Properties

Label 54.4.a
Level $54$
Weight $4$
Character orbit 54.a
Rep. character $\chi_{54}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $4$
Sturm bound $36$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(36\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(54))\).

Total New Old
Modular forms 33 4 29
Cusp forms 21 4 17
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(3\)
Minus space\(-\)\(1\)

Trace form

\( 4 q + 16 q^{4} + 44 q^{7} + O(q^{10}) \) \( 4 q + 16 q^{4} + 44 q^{7} + 60 q^{10} - 118 q^{13} + 64 q^{16} - 190 q^{19} + 12 q^{22} - 194 q^{25} + 176 q^{28} + 134 q^{31} - 720 q^{34} - 334 q^{37} + 240 q^{40} + 1412 q^{43} + 168 q^{46} + 408 q^{49} - 472 q^{52} + 1098 q^{55} - 456 q^{58} + 278 q^{61} + 256 q^{64} - 190 q^{67} + 12 q^{70} - 3340 q^{73} - 760 q^{76} - 1378 q^{79} + 744 q^{82} - 3024 q^{85} + 48 q^{88} + 2266 q^{91} + 2712 q^{94} + 1592 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(54))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
54.4.a.a 54.a 1.a $1$ $3.186$ \(\Q\) None 54.4.a.a \(-2\) \(0\) \(-12\) \(-7\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-12q^{5}-7q^{7}-8q^{8}+\cdots\)
54.4.a.b 54.a 1.a $1$ $3.186$ \(\Q\) None 54.4.a.b \(-2\) \(0\) \(-3\) \(29\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-3q^{5}+29q^{7}-8q^{8}+\cdots\)
54.4.a.c 54.a 1.a $1$ $3.186$ \(\Q\) None 54.4.a.b \(2\) \(0\) \(3\) \(29\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+3q^{5}+29q^{7}+8q^{8}+\cdots\)
54.4.a.d 54.a 1.a $1$ $3.186$ \(\Q\) None 54.4.a.a \(2\) \(0\) \(12\) \(-7\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+12q^{5}-7q^{7}+8q^{8}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(54))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(54)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)