Defining parameters
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(54))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 69 | 10 | 59 |
Cusp forms | 57 | 10 | 47 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(6\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(54))\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(54))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(54)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)