Properties

Label 5400.2.a.m.1.1
Level $5400$
Weight $2$
Character 5400.1
Self dual yes
Analytic conductor $43.119$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5400,2,Mod(1,5400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5400.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5400 = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,0,0,0,-2,0,0,0,-1,0,-1,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1192170915\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 5400.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{7} -1.00000 q^{11} -1.00000 q^{13} -1.00000 q^{17} +4.00000 q^{19} +1.00000 q^{23} +5.00000 q^{29} +1.00000 q^{31} -6.00000 q^{37} -7.00000 q^{43} +7.00000 q^{47} -3.00000 q^{49} -12.0000 q^{53} +4.00000 q^{59} +10.0000 q^{61} +4.00000 q^{67} -12.0000 q^{71} -6.00000 q^{73} +2.00000 q^{77} +15.0000 q^{79} +2.00000 q^{83} +12.0000 q^{89} +2.00000 q^{91} -10.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 0.208514 0.104257 0.994550i \(-0.466753\pi\)
0.104257 + 0.994550i \(0.466753\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.00000 1.02105 0.510527 0.859861i \(-0.329450\pi\)
0.510527 + 0.859861i \(0.329450\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) 15.0000 1.68763 0.843816 0.536633i \(-0.180304\pi\)
0.843816 + 0.536633i \(0.180304\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.00000 0.219529 0.109764 0.993958i \(-0.464990\pi\)
0.109764 + 0.993958i \(0.464990\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.0000 1.49256 0.746278 0.665635i \(-0.231839\pi\)
0.746278 + 0.665635i \(0.231839\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.00000 0.282216 0.141108 0.989994i \(-0.454933\pi\)
0.141108 + 0.989994i \(0.454933\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.00000 0.786334 0.393167 0.919467i \(-0.371379\pi\)
0.393167 + 0.919467i \(0.371379\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.0000 1.87959 0.939793 0.341743i \(-0.111017\pi\)
0.939793 + 0.341743i \(0.111017\pi\)
\(138\) 0 0
\(139\) −6.00000 −0.508913 −0.254457 0.967084i \(-0.581897\pi\)
−0.254457 + 0.967084i \(0.581897\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.0000 1.06500 0.532501 0.846430i \(-0.321252\pi\)
0.532501 + 0.846430i \(0.321252\pi\)
\(150\) 0 0
\(151\) −1.00000 −0.0813788 −0.0406894 0.999172i \(-0.512955\pi\)
−0.0406894 + 0.999172i \(0.512955\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) 5.00000 0.391630 0.195815 0.980641i \(-0.437265\pi\)
0.195815 + 0.980641i \(0.437265\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.0000 −0.760286 −0.380143 0.924928i \(-0.624125\pi\)
−0.380143 + 0.924928i \(0.624125\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −4.00000 −0.297318 −0.148659 0.988889i \(-0.547496\pi\)
−0.148659 + 0.988889i \(0.547496\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.00000 0.0731272
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.0000 1.59186 0.795932 0.605386i \(-0.206981\pi\)
0.795932 + 0.605386i \(0.206981\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) 5.00000 0.354441 0.177220 0.984171i \(-0.443289\pi\)
0.177220 + 0.984171i \(0.443289\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.0000 −0.701862
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.00000 0.0672673
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 0 0
\(229\) −20.0000 −1.32164 −0.660819 0.750546i \(-0.729791\pi\)
−0.660819 + 0.750546i \(0.729791\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 0 0
\(241\) 5.00000 0.322078 0.161039 0.986948i \(-0.448515\pi\)
0.161039 + 0.986948i \(0.448515\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 0 0
\(253\) −1.00000 −0.0628695
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.0000 1.68421 0.842107 0.539311i \(-0.181315\pi\)
0.842107 + 0.539311i \(0.181315\pi\)
\(258\) 0 0
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 31.0000 1.89010 0.945052 0.326921i \(-0.106011\pi\)
0.945052 + 0.326921i \(0.106011\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.00000 −0.0578315
\(300\) 0 0
\(301\) 14.0000 0.806947
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.00000 0.285365 0.142683 0.989769i \(-0.454427\pi\)
0.142683 + 0.989769i \(0.454427\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.0000 1.34797 0.673987 0.738743i \(-0.264580\pi\)
0.673987 + 0.738743i \(0.264580\pi\)
\(318\) 0 0
\(319\) −5.00000 −0.279946
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −14.0000 −0.771845
\(330\) 0 0
\(331\) −18.0000 −0.989369 −0.494685 0.869072i \(-0.664716\pi\)
−0.494685 + 0.869072i \(0.664716\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.00000 −0.0541530
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) 0 0
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.0000 0.904819 0.452409 0.891810i \(-0.350565\pi\)
0.452409 + 0.891810i \(0.350565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.00000 −0.104399 −0.0521996 0.998637i \(-0.516623\pi\)
−0.0521996 + 0.998637i \(0.516623\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) 0 0
\(373\) −19.0000 −0.983783 −0.491891 0.870657i \(-0.663694\pi\)
−0.491891 + 0.870657i \(0.663694\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.00000 −0.257513
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.0000 −0.766464 −0.383232 0.923652i \(-0.625189\pi\)
−0.383232 + 0.923652i \(0.625189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) −1.00000 −0.0505722
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11.0000 0.552074 0.276037 0.961147i \(-0.410979\pi\)
0.276037 + 0.961147i \(0.410979\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −36.0000 −1.79775 −0.898877 0.438201i \(-0.855616\pi\)
−0.898877 + 0.438201i \(0.855616\pi\)
\(402\) 0 0
\(403\) −1.00000 −0.0498135
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 31.0000 1.53285 0.766426 0.642333i \(-0.222033\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.00000 −0.393654
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 33.0000 1.61216 0.806078 0.591810i \(-0.201586\pi\)
0.806078 + 0.591810i \(0.201586\pi\)
\(420\) 0 0
\(421\) 12.0000 0.584844 0.292422 0.956289i \(-0.405539\pi\)
0.292422 + 0.956289i \(0.405539\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −20.0000 −0.967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.00000 0.191346
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −28.0000 −1.30978 −0.654892 0.755722i \(-0.727286\pi\)
−0.654892 + 0.755722i \(0.727286\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) −6.00000 −0.278844 −0.139422 0.990233i \(-0.544524\pi\)
−0.139422 + 0.990233i \(0.544524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.00000 0.321860
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −5.00000 −0.225189
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 24.0000 1.07655
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.00000 0.401290 0.200645 0.979664i \(-0.435696\pi\)
0.200645 + 0.979664i \(0.435696\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.00000 −0.310270 −0.155135 0.987893i \(-0.549581\pi\)
−0.155135 + 0.987893i \(0.549581\pi\)
\(510\) 0 0
\(511\) 12.0000 0.530849
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −7.00000 −0.307860
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.0000 −1.22670 −0.613351 0.789810i \(-0.710179\pi\)
−0.613351 + 0.789810i \(0.710179\pi\)
\(522\) 0 0
\(523\) −1.00000 −0.0437269 −0.0218635 0.999761i \(-0.506960\pi\)
−0.0218635 + 0.999761i \(0.506960\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.00000 −0.0435607
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 0.129219
\(540\) 0 0
\(541\) 34.0000 1.46177 0.730887 0.682498i \(-0.239107\pi\)
0.730887 + 0.682498i \(0.239107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 37.0000 1.58201 0.791003 0.611812i \(-0.209559\pi\)
0.791003 + 0.611812i \(0.209559\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.0000 0.852029
\(552\) 0 0
\(553\) −30.0000 −1.27573
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −28.0000 −1.18640 −0.593199 0.805056i \(-0.702135\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) 0 0
\(559\) 7.00000 0.296068
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −38.0000 −1.60151 −0.800755 0.598993i \(-0.795568\pi\)
−0.800755 + 0.598993i \(0.795568\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −32.0000 −1.34151 −0.670755 0.741679i \(-0.734030\pi\)
−0.670755 + 0.741679i \(0.734030\pi\)
\(570\) 0 0
\(571\) 22.0000 0.920671 0.460336 0.887745i \(-0.347729\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.00000 −0.165948
\(582\) 0 0
\(583\) 12.0000 0.496989
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 42.0000 1.73353 0.866763 0.498721i \(-0.166197\pi\)
0.866763 + 0.498721i \(0.166197\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.0000 0.615976 0.307988 0.951390i \(-0.400344\pi\)
0.307988 + 0.951390i \(0.400344\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) −35.0000 −1.42768 −0.713840 0.700309i \(-0.753046\pi\)
−0.713840 + 0.700309i \(0.753046\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −30.0000 −1.21766 −0.608831 0.793300i \(-0.708361\pi\)
−0.608831 + 0.793300i \(0.708361\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.00000 −0.283190
\(612\) 0 0
\(613\) 15.0000 0.605844 0.302922 0.953015i \(-0.402038\pi\)
0.302922 + 0.953015i \(0.402038\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 0.362326 0.181163 0.983453i \(-0.442014\pi\)
0.181163 + 0.983453i \(0.442014\pi\)
\(618\) 0 0
\(619\) 38.0000 1.52735 0.763674 0.645601i \(-0.223393\pi\)
0.763674 + 0.645601i \(0.223393\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −24.0000 −0.961540
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.00000 0.118864
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 9.00000 0.354925 0.177463 0.984128i \(-0.443211\pi\)
0.177463 + 0.984128i \(0.443211\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) −4.00000 −0.157014
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.00000 −0.156532 −0.0782660 0.996933i \(-0.524938\pi\)
−0.0782660 + 0.996933i \(0.524938\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) 42.0000 1.63361 0.816805 0.576913i \(-0.195743\pi\)
0.816805 + 0.576913i \(0.195743\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.00000 0.193601
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.0000 −0.386046
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.00000 0.153732 0.0768662 0.997041i \(-0.475509\pi\)
0.0768662 + 0.997041i \(0.475509\pi\)
\(678\) 0 0
\(679\) 20.0000 0.767530
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.0000 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −11.0000 −0.415464 −0.207732 0.978186i \(-0.566608\pi\)
−0.207732 + 0.978186i \(0.566608\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −30.0000 −1.12827
\(708\) 0 0
\(709\) −52.0000 −1.95290 −0.976450 0.215742i \(-0.930783\pi\)
−0.976450 + 0.215742i \(0.930783\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.00000 0.0374503
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.00000 0.0745874 0.0372937 0.999304i \(-0.488126\pi\)
0.0372937 + 0.999304i \(0.488126\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.00000 0.258904
\(732\) 0 0
\(733\) −42.0000 −1.55131 −0.775653 0.631160i \(-0.782579\pi\)
−0.775653 + 0.631160i \(0.782579\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 51.0000 1.87101 0.935504 0.353315i \(-0.114946\pi\)
0.935504 + 0.353315i \(0.114946\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −36.0000 −1.31541
\(750\) 0 0
\(751\) 3.00000 0.109472 0.0547358 0.998501i \(-0.482568\pi\)
0.0547358 + 0.998501i \(0.482568\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.00000 0.0363456 0.0181728 0.999835i \(-0.494215\pi\)
0.0181728 + 0.999835i \(0.494215\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 8.00000 0.289619
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.00000 −0.144432
\(768\) 0 0
\(769\) 7.00000 0.252426 0.126213 0.992003i \(-0.459718\pi\)
0.126213 + 0.992003i \(0.459718\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −47.0000 −1.67537 −0.837685 0.546154i \(-0.816091\pi\)
−0.837685 + 0.546154i \(0.816091\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) −10.0000 −0.355110
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −36.0000 −1.27519 −0.637593 0.770374i \(-0.720070\pi\)
−0.637593 + 0.770374i \(0.720070\pi\)
\(798\) 0 0
\(799\) −7.00000 −0.247642
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.00000 0.211735
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −10.0000 −0.351147 −0.175574 0.984466i \(-0.556178\pi\)
−0.175574 + 0.984466i \(0.556178\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −28.0000 −0.979596
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 38.0000 1.32621 0.663105 0.748527i \(-0.269238\pi\)
0.663105 + 0.748527i \(0.269238\pi\)
\(822\) 0 0
\(823\) 20.0000 0.697156 0.348578 0.937280i \(-0.386665\pi\)
0.348578 + 0.937280i \(0.386665\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −26.0000 −0.897620 −0.448810 0.893627i \(-0.648152\pi\)
−0.448810 + 0.893627i \(0.648152\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 20.0000 0.687208
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.00000 −0.205677
\(852\) 0 0
\(853\) 31.0000 1.06142 0.530710 0.847554i \(-0.321925\pi\)
0.530710 + 0.847554i \(0.321925\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −21.0000 −0.714848 −0.357424 0.933942i \(-0.616345\pi\)
−0.357424 + 0.933942i \(0.616345\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −15.0000 −0.508840
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 53.0000 1.78968 0.894841 0.446384i \(-0.147289\pi\)
0.894841 + 0.446384i \(0.147289\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19.0000 0.637958 0.318979 0.947762i \(-0.396660\pi\)
0.318979 + 0.947762i \(0.396660\pi\)
\(888\) 0 0
\(889\) −12.0000 −0.402467
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 28.0000 0.936984
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.00000 0.166759
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 45.0000 1.49420 0.747100 0.664711i \(-0.231445\pi\)
0.747100 + 0.664711i \(0.231445\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 56.0000 1.85536 0.927681 0.373373i \(-0.121799\pi\)
0.927681 + 0.373373i \(0.121799\pi\)
\(912\) 0 0
\(913\) −2.00000 −0.0661903
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.0000 −0.594412
\(918\) 0 0
\(919\) 35.0000 1.15454 0.577272 0.816552i \(-0.304117\pi\)
0.577272 + 0.816552i \(0.304117\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 17.0000 0.554184 0.277092 0.960843i \(-0.410629\pi\)
0.277092 + 0.960843i \(0.410629\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −14.0000 −0.454939 −0.227469 0.973785i \(-0.573045\pi\)
−0.227469 + 0.973785i \(0.573045\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.0000 0.680257 0.340128 0.940379i \(-0.389529\pi\)
0.340128 + 0.940379i \(0.389529\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −44.0000 −1.42083
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 6.00000 0.192947 0.0964735 0.995336i \(-0.469244\pi\)
0.0964735 + 0.995336i \(0.469244\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −53.0000 −1.70085 −0.850425 0.526096i \(-0.823655\pi\)
−0.850425 + 0.526096i \(0.823655\pi\)
\(972\) 0 0
\(973\) 12.0000 0.384702
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −61.0000 −1.95156 −0.975781 0.218748i \(-0.929803\pi\)
−0.975781 + 0.218748i \(0.929803\pi\)
\(978\) 0 0
\(979\) −12.0000 −0.383522
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 33.0000 1.05254 0.526268 0.850319i \(-0.323591\pi\)
0.526268 + 0.850319i \(0.323591\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.00000 −0.222587
\(990\) 0 0
\(991\) −55.0000 −1.74713 −0.873566 0.486705i \(-0.838199\pi\)
−0.873566 + 0.486705i \(0.838199\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −39.0000 −1.23514 −0.617571 0.786515i \(-0.711883\pi\)
−0.617571 + 0.786515i \(0.711883\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5400.2.a.m.1.1 1
3.2 odd 2 5400.2.a.n.1.1 1
5.2 odd 4 5400.2.f.m.649.1 2
5.3 odd 4 5400.2.f.m.649.2 2
5.4 even 2 1080.2.a.f.1.1 1
15.2 even 4 5400.2.f.p.649.1 2
15.8 even 4 5400.2.f.p.649.2 2
15.14 odd 2 1080.2.a.k.1.1 yes 1
20.19 odd 2 2160.2.a.d.1.1 1
40.19 odd 2 8640.2.a.bk.1.1 1
40.29 even 2 8640.2.a.cb.1.1 1
45.4 even 6 3240.2.q.o.2161.1 2
45.14 odd 6 3240.2.q.c.2161.1 2
45.29 odd 6 3240.2.q.c.1081.1 2
45.34 even 6 3240.2.q.o.1081.1 2
60.59 even 2 2160.2.a.n.1.1 1
120.29 odd 2 8640.2.a.v.1.1 1
120.59 even 2 8640.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.a.f.1.1 1 5.4 even 2
1080.2.a.k.1.1 yes 1 15.14 odd 2
2160.2.a.d.1.1 1 20.19 odd 2
2160.2.a.n.1.1 1 60.59 even 2
3240.2.q.c.1081.1 2 45.29 odd 6
3240.2.q.c.2161.1 2 45.14 odd 6
3240.2.q.o.1081.1 2 45.34 even 6
3240.2.q.o.2161.1 2 45.4 even 6
5400.2.a.m.1.1 1 1.1 even 1 trivial
5400.2.a.n.1.1 1 3.2 odd 2
5400.2.f.m.649.1 2 5.2 odd 4
5400.2.f.m.649.2 2 5.3 odd 4
5400.2.f.p.649.1 2 15.2 even 4
5400.2.f.p.649.2 2 15.8 even 4
8640.2.a.i.1.1 1 120.59 even 2
8640.2.a.v.1.1 1 120.29 odd 2
8640.2.a.bk.1.1 1 40.19 odd 2
8640.2.a.cb.1.1 1 40.29 even 2