Properties

Label 54.6
Level 54
Weight 6
Dimension 106
Nonzero newspaces 3
Newform subspaces 10
Sturm bound 972
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 10 \)
Sturm bound: \(972\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(54))\).

Total New Old
Modular forms 435 106 329
Cusp forms 375 106 269
Eisenstein series 60 0 60

Trace form

\( 106 q + 4 q^{2} + 16 q^{4} + 282 q^{5} + 120 q^{6} - 172 q^{7} - 320 q^{8} - 660 q^{9} - 216 q^{10} + 846 q^{11} + 528 q^{12} + 3902 q^{13} + 944 q^{14} - 3258 q^{15} + 256 q^{16} - 7350 q^{17} + 5784 q^{18}+ \cdots + 311652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(54))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
54.6.a \(\chi_{54}(1, \cdot)\) 54.6.a.a 1 1
54.6.a.b 1
54.6.a.c 1
54.6.a.d 1
54.6.a.e 1
54.6.a.f 1
54.6.c \(\chi_{54}(19, \cdot)\) 54.6.c.a 4 2
54.6.c.b 6
54.6.e \(\chi_{54}(7, \cdot)\) 54.6.e.a 42 6
54.6.e.b 48

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(54))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(54)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)