Properties

Label 540.2.d.c.109.2
Level $540$
Weight $2$
Character 540.109
Analytic conductor $4.312$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [540,2,Mod(109,540)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(540, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("540.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.2
Root \(-1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 540.109
Dual form 540.2.d.c.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58114 + 1.58114i) q^{5} -1.00000i q^{7} +O(q^{10})\) \(q+(-1.58114 + 1.58114i) q^{5} -1.00000i q^{7} -3.16228 q^{11} +3.00000i q^{13} +6.32456i q^{17} -3.00000 q^{19} +3.16228i q^{23} -5.00000i q^{25} -9.48683 q^{29} -2.00000 q^{31} +(1.58114 + 1.58114i) q^{35} -1.00000i q^{37} -3.16228 q^{41} +10.0000i q^{43} -6.32456i q^{47} +6.00000 q^{49} +9.48683i q^{53} +(5.00000 - 5.00000i) q^{55} +6.32456 q^{59} -1.00000 q^{61} +(-4.74342 - 4.74342i) q^{65} -11.0000i q^{67} +9.48683 q^{71} +13.0000i q^{73} +3.16228i q^{77} +3.00000 q^{79} -15.8114i q^{83} +(-10.0000 - 10.0000i) q^{85} +12.6491 q^{89} +3.00000 q^{91} +(4.74342 - 4.74342i) q^{95} +1.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 12 q^{19} - 8 q^{31} + 24 q^{49} + 20 q^{55} - 4 q^{61} + 12 q^{79} - 40 q^{85} + 12 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.58114 + 1.58114i −0.707107 + 0.707107i
\(6\) 0 0
\(7\) 1.00000i 0.377964i −0.981981 0.188982i \(-0.939481\pi\)
0.981981 0.188982i \(-0.0605189\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.16228 −0.953463 −0.476731 0.879049i \(-0.658179\pi\)
−0.476731 + 0.879049i \(0.658179\pi\)
\(12\) 0 0
\(13\) 3.00000i 0.832050i 0.909353 + 0.416025i \(0.136577\pi\)
−0.909353 + 0.416025i \(0.863423\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.32456i 1.53393i 0.641689 + 0.766965i \(0.278234\pi\)
−0.641689 + 0.766965i \(0.721766\pi\)
\(18\) 0 0
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.16228i 0.659380i 0.944089 + 0.329690i \(0.106944\pi\)
−0.944089 + 0.329690i \(0.893056\pi\)
\(24\) 0 0
\(25\) 5.00000i 1.00000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.48683 −1.76166 −0.880830 0.473432i \(-0.843015\pi\)
−0.880830 + 0.473432i \(0.843015\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.58114 + 1.58114i 0.267261 + 0.267261i
\(36\) 0 0
\(37\) 1.00000i 0.164399i −0.996616 0.0821995i \(-0.973806\pi\)
0.996616 0.0821995i \(-0.0261945\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.16228 −0.493865 −0.246932 0.969033i \(-0.579423\pi\)
−0.246932 + 0.969033i \(0.579423\pi\)
\(42\) 0 0
\(43\) 10.0000i 1.52499i 0.646997 + 0.762493i \(0.276025\pi\)
−0.646997 + 0.762493i \(0.723975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.32456i 0.922531i −0.887262 0.461266i \(-0.847396\pi\)
0.887262 0.461266i \(-0.152604\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.48683i 1.30312i 0.758599 + 0.651558i \(0.225884\pi\)
−0.758599 + 0.651558i \(0.774116\pi\)
\(54\) 0 0
\(55\) 5.00000 5.00000i 0.674200 0.674200i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.32456 0.823387 0.411693 0.911322i \(-0.364937\pi\)
0.411693 + 0.911322i \(0.364937\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.74342 4.74342i −0.588348 0.588348i
\(66\) 0 0
\(67\) 11.0000i 1.34386i −0.740613 0.671932i \(-0.765465\pi\)
0.740613 0.671932i \(-0.234535\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.48683 1.12588 0.562940 0.826498i \(-0.309670\pi\)
0.562940 + 0.826498i \(0.309670\pi\)
\(72\) 0 0
\(73\) 13.0000i 1.52153i 0.649025 + 0.760767i \(0.275177\pi\)
−0.649025 + 0.760767i \(0.724823\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.16228i 0.360375i
\(78\) 0 0
\(79\) 3.00000 0.337526 0.168763 0.985657i \(-0.446023\pi\)
0.168763 + 0.985657i \(0.446023\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 15.8114i 1.73553i −0.496979 0.867763i \(-0.665557\pi\)
0.496979 0.867763i \(-0.334443\pi\)
\(84\) 0 0
\(85\) −10.0000 10.0000i −1.08465 1.08465i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.6491 1.34080 0.670402 0.741999i \(-0.266122\pi\)
0.670402 + 0.741999i \(0.266122\pi\)
\(90\) 0 0
\(91\) 3.00000 0.314485
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.74342 4.74342i 0.486664 0.486664i
\(96\) 0 0
\(97\) 1.00000i 0.101535i 0.998711 + 0.0507673i \(0.0161667\pi\)
−0.998711 + 0.0507673i \(0.983833\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.32456 −0.629317 −0.314658 0.949205i \(-0.601890\pi\)
−0.314658 + 0.949205i \(0.601890\pi\)
\(102\) 0 0
\(103\) 17.0000i 1.67506i 0.546392 + 0.837530i \(0.316001\pi\)
−0.546392 + 0.837530i \(0.683999\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.48683i 0.917127i −0.888662 0.458563i \(-0.848364\pi\)
0.888662 0.458563i \(-0.151636\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.48683i 0.892446i −0.894922 0.446223i \(-0.852769\pi\)
0.894922 0.446223i \(-0.147231\pi\)
\(114\) 0 0
\(115\) −5.00000 5.00000i −0.466252 0.466252i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.32456 0.579771
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.90569 + 7.90569i 0.707107 + 0.707107i
\(126\) 0 0
\(127\) 10.0000i 0.887357i −0.896186 0.443678i \(-0.853673\pi\)
0.896186 0.443678i \(-0.146327\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.9737 1.65774 0.828868 0.559444i \(-0.188985\pi\)
0.828868 + 0.559444i \(0.188985\pi\)
\(132\) 0 0
\(133\) 3.00000i 0.260133i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.48683i 0.810515i −0.914203 0.405257i \(-0.867182\pi\)
0.914203 0.405257i \(-0.132818\pi\)
\(138\) 0 0
\(139\) 17.0000 1.44192 0.720961 0.692976i \(-0.243701\pi\)
0.720961 + 0.692976i \(0.243701\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.48683i 0.793329i
\(144\) 0 0
\(145\) 15.0000 15.0000i 1.24568 1.24568i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.6491 −1.03626 −0.518128 0.855303i \(-0.673371\pi\)
−0.518128 + 0.855303i \(0.673371\pi\)
\(150\) 0 0
\(151\) 1.00000 0.0813788 0.0406894 0.999172i \(-0.487045\pi\)
0.0406894 + 0.999172i \(0.487045\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.16228 3.16228i 0.254000 0.254000i
\(156\) 0 0
\(157\) 10.0000i 0.798087i 0.916932 + 0.399043i \(0.130658\pi\)
−0.916932 + 0.399043i \(0.869342\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.16228 0.249222
\(162\) 0 0
\(163\) 17.0000i 1.33154i 0.746156 + 0.665771i \(0.231897\pi\)
−0.746156 + 0.665771i \(0.768103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 4.00000 0.307692
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.32456i 0.480847i 0.970668 + 0.240424i \(0.0772863\pi\)
−0.970668 + 0.240424i \(0.922714\pi\)
\(174\) 0 0
\(175\) −5.00000 −0.377964
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.16228 −0.236360 −0.118180 0.992992i \(-0.537706\pi\)
−0.118180 + 0.992992i \(0.537706\pi\)
\(180\) 0 0
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.58114 + 1.58114i 0.116248 + 0.116248i
\(186\) 0 0
\(187\) 20.0000i 1.46254i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 7.00000i 0.503871i 0.967744 + 0.251936i \(0.0810671\pi\)
−0.967744 + 0.251936i \(0.918933\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.6491i 0.901212i 0.892723 + 0.450606i \(0.148792\pi\)
−0.892723 + 0.450606i \(0.851208\pi\)
\(198\) 0 0
\(199\) −27.0000 −1.91398 −0.956990 0.290122i \(-0.906304\pi\)
−0.956990 + 0.290122i \(0.906304\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.48683i 0.665845i
\(204\) 0 0
\(205\) 5.00000 5.00000i 0.349215 0.349215i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.48683 0.656218
\(210\) 0 0
\(211\) −21.0000 −1.44570 −0.722850 0.691005i \(-0.757168\pi\)
−0.722850 + 0.691005i \(0.757168\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.8114 15.8114i −1.07833 1.07833i
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −18.9737 −1.27631
\(222\) 0 0
\(223\) 10.0000i 0.669650i 0.942280 + 0.334825i \(0.108677\pi\)
−0.942280 + 0.334825i \(0.891323\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.8114i 1.04944i 0.851275 + 0.524719i \(0.175830\pi\)
−0.851275 + 0.524719i \(0.824170\pi\)
\(228\) 0 0
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.32456i 0.414335i 0.978305 + 0.207168i \(0.0664246\pi\)
−0.978305 + 0.207168i \(0.933575\pi\)
\(234\) 0 0
\(235\) 10.0000 + 10.0000i 0.652328 + 0.652328i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.16228 0.204551 0.102275 0.994756i \(-0.467388\pi\)
0.102275 + 0.994756i \(0.467388\pi\)
\(240\) 0 0
\(241\) −11.0000 −0.708572 −0.354286 0.935137i \(-0.615276\pi\)
−0.354286 + 0.935137i \(0.615276\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.48683 + 9.48683i −0.606092 + 0.606092i
\(246\) 0 0
\(247\) 9.00000i 0.572656i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −28.4605 −1.79641 −0.898205 0.439576i \(-0.855129\pi\)
−0.898205 + 0.439576i \(0.855129\pi\)
\(252\) 0 0
\(253\) 10.0000i 0.628695i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.9737i 1.18354i −0.806105 0.591772i \(-0.798428\pi\)
0.806105 0.591772i \(-0.201572\pi\)
\(258\) 0 0
\(259\) −1.00000 −0.0621370
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 31.6228i 1.94994i 0.222328 + 0.974972i \(0.428634\pi\)
−0.222328 + 0.974972i \(0.571366\pi\)
\(264\) 0 0
\(265\) −15.0000 15.0000i −0.921443 0.921443i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.9737 −1.15684 −0.578422 0.815737i \(-0.696331\pi\)
−0.578422 + 0.815737i \(0.696331\pi\)
\(270\) 0 0
\(271\) 19.0000 1.15417 0.577084 0.816685i \(-0.304191\pi\)
0.577084 + 0.816685i \(0.304191\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.8114i 0.953463i
\(276\) 0 0
\(277\) 20.0000i 1.20168i 0.799368 + 0.600842i \(0.205168\pi\)
−0.799368 + 0.600842i \(0.794832\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.9737 1.13187 0.565937 0.824448i \(-0.308515\pi\)
0.565937 + 0.824448i \(0.308515\pi\)
\(282\) 0 0
\(283\) 10.0000i 0.594438i −0.954809 0.297219i \(-0.903941\pi\)
0.954809 0.297219i \(-0.0960592\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.16228i 0.186663i
\(288\) 0 0
\(289\) −23.0000 −1.35294
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.48683i 0.554227i 0.960837 + 0.277113i \(0.0893778\pi\)
−0.960837 + 0.277113i \(0.910622\pi\)
\(294\) 0 0
\(295\) −10.0000 + 10.0000i −0.582223 + 0.582223i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.48683 −0.548638
\(300\) 0 0
\(301\) 10.0000 0.576390
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.58114 1.58114i 0.0905357 0.0905357i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −18.9737 −1.07590 −0.537949 0.842977i \(-0.680801\pi\)
−0.537949 + 0.842977i \(0.680801\pi\)
\(312\) 0 0
\(313\) 7.00000i 0.395663i 0.980236 + 0.197832i \(0.0633900\pi\)
−0.980236 + 0.197832i \(0.936610\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.2982i 1.42089i 0.703753 + 0.710445i \(0.251506\pi\)
−0.703753 + 0.710445i \(0.748494\pi\)
\(318\) 0 0
\(319\) 30.0000 1.67968
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 18.9737i 1.05572i
\(324\) 0 0
\(325\) 15.0000 0.832050
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.32456 −0.348684
\(330\) 0 0
\(331\) 19.0000 1.04433 0.522167 0.852843i \(-0.325124\pi\)
0.522167 + 0.852843i \(0.325124\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 17.3925 + 17.3925i 0.950255 + 0.950255i
\(336\) 0 0
\(337\) 11.0000i 0.599208i 0.954064 + 0.299604i \(0.0968546\pi\)
−0.954064 + 0.299604i \(0.903145\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.32456 0.342494
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 28.4605i 1.52784i 0.645311 + 0.763920i \(0.276728\pi\)
−0.645311 + 0.763920i \(0.723272\pi\)
\(348\) 0 0
\(349\) 17.0000 0.909989 0.454995 0.890494i \(-0.349641\pi\)
0.454995 + 0.890494i \(0.349641\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.6491i 0.673244i −0.941640 0.336622i \(-0.890716\pi\)
0.941640 0.336622i \(-0.109284\pi\)
\(354\) 0 0
\(355\) −15.0000 + 15.0000i −0.796117 + 0.796117i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.4605 −1.50209 −0.751044 0.660252i \(-0.770449\pi\)
−0.751044 + 0.660252i \(0.770449\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −20.5548 20.5548i −1.07589 1.07589i
\(366\) 0 0
\(367\) 19.0000i 0.991792i −0.868382 0.495896i \(-0.834840\pi\)
0.868382 0.495896i \(-0.165160\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.48683 0.492532
\(372\) 0 0
\(373\) 27.0000i 1.39801i −0.715118 0.699004i \(-0.753627\pi\)
0.715118 0.699004i \(-0.246373\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 28.4605i 1.46579i
\(378\) 0 0
\(379\) −23.0000 −1.18143 −0.590715 0.806880i \(-0.701154\pi\)
−0.590715 + 0.806880i \(0.701154\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.6491i 0.646339i −0.946341 0.323170i \(-0.895252\pi\)
0.946341 0.323170i \(-0.104748\pi\)
\(384\) 0 0
\(385\) −5.00000 5.00000i −0.254824 0.254824i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.6491 0.641335 0.320668 0.947192i \(-0.396093\pi\)
0.320668 + 0.947192i \(0.396093\pi\)
\(390\) 0 0
\(391\) −20.0000 −1.01144
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.74342 + 4.74342i −0.238667 + 0.238667i
\(396\) 0 0
\(397\) 20.0000i 1.00377i 0.864934 + 0.501886i \(0.167360\pi\)
−0.864934 + 0.501886i \(0.832640\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.1359 1.10542 0.552708 0.833375i \(-0.313594\pi\)
0.552708 + 0.833375i \(0.313594\pi\)
\(402\) 0 0
\(403\) 6.00000i 0.298881i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.16228i 0.156748i
\(408\) 0 0
\(409\) 7.00000 0.346128 0.173064 0.984911i \(-0.444633\pi\)
0.173064 + 0.984911i \(0.444633\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.32456i 0.311211i
\(414\) 0 0
\(415\) 25.0000 + 25.0000i 1.22720 + 1.22720i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.6491 0.617949 0.308975 0.951070i \(-0.400014\pi\)
0.308975 + 0.951070i \(0.400014\pi\)
\(420\) 0 0
\(421\) −29.0000 −1.41337 −0.706687 0.707527i \(-0.749811\pi\)
−0.706687 + 0.707527i \(0.749811\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 31.6228 1.53393
\(426\) 0 0
\(427\) 1.00000i 0.0483934i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.1359 −1.06625 −0.533125 0.846036i \(-0.678983\pi\)
−0.533125 + 0.846036i \(0.678983\pi\)
\(432\) 0 0
\(433\) 20.0000i 0.961139i −0.876957 0.480569i \(-0.840430\pi\)
0.876957 0.480569i \(-0.159570\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.48683i 0.453817i
\(438\) 0 0
\(439\) −6.00000 −0.286364 −0.143182 0.989696i \(-0.545733\pi\)
−0.143182 + 0.989696i \(0.545733\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.9737i 0.901466i 0.892659 + 0.450733i \(0.148837\pi\)
−0.892659 + 0.450733i \(0.851163\pi\)
\(444\) 0 0
\(445\) −20.0000 + 20.0000i −0.948091 + 0.948091i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 37.9473 1.79085 0.895423 0.445217i \(-0.146873\pi\)
0.895423 + 0.445217i \(0.146873\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.74342 + 4.74342i −0.222375 + 0.222375i
\(456\) 0 0
\(457\) 20.0000i 0.935561i 0.883845 + 0.467780i \(0.154946\pi\)
−0.883845 + 0.467780i \(0.845054\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 3.00000i 0.139422i 0.997567 + 0.0697109i \(0.0222077\pi\)
−0.997567 + 0.0697109i \(0.977792\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.9473i 1.75599i −0.478667 0.877997i \(-0.658880\pi\)
0.478667 0.877997i \(-0.341120\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 31.6228i 1.45402i
\(474\) 0 0
\(475\) 15.0000i 0.688247i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 22.1359 1.01142 0.505709 0.862704i \(-0.331231\pi\)
0.505709 + 0.862704i \(0.331231\pi\)
\(480\) 0 0
\(481\) 3.00000 0.136788
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.58114 1.58114i −0.0717958 0.0717958i
\(486\) 0 0
\(487\) 21.0000i 0.951601i −0.879553 0.475800i \(-0.842158\pi\)
0.879553 0.475800i \(-0.157842\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.48683 0.428135 0.214067 0.976819i \(-0.431329\pi\)
0.214067 + 0.976819i \(0.431329\pi\)
\(492\) 0 0
\(493\) 60.0000i 2.70226i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.48683i 0.425543i
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.48683i 0.422997i 0.977378 + 0.211498i \(0.0678343\pi\)
−0.977378 + 0.211498i \(0.932166\pi\)
\(504\) 0 0
\(505\) 10.0000 10.0000i 0.444994 0.444994i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.4605 1.26149 0.630745 0.775990i \(-0.282750\pi\)
0.630745 + 0.775990i \(0.282750\pi\)
\(510\) 0 0
\(511\) 13.0000 0.575086
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −26.8794 26.8794i −1.18445 1.18445i
\(516\) 0 0
\(517\) 20.0000i 0.879599i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.1359 0.969793 0.484897 0.874571i \(-0.338857\pi\)
0.484897 + 0.874571i \(0.338857\pi\)
\(522\) 0 0
\(523\) 7.00000i 0.306089i −0.988219 0.153044i \(-0.951092\pi\)
0.988219 0.153044i \(-0.0489077\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.6491i 0.551004i
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.48683i 0.410920i
\(534\) 0 0
\(535\) 15.0000 + 15.0000i 0.648507 + 0.648507i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.9737 −0.817254
\(540\) 0 0
\(541\) 19.0000 0.816874 0.408437 0.912787i \(-0.366074\pi\)
0.408437 + 0.912787i \(0.366074\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 25.2982 25.2982i 1.08366 1.08366i
\(546\) 0 0
\(547\) 11.0000i 0.470326i 0.971956 + 0.235163i \(0.0755624\pi\)
−0.971956 + 0.235163i \(0.924438\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 28.4605 1.21246
\(552\) 0 0
\(553\) 3.00000i 0.127573i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.9737i 0.803940i 0.915653 + 0.401970i \(0.131674\pi\)
−0.915653 + 0.401970i \(0.868326\pi\)
\(558\) 0 0
\(559\) −30.0000 −1.26886
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.2982i 1.06619i 0.846054 + 0.533096i \(0.178972\pi\)
−0.846054 + 0.533096i \(0.821028\pi\)
\(564\) 0 0
\(565\) 15.0000 + 15.0000i 0.631055 + 0.631055i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.32456 −0.265139 −0.132570 0.991174i \(-0.542323\pi\)
−0.132570 + 0.991174i \(0.542323\pi\)
\(570\) 0 0
\(571\) −11.0000 −0.460336 −0.230168 0.973151i \(-0.573928\pi\)
−0.230168 + 0.973151i \(0.573928\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 15.8114 0.659380
\(576\) 0 0
\(577\) 41.0000i 1.70685i 0.521214 + 0.853426i \(0.325479\pi\)
−0.521214 + 0.853426i \(0.674521\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −15.8114 −0.655967
\(582\) 0 0
\(583\) 30.0000i 1.24247i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.48683i 0.391564i −0.980647 0.195782i \(-0.937276\pi\)
0.980647 0.195782i \(-0.0627244\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.4605i 1.16873i −0.811490 0.584366i \(-0.801343\pi\)
0.811490 0.584366i \(-0.198657\pi\)
\(594\) 0 0
\(595\) −10.0000 + 10.0000i −0.409960 + 0.409960i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −28.4605 −1.16286 −0.581432 0.813595i \(-0.697507\pi\)
−0.581432 + 0.813595i \(0.697507\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.58114 1.58114i 0.0642824 0.0642824i
\(606\) 0 0
\(607\) 11.0000i 0.446476i −0.974764 0.223238i \(-0.928337\pi\)
0.974764 0.223238i \(-0.0716627\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.9737 0.767592
\(612\) 0 0
\(613\) 23.0000i 0.928961i −0.885583 0.464481i \(-0.846241\pi\)
0.885583 0.464481i \(-0.153759\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.16228i 0.127309i −0.997972 0.0636543i \(-0.979725\pi\)
0.997972 0.0636543i \(-0.0202755\pi\)
\(618\) 0 0
\(619\) −17.0000 −0.683288 −0.341644 0.939829i \(-0.610984\pi\)
−0.341644 + 0.939829i \(0.610984\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.6491i 0.506776i
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.32456 0.252177
\(630\) 0 0
\(631\) −1.00000 −0.0398094 −0.0199047 0.999802i \(-0.506336\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.8114 + 15.8114i 0.627456 + 0.627456i
\(636\) 0 0
\(637\) 18.0000i 0.713186i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.6491 −0.499610 −0.249805 0.968296i \(-0.580366\pi\)
−0.249805 + 0.968296i \(0.580366\pi\)
\(642\) 0 0
\(643\) 30.0000i 1.18308i −0.806274 0.591542i \(-0.798519\pi\)
0.806274 0.591542i \(-0.201481\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.4605i 1.11890i 0.828865 + 0.559449i \(0.188987\pi\)
−0.828865 + 0.559449i \(0.811013\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.6491i 0.494998i 0.968888 + 0.247499i \(0.0796087\pi\)
−0.968888 + 0.247499i \(0.920391\pi\)
\(654\) 0 0
\(655\) −30.0000 + 30.0000i −1.17220 + 1.17220i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.6491 −0.492739 −0.246370 0.969176i \(-0.579238\pi\)
−0.246370 + 0.969176i \(0.579238\pi\)
\(660\) 0 0
\(661\) 11.0000 0.427850 0.213925 0.976850i \(-0.431375\pi\)
0.213925 + 0.976850i \(0.431375\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.74342 4.74342i −0.183942 0.183942i
\(666\) 0 0
\(667\) 30.0000i 1.16160i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.16228 0.122078
\(672\) 0 0
\(673\) 3.00000i 0.115642i 0.998327 + 0.0578208i \(0.0184152\pi\)
−0.998327 + 0.0578208i \(0.981585\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.6228i 1.21536i −0.794181 0.607681i \(-0.792100\pi\)
0.794181 0.607681i \(-0.207900\pi\)
\(678\) 0 0
\(679\) 1.00000 0.0383765
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.1359i 0.847008i 0.905894 + 0.423504i \(0.139200\pi\)
−0.905894 + 0.423504i \(0.860800\pi\)
\(684\) 0 0
\(685\) 15.0000 + 15.0000i 0.573121 + 0.573121i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −28.4605 −1.08426
\(690\) 0 0
\(691\) −2.00000 −0.0760836 −0.0380418 0.999276i \(-0.512112\pi\)
−0.0380418 + 0.999276i \(0.512112\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −26.8794 + 26.8794i −1.01959 + 1.01959i
\(696\) 0 0
\(697\) 20.0000i 0.757554i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −3.16228 −0.119438 −0.0597188 0.998215i \(-0.519020\pi\)
−0.0597188 + 0.998215i \(0.519020\pi\)
\(702\) 0 0
\(703\) 3.00000i 0.113147i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.32456i 0.237859i
\(708\) 0 0
\(709\) −3.00000 −0.112667 −0.0563337 0.998412i \(-0.517941\pi\)
−0.0563337 + 0.998412i \(0.517941\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.32456i 0.236856i
\(714\) 0 0
\(715\) 15.0000 + 15.0000i 0.560968 + 0.560968i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 41.1096 1.53313 0.766565 0.642167i \(-0.221964\pi\)
0.766565 + 0.642167i \(0.221964\pi\)
\(720\) 0 0
\(721\) 17.0000 0.633113
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 47.4342i 1.76166i
\(726\) 0 0
\(727\) 30.0000i 1.11264i 0.830969 + 0.556319i \(0.187787\pi\)
−0.830969 + 0.556319i \(0.812213\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −63.2456 −2.33922
\(732\) 0 0
\(733\) 40.0000i 1.47743i −0.674016 0.738717i \(-0.735432\pi\)
0.674016 0.738717i \(-0.264568\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 34.7851i 1.28132i
\(738\) 0 0
\(739\) 26.0000 0.956425 0.478213 0.878244i \(-0.341285\pi\)
0.478213 + 0.878244i \(0.341285\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.9737i 0.696076i −0.937480 0.348038i \(-0.886848\pi\)
0.937480 0.348038i \(-0.113152\pi\)
\(744\) 0 0
\(745\) 20.0000 20.0000i 0.732743 0.732743i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.48683 −0.346641
\(750\) 0 0
\(751\) −49.0000 −1.78804 −0.894018 0.448032i \(-0.852125\pi\)
−0.894018 + 0.448032i \(0.852125\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.58114 + 1.58114i −0.0575435 + 0.0575435i
\(756\) 0 0
\(757\) 29.0000i 1.05402i 0.849858 + 0.527011i \(0.176688\pi\)
−0.849858 + 0.527011i \(0.823312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.48683 0.343897 0.171949 0.985106i \(-0.444994\pi\)
0.171949 + 0.985106i \(0.444994\pi\)
\(762\) 0 0
\(763\) 16.0000i 0.579239i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.9737i 0.685099i
\(768\) 0 0
\(769\) 3.00000 0.108183 0.0540914 0.998536i \(-0.482774\pi\)
0.0540914 + 0.998536i \(0.482774\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 47.4342i 1.70609i 0.521839 + 0.853044i \(0.325246\pi\)
−0.521839 + 0.853044i \(0.674754\pi\)
\(774\) 0 0
\(775\) 10.0000i 0.359211i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.48683 0.339901
\(780\) 0 0
\(781\) −30.0000 −1.07348
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.8114 15.8114i −0.564333 0.564333i
\(786\) 0 0
\(787\) 1.00000i 0.0356462i −0.999841 0.0178231i \(-0.994326\pi\)
0.999841 0.0178231i \(-0.00567356\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.48683 −0.337313
\(792\) 0 0
\(793\) 3.00000i 0.106533i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.32456i 0.224027i 0.993707 + 0.112014i \(0.0357300\pi\)
−0.993707 + 0.112014i \(0.964270\pi\)
\(798\) 0 0
\(799\) 40.0000 1.41510
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0