Defining parameters
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(54, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 138 | 14 | 124 |
Cusp forms | 114 | 14 | 100 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(54, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
54.8.c.a | $6$ | $16.869$ | 6.0.\(\cdots\).1 | None | \(24\) | \(0\) | \(-54\) | \(210\) | \(q+8\beta _{1}q^{2}+(-2^{6}+2^{6}\beta _{1})q^{4}+(-18+\cdots)q^{5}+\cdots\) |
54.8.c.b | $8$ | $16.869$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(-32\) | \(0\) | \(-54\) | \(-44\) | \(q-8\beta _{1}q^{2}+(-2^{6}+2^{6}\beta _{1})q^{4}+(-14+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(54, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)