Properties

Label 54.6.c
Level $54$
Weight $6$
Character orbit 54.c
Rep. character $\chi_{54}(19,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $10$
Newform subspaces $2$
Sturm bound $54$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 54.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(54\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(54, [\chi])\).

Total New Old
Modular forms 102 10 92
Cusp forms 78 10 68
Eisenstein series 24 0 24

Trace form

\( 10 q + 4 q^{2} - 80 q^{4} + 108 q^{5} - 58 q^{7} - 128 q^{8} + 393 q^{11} + 362 q^{13} + 824 q^{14} - 1280 q^{16} - 3882 q^{17} - 1018 q^{19} + 1728 q^{20} - 948 q^{22} + 8706 q^{23} + 181 q^{25} - 14800 q^{26}+ \cdots - 666408 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(54, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
54.6.c.a 54.c 9.c $4$ $8.661$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 18.6.c.a \(-8\) \(0\) \(54\) \(74\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-4+4\beta _{1})q^{2}-2^{4}\beta _{1}q^{4}+(3^{3}\beta _{1}+\cdots)q^{5}+\cdots\)
54.6.c.b 54.c 9.c $6$ $8.661$ 6.0.\(\cdots\).3 None 18.6.c.b \(12\) \(0\) \(54\) \(-132\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\beta _{1}q^{2}+(-2^{4}+2^{4}\beta _{1})q^{4}+(18+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(54, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)