Properties

Label 54.7
Level 54
Weight 7
Dimension 128
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 1134
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(1134\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(54))\).

Total New Old
Modular forms 516 128 388
Cusp forms 456 128 328
Eisenstein series 60 0 60

Trace form

\( 128 q - 64 q^{4} - 864 q^{5} + 336 q^{6} + 1444 q^{7} - 2496 q^{9} - 1824 q^{10} - 756 q^{11} + 960 q^{12} + 868 q^{13} + 9504 q^{14} + 5112 q^{15} + 2048 q^{16} - 22080 q^{18} - 18644 q^{19} + 13824 q^{20}+ \cdots + 3499164 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(54))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
54.7.b \(\chi_{54}(53, \cdot)\) 54.7.b.a 2 1
54.7.b.b 2
54.7.b.c 4
54.7.d \(\chi_{54}(17, \cdot)\) 54.7.d.a 12 2
54.7.f \(\chi_{54}(5, \cdot)\) 54.7.f.a 108 6

Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(54))\) into lower level spaces

\( S_{7}^{\mathrm{old}}(\Gamma_1(54)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)