Properties

Label 54.4.c.a
Level $54$
Weight $4$
Character orbit 54.c
Analytic conductor $3.186$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,4,Mod(19,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.19");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 54.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18610314031\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{2} - 4 \zeta_{6} q^{4} - 9 \zeta_{6} q^{5} + ( - 31 \zeta_{6} + 31) q^{7} - 8 q^{8} - 18 q^{10} + (15 \zeta_{6} - 15) q^{11} + 37 \zeta_{6} q^{13} - 62 \zeta_{6} q^{14} + (16 \zeta_{6} - 16) q^{16} + \cdots - 1236 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} - 9 q^{5} + 31 q^{7} - 16 q^{8} - 36 q^{10} - 15 q^{11} + 37 q^{13} - 62 q^{14} - 16 q^{16} + 84 q^{17} - 56 q^{19} - 36 q^{20} + 30 q^{22} + 195 q^{23} + 44 q^{25} + 148 q^{26}+ \cdots - 2472 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 1.73205i 0 −2.00000 3.46410i −4.50000 7.79423i 0 15.5000 26.8468i −8.00000 0 −18.0000
37.1 1.00000 + 1.73205i 0 −2.00000 + 3.46410i −4.50000 + 7.79423i 0 15.5000 + 26.8468i −8.00000 0 −18.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 54.4.c.a 2
3.b odd 2 1 18.4.c.a 2
4.b odd 2 1 432.4.i.a 2
9.c even 3 1 inner 54.4.c.a 2
9.c even 3 1 162.4.a.a 1
9.d odd 6 1 18.4.c.a 2
9.d odd 6 1 162.4.a.d 1
12.b even 2 1 144.4.i.a 2
36.f odd 6 1 432.4.i.a 2
36.f odd 6 1 1296.4.a.g 1
36.h even 6 1 144.4.i.a 2
36.h even 6 1 1296.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.4.c.a 2 3.b odd 2 1
18.4.c.a 2 9.d odd 6 1
54.4.c.a 2 1.a even 1 1 trivial
54.4.c.a 2 9.c even 3 1 inner
144.4.i.a 2 12.b even 2 1
144.4.i.a 2 36.h even 6 1
162.4.a.a 1 9.c even 3 1
162.4.a.d 1 9.d odd 6 1
432.4.i.a 2 4.b odd 2 1
432.4.i.a 2 36.f odd 6 1
1296.4.a.b 1 36.h even 6 1
1296.4.a.g 1 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 9T_{5} + 81 \) acting on \(S_{4}^{\mathrm{new}}(54, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$7$ \( T^{2} - 31T + 961 \) Copy content Toggle raw display
$11$ \( T^{2} + 15T + 225 \) Copy content Toggle raw display
$13$ \( T^{2} - 37T + 1369 \) Copy content Toggle raw display
$17$ \( (T - 42)^{2} \) Copy content Toggle raw display
$19$ \( (T + 28)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 195T + 38025 \) Copy content Toggle raw display
$29$ \( T^{2} - 111T + 12321 \) Copy content Toggle raw display
$31$ \( T^{2} - 205T + 42025 \) Copy content Toggle raw display
$37$ \( (T + 166)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 261T + 68121 \) Copy content Toggle raw display
$43$ \( T^{2} - 43T + 1849 \) Copy content Toggle raw display
$47$ \( T^{2} - 177T + 31329 \) Copy content Toggle raw display
$53$ \( (T + 114)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 159T + 25281 \) Copy content Toggle raw display
$61$ \( T^{2} + 191T + 36481 \) Copy content Toggle raw display
$67$ \( T^{2} - 421T + 177241 \) Copy content Toggle raw display
$71$ \( (T + 156)^{2} \) Copy content Toggle raw display
$73$ \( (T - 182)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 1133 T + 1283689 \) Copy content Toggle raw display
$83$ \( T^{2} + 1083 T + 1172889 \) Copy content Toggle raw display
$89$ \( (T - 1050)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 901T + 811801 \) Copy content Toggle raw display
show more
show less