Properties

Label 54.8.a
Level $54$
Weight $8$
Character orbit 54.a
Rep. character $\chi_{54}(1,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $8$
Sturm bound $72$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(72\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(54))\).

Total New Old
Modular forms 69 10 59
Cusp forms 57 10 47
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(6\)
Minus space\(-\)\(4\)

Trace form

\( 10 q + 640 q^{4} + 1286 q^{7} + O(q^{10}) \) \( 10 q + 640 q^{4} + 1286 q^{7} - 5520 q^{10} - 364 q^{13} + 40960 q^{16} + 54596 q^{19} - 29328 q^{22} + 425956 q^{25} + 82304 q^{28} - 177862 q^{31} + 437760 q^{34} + 167168 q^{37} - 353280 q^{40} + 2476700 q^{43} - 165792 q^{46} - 4252812 q^{49} - 23296 q^{52} - 4308642 q^{55} - 2220576 q^{58} + 2459492 q^{61} + 2621440 q^{64} + 572396 q^{67} - 7327248 q^{70} - 6387622 q^{73} + 3494144 q^{76} - 16185592 q^{79} + 6124704 q^{82} + 29668896 q^{85} - 1876992 q^{88} + 21481240 q^{91} + 5282976 q^{94} + 4243166 q^{97} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(54))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
54.8.a.a 54.a 1.a $1$ $16.869$ \(\Q\) None 54.8.a.a \(-8\) \(0\) \(-120\) \(377\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}-120q^{5}+377q^{7}+\cdots\)
54.8.a.b 54.a 1.a $1$ $16.869$ \(\Q\) None 54.8.a.b \(-8\) \(0\) \(105\) \(-937\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+105q^{5}-937q^{7}+\cdots\)
54.8.a.c 54.a 1.a $1$ $16.869$ \(\Q\) None 54.8.a.c \(-8\) \(0\) \(312\) \(323\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+312q^{5}+323q^{7}+\cdots\)
54.8.a.d 54.a 1.a $1$ $16.869$ \(\Q\) None 54.8.a.c \(8\) \(0\) \(-312\) \(323\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}-312q^{5}+323q^{7}+\cdots\)
54.8.a.e 54.a 1.a $1$ $16.869$ \(\Q\) None 54.8.a.b \(8\) \(0\) \(-105\) \(-937\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}-105q^{5}-937q^{7}+\cdots\)
54.8.a.f 54.a 1.a $1$ $16.869$ \(\Q\) None 54.8.a.a \(8\) \(0\) \(120\) \(377\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+120q^{5}+377q^{7}+\cdots\)
54.8.a.g 54.a 1.a $2$ $16.869$ \(\Q(\sqrt{329}) \) None 54.8.a.g \(-16\) \(0\) \(48\) \(880\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+(24+\beta )q^{5}+(440+\cdots)q^{7}+\cdots\)
54.8.a.h 54.a 1.a $2$ $16.869$ \(\Q(\sqrt{329}) \) None 54.8.a.g \(16\) \(0\) \(-48\) \(880\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+(-24-\beta )q^{5}+(440+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(54))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(54)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)