Defining parameters
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(54))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 33 | 4 | 29 |
Cusp forms | 21 | 4 | 17 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(54))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
54.4.a.a | $1$ | $3.186$ | \(\Q\) | None | \(-2\) | \(0\) | \(-12\) | \(-7\) | $+$ | $-$ | \(q-2q^{2}+4q^{4}-12q^{5}-7q^{7}-8q^{8}+\cdots\) | |
54.4.a.b | $1$ | $3.186$ | \(\Q\) | None | \(-2\) | \(0\) | \(-3\) | \(29\) | $+$ | $+$ | \(q-2q^{2}+4q^{4}-3q^{5}+29q^{7}-8q^{8}+\cdots\) | |
54.4.a.c | $1$ | $3.186$ | \(\Q\) | None | \(2\) | \(0\) | \(3\) | \(29\) | $-$ | $-$ | \(q+2q^{2}+4q^{4}+3q^{5}+29q^{7}+8q^{8}+\cdots\) | |
54.4.a.d | $1$ | $3.186$ | \(\Q\) | None | \(2\) | \(0\) | \(12\) | \(-7\) | $-$ | $-$ | \(q+2q^{2}+4q^{4}+12q^{5}-7q^{7}+8q^{8}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(54))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(54)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)