Defining parameters
Level: | \( N \) | \(=\) | \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 540.t (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(540, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 468 | 24 | 444 |
Cusp forms | 396 | 24 | 372 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(540, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
540.3.t.a | $24$ | $14.714$ | None | \(0\) | \(0\) | \(9\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(540, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(540, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)