Properties

Label 54.8.c
Level $54$
Weight $8$
Character orbit 54.c
Rep. character $\chi_{54}(19,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $14$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 54.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(54, [\chi])\).

Total New Old
Modular forms 138 14 124
Cusp forms 114 14 100
Eisenstein series 24 0 24

Trace form

\( 14 q - 8 q^{2} - 448 q^{4} - 108 q^{5} + 166 q^{7} + 1024 q^{8} - 8751 q^{11} + 3694 q^{13} - 2032 q^{14} - 28672 q^{16} + 81762 q^{17} - 46778 q^{19} - 6912 q^{20} + 35256 q^{22} + 41682 q^{23} - 181369 q^{25}+ \cdots + 28083408 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(54, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
54.8.c.a 54.c 9.c $6$ $16.869$ 6.0.\(\cdots\).1 None 18.8.c.a \(24\) \(0\) \(-54\) \(210\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\beta _{1}q^{2}+(-2^{6}+2^{6}\beta _{1})q^{4}+(-18+\cdots)q^{5}+\cdots\)
54.8.c.b 54.c 9.c $8$ $16.869$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 18.8.c.b \(-32\) \(0\) \(-54\) \(-44\) $\mathrm{SU}(2)[C_{3}]$ \(q-8\beta _{1}q^{2}+(-2^{6}+2^{6}\beta _{1})q^{4}+(-14+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(54, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)