635 + 0.974443i \(0.427881\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.24264 0.0455881 0.0227940 0.999740i \(-0.492744\pi\)
0.0227940 + 0.999740i \(0.492744\pi\)
\(744\) 0 0
\(745\) 41.4558 1.51882
\(746\) 0 0
\(747\) 11.3137 0.413947
\(748\) 0 0
\(749\) 17.0589 0.623318
\(750\) 0 0
\(751\) 36.8995 1.34648 0.673241 0.739423i \(-0.264902\pi\)
0.673241 + 0.739423i \(0.264902\pi\)
\(752\) 0 0
\(753\) −3.20101 −0.116651
\(754\) 0 0
\(755\) 48.0000 1.74690
\(756\) 0 0
\(757\) −6.51472 −0.236781 −0.118391 0.992967i \(-0.537774\pi\)
−0.118391 + 0.992967i \(0.537774\pi\)
\(758\) 0 0
\(759\) −15.7279 −0.570887
\(760\) 0 0
\(761\) 12.5147 0.453658 0.226829 0.973935i \(-0.427164\pi\)
0.226829 + 0.973935i \(0.427164\pi\)
\(762\) 0 0
\(763\) −13.4558 −0.487134
\(764\) 0 0
\(765\) −1.37258 −0.0496258
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 39.4264 1.42175 0.710876 0.703317i \(-0.248299\pi\)
0.710876 + 0.703317i \(0.248299\pi\)
\(770\) 0 0
\(771\) 9.44365 0.340105
\(772\) 0 0
\(773\) 5.48528 0.197292 0.0986459 0.995123i \(-0.468549\pi\)
0.0986459 + 0.995123i \(0.468549\pi\)
\(774\) 0 0
\(775\) 16.9706 0.609601
\(776\) 0 0
\(777\) 6.23045 0.223516
\(778\) 0 0
\(779\) 1.24264 0.0445222
\(780\) 0 0
\(781\) −6.51472 −0.233115
\(782\) 0 0
\(783\) −6.41421 −0.229225
\(784\) 0 0
\(785\) −46.6274 −1.66420
\(786\) 0 0
\(787\) 44.0122 1.56887 0.784433 0.620214i \(-0.212954\pi\)
0.784433 + 0.620214i \(0.212954\pi\)
\(788\) 0 0
\(789\) 0.313708 0.0111683
\(790\) 0 0
\(791\) 9.24264 0.328630
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 3.31371 0.117525
\(796\) 0 0
\(797\) −33.0000 −1.16892 −0.584460 0.811423i \(-0.698694\pi\)
−0.584460 + 0.811423i \(0.698694\pi\)
\(798\) 0 0
\(799\) 1.02944 0.0364189
\(800\) 0 0
\(801\) 41.4558 1.46477
\(802\) 0 0
\(803\) −23.5147 −0.829816
\(804\) 0 0
\(805\) 32.4853 1.14496
\(806\) 0 0
\(807\) 4.75736 0.167467
\(808\) 0 0
\(809\) −0.171573 −0.00603218 −0.00301609 0.999995i \(-0.500960\pi\)
−0.00301609 + 0.999995i \(0.500960\pi\)
\(810\) 0 0
\(811\) 23.6569 0.830705 0.415352 0.909661i \(-0.363658\pi\)
0.415352 + 0.909661i \(0.363658\pi\)
\(812\) 0 0
\(813\) 6.94113 0.243436
\(814\) 0 0
\(815\) 71.3970 2.50093
\(816\) 0 0
\(817\) −72.9411 −2.55189
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13.9706 −0.487576 −0.243788 0.969829i \(-0.578390\pi\)
−0.243788 + 0.969829i \(0.578390\pi\)
\(822\) 0 0
\(823\) −42.2132 −1.47146 −0.735730 0.677275i \(-0.763161\pi\)
−0.735730 + 0.677275i \(0.763161\pi\)
\(824\) 0 0
\(825\) −6.51472 −0.226813
\(826\) 0 0
\(827\) 45.9411 1.59753 0.798765 0.601644i \(-0.205487\pi\)
0.798765 + 0.601644i \(0.205487\pi\)
\(828\) 0 0
\(829\) 2.02944 0.0704853 0.0352426 0.999379i \(-0.488780\pi\)
0.0352426 + 0.999379i \(0.488780\pi\)
\(830\) 0 0
\(831\) 1.44365 0.0500797
\(832\) 0 0
\(833\) 0.769553 0.0266634
\(834\) 0 0
\(835\) 27.5147 0.952186
\(836\) 0 0
\(837\) 13.6569 0.472050
\(838\) 0 0
\(839\) 48.6985 1.68126 0.840629 0.541611i \(-0.182185\pi\)
0.840629 + 0.541611i \(0.182185\pi\)
\(840\) 0 0
\(841\) −21.9411 −0.756591
\(842\) 0 0
\(843\) −10.8284 −0.372951
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −26.1421 −0.898254
\(848\) 0 0
\(849\) −3.14214 −0.107838
\(850\) 0 0
\(851\) 68.6985 2.35495
\(852\) 0 0
\(853\) 9.45584 0.323762 0.161881 0.986810i \(-0.448244\pi\)
0.161881 + 0.986810i \(0.448244\pi\)
\(854\) 0 0
\(855\) −57.9411 −1.98154
\(856\) 0 0
\(857\) 38.8284 1.32635 0.663177 0.748463i \(-0.269208\pi\)
0.663177 + 0.748463i \(0.269208\pi\)
\(858\) 0 0
\(859\) −36.0000 −1.22830 −0.614152 0.789188i \(-0.710502\pi\)
−0.614152 + 0.789188i \(0.710502\pi\)
\(860\) 0 0
\(861\) −0.112698 −0.00384075
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) 25.4558 0.865525
\(866\) 0 0
\(867\) 7.02944 0.238732
\(868\) 0 0
\(869\) 31.4558 1.06707
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 25.4558 0.861550
\(874\) 0 0
\(875\) −8.97056 −0.303260
\(876\) 0 0
\(877\) −9.97056 −0.336682 −0.168341 0.985729i \(-0.553841\pi\)
−0.168341 + 0.985729i \(0.553841\pi\)
\(878\) 0 0
\(879\) 8.41421 0.283804
\(880\) 0 0
\(881\) 23.8284 0.802800 0.401400 0.915903i \(-0.368524\pi\)
0.401400 + 0.915903i \(0.368524\pi\)
\(882\) 0 0
\(883\) −51.5980 −1.73641 −0.868205 0.496205i \(-0.834726\pi\)
−0.868205 + 0.496205i \(0.834726\pi\)
\(884\) 0 0
\(885\) −8.48528 −0.285230
\(886\) 0 0
\(887\) 18.2132 0.611540 0.305770 0.952105i \(-0.401086\pi\)
0.305770 + 0.952105i \(0.401086\pi\)
\(888\) 0 0
\(889\) 7.00000 0.234772
\(890\) 0 0
\(891\) 39.2426 1.31468
\(892\) 0 0
\(893\) 43.4558 1.45419
\(894\) 0 0
\(895\) −60.0833 −2.00836
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15.0294 −0.501260
\(900\) 0 0
\(901\) −0.485281 −0.0161671
\(902\) 0 0
\(903\) 6.61522 0.220141
\(904\) 0 0
\(905\) −46.6274 −1.54995
\(906\) 0 0
\(907\) 6.21320 0.206306 0.103153 0.994665i \(-0.467107\pi\)
0.103153 + 0.994665i \(0.467107\pi\)
\(908\) 0 0
\(909\) −17.4558 −0.578974
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) −20.9706 −0.694024
\(914\) 0 0
\(915\) 8.20101 0.271117
\(916\) 0 0
\(917\) −6.34315 −0.209469
\(918\) 0 0
\(919\) 32.3553 1.06730 0.533652 0.845704i \(-0.320819\pi\)
0.533652 + 0.845704i \(0.320819\pi\)
\(920\) 0 0
\(921\) 4.97056 0.163786
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 28.4558 0.935622
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 52.1127 1.70976 0.854881 0.518824i \(-0.173630\pi\)
0.854881 + 0.518824i \(0.173630\pi\)
\(930\) 0 0
\(931\) 32.4853 1.06466
\(932\) 0 0
\(933\) 9.94113 0.325458
\(934\) 0 0
\(935\) 2.54416 0.0832028
\(936\) 0 0
\(937\) 5.45584 0.178235 0.0891173 0.996021i \(-0.471595\pi\)
0.0891173 + 0.996021i \(0.471595\pi\)
\(938\) 0 0
\(939\) −1.45584 −0.0475097
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) −1.24264 −0.0404659
\(944\) 0 0
\(945\) 10.8284 0.352249
\(946\) 0 0
\(947\) 5.24264 0.170363 0.0851815 0.996365i \(-0.472853\pi\)
0.0851815 + 0.996365i \(0.472853\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −2.20101 −0.0713726
\(952\) 0 0
\(953\) −14.6569 −0.474782 −0.237391 0.971414i \(-0.576292\pi\)
−0.237391 + 0.971414i \(0.576292\pi\)
\(954\) 0 0
\(955\) 43.1127 1.39509
\(956\) 0 0
\(957\) 5.76955 0.186503
\(958\) 0 0
\(959\) −32.7574 −1.05779
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 30.4264 0.980477
\(964\) 0 0
\(965\) 7.11270 0.228966
\(966\) 0 0
\(967\) −40.9706 −1.31752 −0.658762 0.752351i \(-0.728920\pi\)
−0.658762 + 0.752351i \(0.728920\pi\)
\(968\) 0 0
\(969\) −0.514719 −0.0165351
\(970\) 0 0
\(971\) −41.2426 −1.32354 −0.661770 0.749707i \(-0.730194\pi\)
−0.661770 + 0.749707i \(0.730194\pi\)
\(972\) 0 0
\(973\) 11.4853 0.368201
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.2843 −0.425001 −0.212501 0.977161i \(-0.568161\pi\)
−0.212501 + 0.977161i \(0.568161\pi\)
\(978\) 0 0
\(979\) −76.8406 −2.45584
\(980\) 0 0
\(981\) −24.0000 −0.766261
\(982\) 0 0
\(983\) 32.9706 1.05160 0.525799 0.850609i \(-0.323766\pi\)
0.525799 + 0.850609i \(0.323766\pi\)
\(984\) 0 0
\(985\) −8.48528 −0.270364
\(986\) 0 0
\(987\) −3.94113 −0.125447
\(988\) 0 0
\(989\) 72.9411 2.31939
\(990\) 0 0
\(991\) 52.1543 1.65674 0.828368 0.560184i \(-0.189269\pi\)
0.828368 + 0.560184i \(0.189269\pi\)
\(992\) 0 0
\(993\) 0.514719 0.0163341
\(994\) 0 0
\(995\) 51.5147 1.63313
\(996\) 0 0
\(997\) 32.9411 1.04326 0.521628 0.853173i \(-0.325325\pi\)
0.521628 + 0.853173i \(0.325325\pi\)
\(998\) 0 0
\(999\) 22.8995 0.724508
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.be.1.1 2
4.3 odd 2 5408.2.a.o.1.2 2
13.3 even 3 416.2.i.c.321.2 yes 4
13.9 even 3 416.2.i.c.289.2 4
13.12 even 2 5408.2.a.bf.1.1 2
52.3 odd 6 416.2.i.f.321.1 yes 4
52.35 odd 6 416.2.i.f.289.1 yes 4
52.51 odd 2 5408.2.a.n.1.2 2
104.3 odd 6 832.2.i.k.321.2 4
104.29 even 6 832.2.i.p.321.1 4
104.35 odd 6 832.2.i.k.705.2 4
104.61 even 6 832.2.i.p.705.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.c.289.2 4 13.9 even 3
416.2.i.c.321.2 yes 4 13.3 even 3
416.2.i.f.289.1 yes 4 52.35 odd 6
416.2.i.f.321.1 yes 4 52.3 odd 6
832.2.i.k.321.2 4 104.3 odd 6
832.2.i.k.705.2 4 104.35 odd 6
832.2.i.p.321.1 4 104.29 even 6
832.2.i.p.705.1 4 104.61 even 6
5408.2.a.n.1.2 2 52.51 odd 2
5408.2.a.o.1.2 2 4.3 odd 2
5408.2.a.be.1.1 2 1.1 even 1 trivial
5408.2.a.bf.1.1 2 13.12 even 2