Properties

Label 54.3.f.a.47.6
Level $54$
Weight $3$
Character 54.47
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 47.6
Character \(\chi\) \(=\) 54.47
Dual form 54.3.f.a.23.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.483690 + 1.32893i) q^{2} +(2.82413 + 1.01208i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(0.891042 - 0.157115i) q^{5} +(0.0210163 + 4.24259i) q^{6} +(-5.50064 - 4.61559i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(6.95137 + 5.71650i) q^{9} +O(q^{10})\) \(q+(0.483690 + 1.32893i) q^{2} +(2.82413 + 1.01208i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(0.891042 - 0.157115i) q^{5} +(0.0210163 + 4.24259i) q^{6} +(-5.50064 - 4.61559i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(6.95137 + 5.71650i) q^{9} +(0.639781 + 1.10813i) q^{10} +(7.28314 + 1.28421i) q^{11} +(-5.62792 + 2.08002i) q^{12} +(-18.3634 - 6.68372i) q^{13} +(3.47317 - 9.54246i) q^{14} +(2.67543 + 0.458097i) q^{15} +(0.694593 - 3.93923i) q^{16} +(12.7824 - 7.37992i) q^{17} +(-4.23450 + 12.0029i) q^{18} +(6.58593 - 11.4072i) q^{19} +(-1.16317 + 1.38621i) q^{20} +(-10.8632 - 18.6021i) q^{21} +(1.81615 + 10.2999i) q^{22} +(-15.0696 - 17.9592i) q^{23} +(-5.48637 - 6.47300i) q^{24} +(-22.7230 + 8.27051i) q^{25} -27.6364i q^{26} +(13.8460 + 23.1795i) q^{27} +14.3612 q^{28} +(13.5277 + 37.1670i) q^{29} +(0.685300 + 3.77702i) q^{30} +(-9.20424 + 7.72327i) q^{31} +(5.57091 - 0.982302i) q^{32} +(19.2688 + 10.9979i) q^{33} +(15.9901 + 13.4173i) q^{34} +(-5.62648 - 3.24845i) q^{35} +(-17.9991 + 0.178327i) q^{36} +(33.0149 + 57.1836i) q^{37} +(18.3448 + 3.23469i) q^{38} +(-45.0960 - 37.4609i) q^{39} +(-2.40479 - 0.875273i) q^{40} +(-26.1687 + 71.8979i) q^{41} +(19.4664 - 23.4340i) q^{42} +(9.66961 - 54.8391i) q^{43} +(-12.8094 + 7.39550i) q^{44} +(7.09211 + 4.00148i) q^{45} +(16.5775 - 28.7131i) q^{46} +(-0.204653 + 0.243896i) q^{47} +(5.94845 - 10.4219i) q^{48} +(0.444665 + 2.52182i) q^{49} +(-21.9818 - 26.1969i) q^{50} +(43.5682 - 7.90498i) q^{51} +(36.7267 - 13.3674i) q^{52} -0.264306i q^{53} +(-24.1067 + 29.6120i) q^{54} +6.69135 q^{55} +(6.94634 + 19.0849i) q^{56} +(30.1445 - 25.5498i) q^{57} +(-42.8490 + 35.9545i) q^{58} +(-62.3379 + 10.9919i) q^{59} +(-4.68791 + 2.73762i) q^{60} +(-42.4660 - 35.6332i) q^{61} +(-14.7157 - 8.49608i) q^{62} +(-11.8520 - 63.5291i) q^{63} +(4.00000 + 6.92820i) q^{64} +(-17.4126 - 3.07032i) q^{65} +(-5.29533 + 30.9264i) q^{66} +(58.6251 + 21.3378i) q^{67} +(-10.0963 + 27.7394i) q^{68} +(-24.3822 - 65.9708i) q^{69} +(1.59548 - 9.04842i) q^{70} +(57.0927 - 32.9625i) q^{71} +(-8.94297 - 23.8332i) q^{72} +(22.7040 - 39.3244i) q^{73} +(-60.0237 + 71.5335i) q^{74} +(-72.5432 + 0.359354i) q^{75} +(4.57454 + 25.9435i) q^{76} +(-34.1346 - 40.6800i) q^{77} +(27.9703 - 78.0487i) q^{78} +(22.8997 - 8.33480i) q^{79} -3.61915i q^{80} +(15.6432 + 79.4751i) q^{81} -108.205 q^{82} +(-28.1190 - 77.2563i) q^{83} +(40.5577 + 14.5347i) q^{84} +(10.2302 - 8.58412i) q^{85} +(77.5542 - 13.6749i) q^{86} +(0.587778 + 118.655i) q^{87} +(-16.0238 - 13.4456i) q^{88} +(115.387 + 66.6186i) q^{89} +(-1.88729 + 11.3604i) q^{90} +(70.1610 + 121.522i) q^{91} +(46.1759 + 8.14205i) q^{92} +(-33.8105 + 12.4960i) q^{93} +(-0.423109 - 0.153999i) q^{94} +(4.07611 - 11.1990i) q^{95} +(16.7271 + 2.86408i) q^{96} +(-11.9691 + 67.8800i) q^{97} +(-3.13623 + 1.81071i) q^{98} +(43.2866 + 50.5611i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.483690 + 1.32893i 0.241845 + 0.664463i
\(3\) 2.82413 + 1.01208i 0.941375 + 0.337361i
\(4\) −1.53209 + 1.28558i −0.383022 + 0.321394i
\(5\) 0.891042 0.157115i 0.178208 0.0314229i −0.0838318 0.996480i \(-0.526716\pi\)
0.262040 + 0.965057i \(0.415605\pi\)
\(6\) 0.0210163 + 4.24259i 0.00350272 + 0.707098i
\(7\) −5.50064 4.61559i −0.785806 0.659370i 0.158897 0.987295i \(-0.449206\pi\)
−0.944704 + 0.327925i \(0.893651\pi\)
\(8\) −2.44949 1.41421i −0.306186 0.176777i
\(9\) 6.95137 + 5.71650i 0.772375 + 0.635167i
\(10\) 0.639781 + 1.10813i 0.0639781 + 0.110813i
\(11\) 7.28314 + 1.28421i 0.662104 + 0.116747i 0.494595 0.869124i \(-0.335317\pi\)
0.167509 + 0.985871i \(0.446428\pi\)
\(12\) −5.62792 + 2.08002i −0.468993 + 0.173335i
\(13\) −18.3634 6.68372i −1.41257 0.514132i −0.480684 0.876894i \(-0.659612\pi\)
−0.931882 + 0.362762i \(0.881834\pi\)
\(14\) 3.47317 9.54246i 0.248084 0.681604i
\(15\) 2.67543 + 0.458097i 0.178362 + 0.0305398i
\(16\) 0.694593 3.93923i 0.0434120 0.246202i
\(17\) 12.7824 7.37992i 0.751906 0.434113i −0.0744762 0.997223i \(-0.523728\pi\)
0.826382 + 0.563110i \(0.190395\pi\)
\(18\) −4.23450 + 12.0029i −0.235250 + 0.666826i
\(19\) 6.58593 11.4072i 0.346628 0.600377i −0.639020 0.769190i \(-0.720660\pi\)
0.985648 + 0.168813i \(0.0539933\pi\)
\(20\) −1.16317 + 1.38621i −0.0581586 + 0.0693107i
\(21\) −10.8632 18.6021i −0.517293 0.885815i
\(22\) 1.81615 + 10.2999i 0.0825524 + 0.468178i
\(23\) −15.0696 17.9592i −0.655199 0.780836i 0.331489 0.943459i \(-0.392449\pi\)
−0.986688 + 0.162623i \(0.948005\pi\)
\(24\) −5.48637 6.47300i −0.228599 0.269709i
\(25\) −22.7230 + 8.27051i −0.908922 + 0.330820i
\(26\) 27.6364i 1.06294i
\(27\) 13.8460 + 23.1795i 0.512814 + 0.858500i
\(28\) 14.3612 0.512899
\(29\) 13.5277 + 37.1670i 0.466471 + 1.28162i 0.920538 + 0.390652i \(0.127750\pi\)
−0.454067 + 0.890967i \(0.650027\pi\)
\(30\) 0.685300 + 3.77702i 0.0228433 + 0.125901i
\(31\) −9.20424 + 7.72327i −0.296911 + 0.249138i −0.779057 0.626953i \(-0.784302\pi\)
0.482146 + 0.876091i \(0.339857\pi\)
\(32\) 5.57091 0.982302i 0.174091 0.0306970i
\(33\) 19.2688 + 10.9979i 0.583902 + 0.333271i
\(34\) 15.9901 + 13.4173i 0.470297 + 0.394626i
\(35\) −5.62648 3.24845i −0.160757 0.0928128i
\(36\) −17.9991 + 0.178327i −0.499975 + 0.00495354i
\(37\) 33.0149 + 57.1836i 0.892296 + 1.54550i 0.837116 + 0.547025i \(0.184240\pi\)
0.0551793 + 0.998476i \(0.482427\pi\)
\(38\) 18.3448 + 3.23469i 0.482758 + 0.0851233i
\(39\) −45.0960 37.4609i −1.15631 0.960536i
\(40\) −2.40479 0.875273i −0.0601198 0.0218818i
\(41\) −26.1687 + 71.8979i −0.638261 + 1.75361i 0.0188592 + 0.999822i \(0.493997\pi\)
−0.657120 + 0.753786i \(0.728226\pi\)
\(42\) 19.4664 23.4340i 0.463487 0.557952i
\(43\) 9.66961 54.8391i 0.224875 1.27533i −0.638050 0.769995i \(-0.720259\pi\)
0.862925 0.505333i \(-0.168630\pi\)
\(44\) −12.8094 + 7.39550i −0.291122 + 0.168079i
\(45\) 7.09211 + 4.00148i 0.157602 + 0.0889217i
\(46\) 16.5775 28.7131i 0.360380 0.624197i
\(47\) −0.204653 + 0.243896i −0.00435432 + 0.00518928i −0.768217 0.640189i \(-0.778856\pi\)
0.763863 + 0.645379i \(0.223300\pi\)
\(48\) 5.94845 10.4219i 0.123926 0.217123i
\(49\) 0.444665 + 2.52182i 0.00907480 + 0.0514657i
\(50\) −21.9818 26.1969i −0.439636 0.523938i
\(51\) 43.5682 7.90498i 0.854279 0.155000i
\(52\) 36.7267 13.3674i 0.706283 0.257066i
\(53\) 0.264306i 0.00498691i −0.999997 0.00249346i \(-0.999206\pi\)
0.999997 0.00249346i \(-0.000793693\pi\)
\(54\) −24.1067 + 29.6120i −0.446420 + 0.548370i
\(55\) 6.69135 0.121661
\(56\) 6.94634 + 19.0849i 0.124042 + 0.340802i
\(57\) 30.1445 25.5498i 0.528851 0.448241i
\(58\) −42.8490 + 35.9545i −0.738775 + 0.619906i
\(59\) −62.3379 + 10.9919i −1.05657 + 0.186303i −0.674836 0.737968i \(-0.735786\pi\)
−0.381739 + 0.924270i \(0.624675\pi\)
\(60\) −4.68791 + 2.73762i −0.0781318 + 0.0456270i
\(61\) −42.4660 35.6332i −0.696164 0.584151i 0.224516 0.974470i \(-0.427920\pi\)
−0.920679 + 0.390320i \(0.872364\pi\)
\(62\) −14.7157 8.49608i −0.237349 0.137034i
\(63\) −11.8520 63.5291i −0.188127 1.00840i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) −17.4126 3.07032i −0.267887 0.0472356i
\(66\) −5.29533 + 30.9264i −0.0802322 + 0.468581i
\(67\) 58.6251 + 21.3378i 0.875001 + 0.318474i 0.740191 0.672397i \(-0.234735\pi\)
0.134810 + 0.990871i \(0.456957\pi\)
\(68\) −10.0963 + 27.7394i −0.148475 + 0.407933i
\(69\) −24.3822 65.9708i −0.353365 0.956099i
\(70\) 1.59548 9.04842i 0.0227926 0.129263i
\(71\) 57.0927 32.9625i 0.804122 0.464260i −0.0407882 0.999168i \(-0.512987\pi\)
0.844911 + 0.534908i \(0.179654\pi\)
\(72\) −8.94297 23.8332i −0.124208 0.331017i
\(73\) 22.7040 39.3244i 0.311013 0.538691i −0.667569 0.744548i \(-0.732665\pi\)
0.978582 + 0.205857i \(0.0659983\pi\)
\(74\) −60.0237 + 71.5335i −0.811131 + 0.966669i
\(75\) −72.5432 + 0.359354i −0.967243 + 0.00479139i
\(76\) 4.57454 + 25.9435i 0.0601913 + 0.341362i
\(77\) −34.1346 40.6800i −0.443306 0.528311i
\(78\) 27.9703 78.0487i 0.358594 1.00062i
\(79\) 22.8997 8.33480i 0.289869 0.105504i −0.192993 0.981200i \(-0.561819\pi\)
0.482862 + 0.875696i \(0.339597\pi\)
\(80\) 3.61915i 0.0452394i
\(81\) 15.6432 + 79.4751i 0.193126 + 0.981174i
\(82\) −108.205 −1.31957
\(83\) −28.1190 77.2563i −0.338783 0.930799i −0.985740 0.168273i \(-0.946181\pi\)
0.646957 0.762526i \(-0.276041\pi\)
\(84\) 40.5577 + 14.5347i 0.482830 + 0.173032i
\(85\) 10.2302 8.58412i 0.120355 0.100990i
\(86\) 77.5542 13.6749i 0.901793 0.159010i
\(87\) 0.587778 + 118.655i 0.00675607 + 1.36385i
\(88\) −16.0238 13.4456i −0.182089 0.152791i
\(89\) 115.387 + 66.6186i 1.29648 + 0.748523i 0.979794 0.200007i \(-0.0640965\pi\)
0.316686 + 0.948530i \(0.397430\pi\)
\(90\) −1.88729 + 11.3604i −0.0209699 + 0.126226i
\(91\) 70.1610 + 121.522i 0.771000 + 1.33541i
\(92\) 46.1759 + 8.14205i 0.501912 + 0.0885006i
\(93\) −33.8105 + 12.4960i −0.363554 + 0.134366i
\(94\) −0.423109 0.153999i −0.00450115 0.00163829i
\(95\) 4.07611 11.1990i 0.0429064 0.117884i
\(96\) 16.7271 + 2.86408i 0.174241 + 0.0298342i
\(97\) −11.9691 + 67.8800i −0.123392 + 0.699794i 0.858857 + 0.512215i \(0.171175\pi\)
−0.982250 + 0.187578i \(0.939936\pi\)
\(98\) −3.13623 + 1.81071i −0.0320024 + 0.0184766i
\(99\) 43.2866 + 50.5611i 0.437239 + 0.510719i
\(100\) 24.1814 41.8833i 0.241814 0.418833i
\(101\) 114.042 135.910i 1.12913 1.34564i 0.198316 0.980138i \(-0.436453\pi\)
0.930810 0.365503i \(-0.119103\pi\)
\(102\) 31.5786 + 54.0754i 0.309594 + 0.530151i
\(103\) −2.96634 16.8229i −0.0287994 0.163330i 0.967016 0.254715i \(-0.0819816\pi\)
−0.995816 + 0.0913853i \(0.970871\pi\)
\(104\) 35.5287 + 42.3414i 0.341622 + 0.407129i
\(105\) −12.6022 14.8685i −0.120021 0.141605i
\(106\) 0.351244 0.127842i 0.00331362 0.00120606i
\(107\) 29.1810i 0.272719i −0.990659 0.136360i \(-0.956460\pi\)
0.990659 0.136360i \(-0.0435403\pi\)
\(108\) −51.0123 17.7130i −0.472336 0.164009i
\(109\) −161.118 −1.47814 −0.739071 0.673627i \(-0.764735\pi\)
−0.739071 + 0.673627i \(0.764735\pi\)
\(110\) 3.23654 + 8.89231i 0.0294231 + 0.0808392i
\(111\) 35.3638 + 194.907i 0.318593 + 1.75592i
\(112\) −22.0026 + 18.4624i −0.196452 + 0.164842i
\(113\) 66.6379 11.7501i 0.589716 0.103983i 0.129176 0.991622i \(-0.458767\pi\)
0.460540 + 0.887639i \(0.347656\pi\)
\(114\) 48.5343 + 27.7017i 0.425740 + 0.242997i
\(115\) −16.2493 13.6348i −0.141298 0.118563i
\(116\) −68.5065 39.5523i −0.590573 0.340968i
\(117\) −89.4431 151.435i −0.764471 1.29432i
\(118\) −44.7596 77.5258i −0.379318 0.656998i
\(119\) −104.374 18.4040i −0.877093 0.154655i
\(120\) −5.90559 4.90573i −0.0492132 0.0408811i
\(121\) −62.3079 22.6782i −0.514941 0.187423i
\(122\) 26.8135 73.6695i 0.219783 0.603849i
\(123\) −146.670 + 176.564i −1.19244 + 1.43548i
\(124\) 4.17286 23.6655i 0.0336521 0.190851i
\(125\) −38.5370 + 22.2493i −0.308296 + 0.177995i
\(126\) 78.6928 46.4788i 0.624546 0.368880i
\(127\) 26.0758 45.1647i 0.205322 0.355627i −0.744914 0.667161i \(-0.767509\pi\)
0.950235 + 0.311534i \(0.100843\pi\)
\(128\) −7.27231 + 8.66680i −0.0568149 + 0.0677094i
\(129\) 82.8099 145.086i 0.641937 1.12470i
\(130\) −4.34208 24.6252i −0.0334006 0.189424i
\(131\) 25.4225 + 30.2974i 0.194065 + 0.231278i 0.854298 0.519783i \(-0.173987\pi\)
−0.660233 + 0.751060i \(0.729543\pi\)
\(132\) −43.6601 + 7.92166i −0.330759 + 0.0600126i
\(133\) −88.8776 + 32.3488i −0.668253 + 0.243224i
\(134\) 88.2292i 0.658427i
\(135\) 15.9792 + 18.4785i 0.118364 + 0.136878i
\(136\) −41.7472 −0.306964
\(137\) −14.7144 40.4275i −0.107404 0.295091i 0.874335 0.485323i \(-0.161298\pi\)
−0.981739 + 0.190232i \(0.939076\pi\)
\(138\) 75.8769 64.3115i 0.549833 0.466025i
\(139\) 184.188 154.552i 1.32509 1.11188i 0.339892 0.940465i \(-0.389610\pi\)
0.985198 0.171418i \(-0.0548349\pi\)
\(140\) 12.7964 2.25635i 0.0914028 0.0161168i
\(141\) −0.824809 + 0.481667i −0.00584971 + 0.00341608i
\(142\) 71.4198 + 59.9284i 0.502957 + 0.422031i
\(143\) −125.160 72.2609i −0.875242 0.505321i
\(144\) 27.3470 23.4124i 0.189910 0.162586i
\(145\) 17.8932 + 30.9919i 0.123401 + 0.213737i
\(146\) 63.2409 + 11.1511i 0.433157 + 0.0763773i
\(147\) −1.29650 + 7.57198i −0.00881974 + 0.0515100i
\(148\) −124.096 45.1671i −0.838484 0.305183i
\(149\) −11.4189 + 31.3731i −0.0766368 + 0.210558i −0.972095 0.234588i \(-0.924626\pi\)
0.895458 + 0.445146i \(0.146848\pi\)
\(150\) −35.5659 96.2307i −0.237106 0.641538i
\(151\) −24.9315 + 141.394i −0.165110 + 0.936383i 0.783842 + 0.620960i \(0.213257\pi\)
−0.948951 + 0.315422i \(0.897854\pi\)
\(152\) −32.2643 + 18.6278i −0.212265 + 0.122551i
\(153\) 131.043 + 21.7700i 0.856488 + 0.142288i
\(154\) 37.5502 65.0388i 0.243832 0.422330i
\(155\) −6.98792 + 8.32788i −0.0450834 + 0.0537283i
\(156\) 117.250 0.580816i 0.751602 0.00372318i
\(157\) −20.8900 118.473i −0.133057 0.754606i −0.976193 0.216905i \(-0.930404\pi\)
0.843135 0.537701i \(-0.180707\pi\)
\(158\) 22.1527 + 26.4005i 0.140207 + 0.167092i
\(159\) 0.267500 0.746435i 0.00168239 0.00469456i
\(160\) 4.80958 1.75055i 0.0300599 0.0109409i
\(161\) 168.342i 1.04560i
\(162\) −98.0500 + 59.2300i −0.605247 + 0.365617i
\(163\) −228.535 −1.40205 −0.701027 0.713134i \(-0.747275\pi\)
−0.701027 + 0.713134i \(0.747275\pi\)
\(164\) −52.3374 143.796i −0.319131 0.876804i
\(165\) 18.8972 + 6.77221i 0.114529 + 0.0410437i
\(166\) 89.0671 74.7362i 0.536549 0.450218i
\(167\) 191.370 33.7438i 1.14593 0.202059i 0.431732 0.902002i \(-0.357902\pi\)
0.714199 + 0.699943i \(0.246791\pi\)
\(168\) 0.301819 + 60.9285i 0.00179654 + 0.362670i
\(169\) 163.079 + 136.840i 0.964967 + 0.809704i
\(170\) 16.3559 + 9.44308i 0.0962111 + 0.0555475i
\(171\) 110.990 41.6470i 0.649066 0.243550i
\(172\) 55.6851 + 96.4494i 0.323750 + 0.560752i
\(173\) −120.900 21.3179i −0.698841 0.123225i −0.187070 0.982347i \(-0.559899\pi\)
−0.511771 + 0.859122i \(0.671010\pi\)
\(174\) −157.400 + 58.1734i −0.904597 + 0.334330i
\(175\) 163.165 + 59.3871i 0.932369 + 0.339355i
\(176\) 10.1176 27.7980i 0.0574866 0.157943i
\(177\) −187.175 32.0488i −1.05748 0.181066i
\(178\) −32.7198 + 185.563i −0.183819 + 1.04249i
\(179\) −252.003 + 145.494i −1.40784 + 0.812816i −0.995180 0.0980700i \(-0.968733\pi\)
−0.412659 + 0.910886i \(0.635400\pi\)
\(180\) −16.0099 + 2.98682i −0.0889442 + 0.0165935i
\(181\) 111.720 193.505i 0.617239 1.06909i −0.372748 0.927932i \(-0.621585\pi\)
0.989987 0.141157i \(-0.0450821\pi\)
\(182\) −127.558 + 152.018i −0.700869 + 0.835263i
\(183\) −83.8655 143.612i −0.458281 0.784763i
\(184\) 11.5146 + 65.3026i 0.0625794 + 0.354905i
\(185\) 38.4021 + 45.7658i 0.207579 + 0.247383i
\(186\) −32.9601 38.8875i −0.177205 0.209072i
\(187\) 102.573 37.3337i 0.548521 0.199645i
\(188\) 0.636768i 0.00338706i
\(189\) 30.8252 191.409i 0.163096 1.01275i
\(190\) 16.8542 0.0887064
\(191\) 100.749 + 276.805i 0.527481 + 1.44924i 0.862027 + 0.506863i \(0.169195\pi\)
−0.334546 + 0.942379i \(0.608583\pi\)
\(192\) 4.28459 + 23.6145i 0.0223155 + 0.122992i
\(193\) −43.1317 + 36.1918i −0.223480 + 0.187522i −0.747653 0.664090i \(-0.768819\pi\)
0.524172 + 0.851612i \(0.324375\pi\)
\(194\) −95.9968 + 16.9268i −0.494829 + 0.0872517i
\(195\) −46.0681 26.2940i −0.236246 0.134841i
\(196\) −3.92326 3.29200i −0.0200166 0.0167959i
\(197\) 146.685 + 84.6884i 0.744592 + 0.429891i 0.823737 0.566973i \(-0.191885\pi\)
−0.0791444 + 0.996863i \(0.525219\pi\)
\(198\) −46.2547 + 81.9806i −0.233610 + 0.414044i
\(199\) 53.4896 + 92.6468i 0.268792 + 0.465562i 0.968550 0.248818i \(-0.0800422\pi\)
−0.699758 + 0.714380i \(0.746709\pi\)
\(200\) 67.3561 + 11.8767i 0.336781 + 0.0593835i
\(201\) 143.969 + 119.594i 0.716264 + 0.594995i
\(202\) 235.775 + 85.8150i 1.16720 + 0.424827i
\(203\) 97.1365 266.880i 0.478505 1.31468i
\(204\) −56.5879 + 68.1213i −0.277392 + 0.333928i
\(205\) −12.0212 + 68.1755i −0.0586399 + 0.332564i
\(206\) 20.9217 12.0791i 0.101561 0.0586365i
\(207\) −2.09036 210.987i −0.0100984 1.01926i
\(208\) −39.0838 + 67.6951i −0.187903 + 0.325457i
\(209\) 62.6155 74.6222i 0.299596 0.357044i
\(210\) 13.6636 23.9391i 0.0650647 0.113996i
\(211\) 6.11577 + 34.6843i 0.0289847 + 0.164380i 0.995864 0.0908522i \(-0.0289591\pi\)
−0.966880 + 0.255233i \(0.917848\pi\)
\(212\) 0.339786 + 0.404941i 0.00160276 + 0.00191010i
\(213\) 194.598 35.3076i 0.913604 0.165764i
\(214\) 38.7793 14.1145i 0.181212 0.0659557i
\(215\) 50.3832i 0.234340i
\(216\) −1.13484 76.3591i −0.00525391 0.353514i
\(217\) 86.2767 0.397588
\(218\) −77.9309 214.113i −0.357481 0.982171i
\(219\) 103.918 88.0788i 0.474514 0.402186i
\(220\) −10.2517 + 8.60224i −0.0465989 + 0.0391011i
\(221\) −284.053 + 50.0862i −1.28531 + 0.226635i
\(222\) −241.912 + 141.271i −1.08970 + 0.636354i
\(223\) −83.0007 69.6459i −0.372200 0.312313i 0.437431 0.899252i \(-0.355888\pi\)
−0.809631 + 0.586939i \(0.800333\pi\)
\(224\) −35.1775 20.3097i −0.157042 0.0906685i
\(225\) −205.235 72.4049i −0.912155 0.321799i
\(226\) 47.8470 + 82.8735i 0.211713 + 0.366697i
\(227\) −223.383 39.3885i −0.984068 0.173518i −0.341613 0.939841i \(-0.610973\pi\)
−0.642455 + 0.766323i \(0.722084\pi\)
\(228\) −13.3379 + 77.8975i −0.0584996 + 0.341656i
\(229\) −197.382 71.8412i −0.861930 0.313717i −0.127035 0.991898i \(-0.540546\pi\)
−0.734895 + 0.678181i \(0.762768\pi\)
\(230\) 10.2600 28.1891i 0.0446087 0.122561i
\(231\) −55.2288 149.432i −0.239086 0.646894i
\(232\) 19.4261 110.171i 0.0837334 0.474875i
\(233\) 36.1880 20.8932i 0.155313 0.0896702i −0.420329 0.907372i \(-0.638085\pi\)
0.575642 + 0.817702i \(0.304752\pi\)
\(234\) 157.983 192.111i 0.675143 0.820987i
\(235\) −0.144035 + 0.249476i −0.000612914 + 0.00106160i
\(236\) 81.3764 96.9806i 0.344815 0.410935i
\(237\) 73.1070 0.362147i 0.308469 0.00152805i
\(238\) −26.0271 147.607i −0.109358 0.620199i
\(239\) 239.745 + 285.717i 1.00312 + 1.19547i 0.980660 + 0.195722i \(0.0627049\pi\)
0.0224583 + 0.999748i \(0.492851\pi\)
\(240\) 3.66288 10.2209i 0.0152620 0.0425872i
\(241\) −109.123 + 39.7174i −0.452792 + 0.164803i −0.558341 0.829611i \(-0.688562\pi\)
0.105550 + 0.994414i \(0.466340\pi\)
\(242\) 93.7718i 0.387487i
\(243\) −36.2570 + 240.280i −0.149206 + 0.988806i
\(244\) 110.871 0.454388
\(245\) 0.792430 + 2.17718i 0.00323441 + 0.00888647i
\(246\) −305.583 109.512i −1.24221 0.445171i
\(247\) −197.182 + 165.455i −0.798308 + 0.669860i
\(248\) 33.4680 5.90132i 0.134952 0.0237956i
\(249\) −1.22177 246.640i −0.00490672 0.990524i
\(250\) −48.2077 40.4510i −0.192831 0.161804i
\(251\) −160.201 92.4920i −0.638251 0.368494i 0.145690 0.989330i \(-0.453460\pi\)
−0.783940 + 0.620836i \(0.786793\pi\)
\(252\) 99.8298 + 82.0956i 0.396150 + 0.325776i
\(253\) −86.6904 150.152i −0.342650 0.593487i
\(254\) 72.6331 + 12.8072i 0.285957 + 0.0504220i
\(255\) 37.5791 13.8889i 0.147369 0.0544662i
\(256\) −15.0351 5.47232i −0.0587308 0.0213763i
\(257\) −33.0286 + 90.7454i −0.128516 + 0.353095i −0.987217 0.159382i \(-0.949050\pi\)
0.858701 + 0.512477i \(0.171272\pi\)
\(258\) 232.863 + 39.8717i 0.902569 + 0.154541i
\(259\) 82.3323 466.930i 0.317885 1.80282i
\(260\) 30.6248 17.6813i 0.117788 0.0680048i
\(261\) −118.429 + 335.692i −0.453751 + 1.28618i
\(262\) −27.9664 + 48.4392i −0.106742 + 0.184882i
\(263\) 8.89610 10.6020i 0.0338255 0.0403116i −0.748866 0.662721i \(-0.769402\pi\)
0.782692 + 0.622409i \(0.213846\pi\)
\(264\) −31.6453 54.1895i −0.119868 0.205263i
\(265\) −0.0415264 0.235508i −0.000156704 0.000888710i
\(266\) −85.9783 102.465i −0.323227 0.385207i
\(267\) 258.443 + 304.920i 0.967952 + 1.14202i
\(268\) −117.250 + 42.6756i −0.437501 + 0.159237i
\(269\) 52.5454i 0.195336i 0.995219 + 0.0976680i \(0.0311383\pi\)
−0.995219 + 0.0976680i \(0.968862\pi\)
\(270\) −16.8276 + 30.1730i −0.0623244 + 0.111752i
\(271\) −282.779 −1.04346 −0.521732 0.853109i \(-0.674714\pi\)
−0.521732 + 0.853109i \(0.674714\pi\)
\(272\) −20.1927 55.4789i −0.0742377 0.203966i
\(273\) 75.1527 + 414.203i 0.275285 + 1.51723i
\(274\) 46.6079 39.1087i 0.170102 0.142732i
\(275\) −176.116 + 31.0540i −0.640423 + 0.112924i
\(276\) 122.166 + 69.7280i 0.442631 + 0.252638i
\(277\) 62.3862 + 52.3482i 0.225221 + 0.188983i 0.748415 0.663231i \(-0.230815\pi\)
−0.523194 + 0.852214i \(0.675260\pi\)
\(278\) 294.477 + 170.017i 1.05927 + 0.611570i
\(279\) −108.132 + 1.07133i −0.387571 + 0.00383988i
\(280\) 9.18800 + 15.9141i 0.0328143 + 0.0568360i
\(281\) 206.646 + 36.4372i 0.735393 + 0.129670i 0.528787 0.848754i \(-0.322647\pi\)
0.206606 + 0.978424i \(0.433758\pi\)
\(282\) −1.03905 0.863133i −0.00368458 0.00306076i
\(283\) 60.4622 + 22.0064i 0.213647 + 0.0777612i 0.446627 0.894720i \(-0.352625\pi\)
−0.232979 + 0.972482i \(0.574847\pi\)
\(284\) −45.0953 + 123.898i −0.158786 + 0.436262i
\(285\) 22.8458 27.5020i 0.0801606 0.0964984i
\(286\) 35.4911 201.280i 0.124095 0.703775i
\(287\) 475.796 274.701i 1.65783 0.957146i
\(288\) 44.3408 + 25.0178i 0.153961 + 0.0868673i
\(289\) −35.5735 + 61.6150i −0.123092 + 0.213201i
\(290\) −32.5312 + 38.7692i −0.112177 + 0.133687i
\(291\) −102.502 + 179.588i −0.352242 + 0.617141i
\(292\) 15.7700 + 89.4362i 0.0540069 + 0.306288i
\(293\) −88.2641 105.189i −0.301243 0.359007i 0.594095 0.804395i \(-0.297510\pi\)
−0.895338 + 0.445388i \(0.853066\pi\)
\(294\) −10.6897 + 1.93953i −0.0363595 + 0.00659704i
\(295\) −53.8187 + 19.5884i −0.182436 + 0.0664014i
\(296\) 186.761i 0.630948i
\(297\) 71.0748 + 186.601i 0.239309 + 0.628285i
\(298\) −47.2158 −0.158442
\(299\) 156.694 + 430.513i 0.524060 + 1.43984i
\(300\) 110.681 93.8103i 0.368935 0.312701i
\(301\) −306.304 + 257.019i −1.01762 + 0.853885i
\(302\) −199.961 + 35.2585i −0.662123 + 0.116750i
\(303\) 459.620 268.406i 1.51690 0.885830i
\(304\) −40.3609 33.8668i −0.132766 0.111404i
\(305\) −43.4375 25.0786i −0.142418 0.0822250i
\(306\) 34.4532 + 184.676i 0.112592 + 0.603516i
\(307\) −181.401 314.195i −0.590882 1.02344i −0.994114 0.108340i \(-0.965447\pi\)
0.403232 0.915098i \(-0.367887\pi\)
\(308\) 104.594 + 18.4428i 0.339592 + 0.0598792i
\(309\) 8.64891 50.5123i 0.0279900 0.163470i
\(310\) −14.4471 5.25832i −0.0466036 0.0169623i
\(311\) 75.3296 206.966i 0.242217 0.665487i −0.757700 0.652603i \(-0.773677\pi\)
0.999917 0.0128834i \(-0.00410102\pi\)
\(312\) 57.4844 + 155.535i 0.184245 + 0.498511i
\(313\) −7.54061 + 42.7650i −0.0240914 + 0.136629i −0.994481 0.104915i \(-0.966543\pi\)
0.970390 + 0.241544i \(0.0776540\pi\)
\(314\) 147.338 85.0655i 0.469228 0.270909i
\(315\) −20.5420 54.7450i −0.0652127 0.173794i
\(316\) −24.3693 + 42.2089i −0.0771181 + 0.133572i
\(317\) 78.0234 92.9846i 0.246131 0.293327i −0.628808 0.777560i \(-0.716457\pi\)
0.874939 + 0.484233i \(0.160901\pi\)
\(318\) 1.12134 0.00555475i 0.00352624 1.74678e-5i
\(319\) 50.7936 + 288.065i 0.159228 + 0.903024i
\(320\) 4.65269 + 5.54486i 0.0145397 + 0.0173277i
\(321\) 29.5336 82.4107i 0.0920049 0.256731i
\(322\) −223.714 + 81.4254i −0.694765 + 0.252874i
\(323\) 194.415i 0.601903i
\(324\) −126.138 101.652i −0.389315 0.313742i
\(325\) 472.549 1.45400
\(326\) −110.540 303.706i −0.339080 0.931613i
\(327\) −455.016 163.064i −1.39149 0.498668i
\(328\) 165.779 139.105i 0.505424 0.424101i
\(329\) 2.25145 0.396991i 0.00684331 0.00120666i
\(330\) 0.140628 + 28.3887i 0.000426145 + 0.0860262i
\(331\) −106.552 89.4075i −0.321908 0.270113i 0.467485 0.884001i \(-0.345160\pi\)
−0.789393 + 0.613888i \(0.789605\pi\)
\(332\) 142.400 + 82.2145i 0.428915 + 0.247634i
\(333\) −97.3906 + 586.234i −0.292464 + 1.76046i
\(334\) 137.407 + 237.996i 0.411398 + 0.712562i
\(335\) 55.5899 + 9.80199i 0.165940 + 0.0292597i
\(336\) −80.8235 + 29.8716i −0.240546 + 0.0889035i
\(337\) −22.7816 8.29181i −0.0676010 0.0246048i 0.307998 0.951387i \(-0.400341\pi\)
−0.375599 + 0.926782i \(0.622563\pi\)
\(338\) −102.970 + 282.909i −0.304646 + 0.837008i
\(339\) 200.086 + 34.2595i 0.590224 + 0.101060i
\(340\) −4.63798 + 26.3033i −0.0136411 + 0.0773626i
\(341\) −76.9541 + 44.4295i −0.225672 + 0.130292i
\(342\) 109.031 + 127.354i 0.318803 + 0.372379i
\(343\) −166.730 + 288.786i −0.486095 + 0.841941i
\(344\) −101.240 + 120.653i −0.294302 + 0.350735i
\(345\) −32.0905 54.9519i −0.0930160 0.159281i
\(346\) −30.1480 170.978i −0.0871329 0.494155i
\(347\) −163.919 195.352i −0.472390 0.562973i 0.476258 0.879306i \(-0.341993\pi\)
−0.948648 + 0.316333i \(0.897548\pi\)
\(348\) −153.441 181.035i −0.440922 0.520215i
\(349\) 588.280 214.116i 1.68562 0.613514i 0.691554 0.722325i \(-0.256926\pi\)
0.994062 + 0.108811i \(0.0347042\pi\)
\(350\) 245.559i 0.701596i
\(351\) −99.3336 518.196i −0.283002 1.47634i
\(352\) 41.8352 0.118850
\(353\) 45.8606 + 126.001i 0.129917 + 0.356944i 0.987547 0.157323i \(-0.0502864\pi\)
−0.857630 + 0.514267i \(0.828064\pi\)
\(354\) −47.9440 264.243i −0.135435 0.746449i
\(355\) 45.6931 38.3410i 0.128713 0.108003i
\(356\) −262.426 + 46.2728i −0.737152 + 0.129980i
\(357\) −276.139 157.610i −0.773499 0.441486i
\(358\) −315.242 264.519i −0.880564 0.738881i
\(359\) −480.602 277.476i −1.33872 0.772913i −0.352107 0.935960i \(-0.614535\pi\)
−0.986618 + 0.163047i \(0.947868\pi\)
\(360\) −11.7131 19.8313i −0.0325364 0.0550871i
\(361\) 93.7511 + 162.382i 0.259698 + 0.449811i
\(362\) 311.192 + 54.8715i 0.859646 + 0.151579i
\(363\) −153.013 127.107i −0.421523 0.350157i
\(364\) −263.719 95.9859i −0.724503 0.263698i
\(365\) 14.0517 38.6068i 0.0384979 0.105772i
\(366\) 150.284 180.915i 0.410613 0.494302i
\(367\) 31.4908 178.593i 0.0858061 0.486630i −0.911374 0.411580i \(-0.864977\pi\)
0.997180 0.0750505i \(-0.0239118\pi\)
\(368\) −81.2128 + 46.8882i −0.220687 + 0.127414i
\(369\) −592.913 + 350.196i −1.60681 + 0.949041i
\(370\) −42.2447 + 73.1699i −0.114175 + 0.197757i
\(371\) −1.21993 + 1.45386i −0.00328822 + 0.00391875i
\(372\) 35.7361 62.6110i 0.0960648 0.168309i
\(373\) 61.7520 + 350.213i 0.165555 + 0.938909i 0.948490 + 0.316806i \(0.102610\pi\)
−0.782935 + 0.622103i \(0.786278\pi\)
\(374\) 99.2274 + 118.255i 0.265314 + 0.316189i
\(375\) −131.352 + 23.8323i −0.350271 + 0.0635528i
\(376\) 0.846217 0.307998i 0.00225058 0.000819143i
\(377\) 772.925i 2.05020i
\(378\) 269.279 51.6184i 0.712378 0.136557i
\(379\) 571.606 1.50819 0.754097 0.656763i \(-0.228075\pi\)
0.754097 + 0.656763i \(0.228075\pi\)
\(380\) 8.15221 + 22.3980i 0.0214532 + 0.0589421i
\(381\) 119.352 101.160i 0.313259 0.265511i
\(382\) −319.123 + 267.776i −0.835399 + 0.700983i
\(383\) 410.213 72.3315i 1.07105 0.188855i 0.389796 0.920901i \(-0.372546\pi\)
0.681255 + 0.732046i \(0.261434\pi\)
\(384\) −29.3095 + 17.1160i −0.0763267 + 0.0445728i
\(385\) −36.8067 30.8845i −0.0956019 0.0802195i
\(386\) −68.9586 39.8133i −0.178649 0.103143i
\(387\) 380.705 325.931i 0.983733 0.842198i
\(388\) −68.9271 119.385i −0.177647 0.307694i
\(389\) −181.375 31.9812i −0.466259 0.0822140i −0.0644168 0.997923i \(-0.520519\pi\)
−0.401842 + 0.915709i \(0.631630\pi\)
\(390\) 12.6601 73.9392i 0.0324619 0.189588i
\(391\) −325.163 118.350i −0.831620 0.302685i
\(392\) 2.47719 6.80602i 0.00631936 0.0173623i
\(393\) 41.1329 + 111.293i 0.104664 + 0.283189i
\(394\) −41.5948 + 235.896i −0.105571 + 0.598721i
\(395\) 19.0950 11.0245i 0.0483419 0.0279102i
\(396\) −131.319 21.8159i −0.331614 0.0550908i
\(397\) 145.068 251.265i 0.365411 0.632910i −0.623431 0.781878i \(-0.714262\pi\)
0.988842 + 0.148968i \(0.0475952\pi\)
\(398\) −97.2483 + 115.896i −0.244343 + 0.291196i
\(399\) −283.741 + 1.40556i −0.711131 + 0.00352270i
\(400\) 16.7962 + 95.2560i 0.0419905 + 0.238140i
\(401\) −290.603 346.328i −0.724697 0.863660i 0.270381 0.962753i \(-0.412850\pi\)
−0.995078 + 0.0990934i \(0.968406\pi\)
\(402\) −89.2953 + 249.171i −0.222128 + 0.619827i
\(403\) 220.641 80.3067i 0.547496 0.199272i
\(404\) 354.835i 0.878305i
\(405\) 26.4255 + 68.3578i 0.0652481 + 0.168785i
\(406\) 401.648 0.989281
\(407\) 167.017 + 458.874i 0.410360 + 1.12745i
\(408\) −117.899 42.2516i −0.288969 0.103558i
\(409\) 226.326 189.910i 0.553363 0.464327i −0.322715 0.946496i \(-0.604595\pi\)
0.876078 + 0.482169i \(0.160151\pi\)
\(410\) −96.4148 + 17.0005i −0.235158 + 0.0414647i
\(411\) −0.639341 129.064i −0.00155557 0.314025i
\(412\) 26.1719 + 21.9608i 0.0635239 + 0.0533029i
\(413\) 393.632 + 227.264i 0.953105 + 0.550276i
\(414\) 279.375 104.830i 0.674818 0.253212i
\(415\) −37.1933 64.4207i −0.0896225 0.155231i
\(416\) −108.866 19.1960i −0.261697 0.0461443i
\(417\) 676.588 250.060i 1.62251 0.599665i
\(418\) 129.454 + 47.1174i 0.309698 + 0.112721i
\(419\) −184.754 + 507.608i −0.440941 + 1.21147i 0.497934 + 0.867215i \(0.334092\pi\)
−0.938875 + 0.344259i \(0.888130\pi\)
\(420\) 38.4222 + 6.57880i 0.0914815 + 0.0156638i
\(421\) −58.5712 + 332.174i −0.139124 + 0.789011i 0.832775 + 0.553612i \(0.186751\pi\)
−0.971899 + 0.235399i \(0.924360\pi\)
\(422\) −43.1347 + 24.9038i −0.102215 + 0.0590138i
\(423\) −2.81685 + 0.525513i −0.00665923 + 0.00124235i
\(424\) −0.373786 + 0.647416i −0.000881570 + 0.00152692i
\(425\) −229.419 + 273.411i −0.539810 + 0.643321i
\(426\) 141.046 + 241.528i 0.331094 + 0.566967i
\(427\) 69.1221 + 392.011i 0.161878 + 0.918058i
\(428\) 37.5143 + 44.7078i 0.0876503 + 0.104458i
\(429\) −280.332 330.746i −0.653456 0.770970i
\(430\) 66.9555 24.3698i 0.155710 0.0566740i
\(431\) 625.633i 1.45158i 0.687914 + 0.725792i \(0.258527\pi\)
−0.687914 + 0.725792i \(0.741473\pi\)
\(432\) 100.927 38.4422i 0.233627 0.0889866i
\(433\) 754.656 1.74286 0.871428 0.490524i \(-0.163195\pi\)
0.871428 + 0.490524i \(0.163195\pi\)
\(434\) 41.7311 + 114.655i 0.0961546 + 0.264183i
\(435\) 19.1662 + 105.634i 0.0440603 + 0.242838i
\(436\) 246.846 207.129i 0.566161 0.475066i
\(437\) −304.111 + 53.6230i −0.695906 + 0.122707i
\(438\) 167.315 + 95.4972i 0.381997 + 0.218030i
\(439\) 130.229 + 109.276i 0.296650 + 0.248919i 0.778948 0.627088i \(-0.215753\pi\)
−0.482298 + 0.876007i \(0.660198\pi\)
\(440\) −16.3904 9.46300i −0.0372509 0.0215068i
\(441\) −11.3250 + 20.0720i −0.0256802 + 0.0455148i
\(442\) −203.954 353.260i −0.461435 0.799230i
\(443\) 16.3964 + 2.89112i 0.0370121 + 0.00652623i 0.192124 0.981371i \(-0.438463\pi\)
−0.155111 + 0.987897i \(0.549574\pi\)
\(444\) −304.749 253.153i −0.686371 0.570164i
\(445\) 113.281 + 41.2310i 0.254564 + 0.0926539i
\(446\) 52.4076 143.989i 0.117506 0.322845i
\(447\) −64.0006 + 77.0448i −0.143178 + 0.172360i
\(448\) 9.97516 56.5719i 0.0222660 0.126277i
\(449\) −584.655 + 337.551i −1.30213 + 0.751784i −0.980769 0.195174i \(-0.937473\pi\)
−0.321359 + 0.946958i \(0.604140\pi\)
\(450\) −3.04918 307.763i −0.00677596 0.683919i
\(451\) −282.923 + 490.037i −0.627323 + 1.08656i
\(452\) −86.9896 + 103.670i −0.192455 + 0.229359i
\(453\) −213.512 + 374.081i −0.471329 + 0.825786i
\(454\) −55.7038 315.912i −0.122696 0.695841i
\(455\) 81.6094 + 97.2583i 0.179361 + 0.213754i
\(456\) −109.971 + 19.9531i −0.241165 + 0.0437568i
\(457\) −504.675 + 183.687i −1.10432 + 0.401940i −0.828908 0.559385i \(-0.811037\pi\)
−0.275414 + 0.961326i \(0.588815\pi\)
\(458\) 297.055i 0.648591i
\(459\) 348.048 + 194.107i 0.758274 + 0.422892i
\(460\) 42.4239 0.0922258
\(461\) −111.541 306.457i −0.241955 0.664765i −0.999922 0.0124727i \(-0.996030\pi\)
0.757968 0.652292i \(-0.226192\pi\)
\(462\) 171.871 145.674i 0.372015 0.315311i
\(463\) −170.249 + 142.856i −0.367708 + 0.308544i −0.807854 0.589382i \(-0.799371\pi\)
0.440146 + 0.897926i \(0.354927\pi\)
\(464\) 155.805 27.4727i 0.335788 0.0592084i
\(465\) −28.1633 + 16.4466i −0.0605662 + 0.0353691i
\(466\) 45.2692 + 37.9854i 0.0971443 + 0.0815137i
\(467\) −80.9832 46.7556i −0.173411 0.100119i 0.410782 0.911734i \(-0.365256\pi\)
−0.584193 + 0.811614i \(0.698589\pi\)
\(468\) 331.716 + 117.026i 0.708795 + 0.250056i
\(469\) −223.989 387.961i −0.477589 0.827208i
\(470\) −0.401203 0.0707429i −0.000853623 0.000150517i
\(471\) 60.9086 355.725i 0.129318 0.755256i
\(472\) 168.241 + 61.2347i 0.356443 + 0.129734i
\(473\) 140.850 386.983i 0.297781 0.818146i
\(474\) 35.8424 + 96.9787i 0.0756168 + 0.204596i
\(475\) −55.3093 + 313.675i −0.116441 + 0.660367i
\(476\) 183.570 105.984i 0.385652 0.222656i
\(477\) 1.51091 1.83729i 0.00316752 0.00385177i
\(478\) −263.735 + 456.802i −0.551746 + 0.955653i
\(479\) −7.97154 + 9.50011i −0.0166420 + 0.0198332i −0.774301 0.632817i \(-0.781898\pi\)
0.757659 + 0.652650i \(0.226343\pi\)
\(480\) 15.3546 0.0760613i 0.0319887 0.000158461i
\(481\) −224.067 1270.74i −0.465835 2.64188i
\(482\) −105.563 125.805i −0.219011 0.261007i
\(483\) −170.376 + 475.420i −0.352746 + 0.984306i
\(484\) 124.616 45.3564i 0.257471 0.0937116i
\(485\) 62.3644i 0.128586i
\(486\) −336.851 + 68.0381i −0.693110 + 0.139996i
\(487\) −551.768 −1.13299 −0.566497 0.824064i \(-0.691702\pi\)
−0.566497 + 0.824064i \(0.691702\pi\)
\(488\) 53.6270 + 147.339i 0.109891 + 0.301924i
\(489\) −645.411 231.296i −1.31986 0.472999i
\(490\) −2.51003 + 2.10616i −0.00512250 + 0.00429829i
\(491\) 803.339 141.650i 1.63613 0.288494i 0.721387 0.692532i \(-0.243505\pi\)
0.914742 + 0.404038i \(0.132394\pi\)
\(492\) −2.27406 459.067i −0.00462208 0.933064i
\(493\) 447.205 + 375.250i 0.907110 + 0.761156i
\(494\) −315.253 182.011i −0.638164 0.368444i
\(495\) 46.5141 + 38.2511i 0.0939679 + 0.0772750i
\(496\) 24.0306 + 41.6221i 0.0484487 + 0.0839156i
\(497\) −466.188 82.2015i −0.938003 0.165395i
\(498\) 327.176 120.921i 0.656980 0.242813i
\(499\) 270.216 + 98.3506i 0.541515 + 0.197095i 0.598273 0.801293i \(-0.295854\pi\)
−0.0567575 + 0.998388i \(0.518076\pi\)
\(500\) 30.4389 83.6302i 0.0608778 0.167260i
\(501\) 574.606 + 98.3862i 1.14692 + 0.196380i
\(502\) 45.4276 257.633i 0.0904932 0.513212i
\(503\) −22.2054 + 12.8203i −0.0441459 + 0.0254877i −0.521911 0.853000i \(-0.674781\pi\)
0.477765 + 0.878488i \(0.341447\pi\)
\(504\) −60.8123 + 172.375i −0.120659 + 0.342014i
\(505\) 80.2626 139.019i 0.158936 0.275285i
\(506\) 157.610 187.832i 0.311482 0.371210i
\(507\) 322.064 + 551.503i 0.635234 + 1.08778i
\(508\) 18.1121 + 102.719i 0.0356537 + 0.202202i
\(509\) 80.2854 + 95.6804i 0.157732 + 0.187977i 0.839123 0.543942i \(-0.183069\pi\)
−0.681391 + 0.731920i \(0.738625\pi\)
\(510\) 36.6339 + 43.2220i 0.0718312 + 0.0847489i
\(511\) −306.392 + 111.517i −0.599593 + 0.218234i
\(512\) 22.6274i 0.0441942i
\(513\) 355.601 5.28492i 0.693179 0.0103020i
\(514\) −136.570 −0.265699
\(515\) −5.28627 14.5239i −0.0102646 0.0282017i
\(516\) 59.6469 + 328.743i 0.115595 + 0.637099i
\(517\) −1.80373 + 1.51351i −0.00348884 + 0.00292749i
\(518\) 660.338 116.435i 1.27478 0.224779i
\(519\) −319.860 182.565i −0.616301 0.351762i
\(520\) 38.3100 + 32.1459i 0.0736730 + 0.0618190i
\(521\) 23.1236 + 13.3504i 0.0443831 + 0.0256246i 0.522027 0.852929i \(-0.325176\pi\)
−0.477644 + 0.878553i \(0.658509\pi\)
\(522\) −503.393 + 4.98740i −0.964355 + 0.00955441i
\(523\) −361.405 625.972i −0.691023 1.19689i −0.971503 0.237027i \(-0.923827\pi\)
0.280480 0.959860i \(-0.409506\pi\)
\(524\) −77.8991 13.7357i −0.148662 0.0262132i
\(525\) 400.693 + 332.853i 0.763224 + 0.634005i
\(526\) 18.3922 + 6.69420i 0.0349661 + 0.0127266i
\(527\) −60.6551 + 166.649i −0.115095 + 0.316221i
\(528\) 56.7073 68.2651i 0.107400 0.129290i
\(529\) −3.58173 + 20.3130i −0.00677075 + 0.0383988i
\(530\) 0.292887 0.169098i 0.000552617 0.000319053i
\(531\) −496.169 279.946i −0.934405 0.527206i
\(532\) 94.5816 163.820i 0.177785 0.307933i
\(533\) 961.091 1145.38i 1.80317 2.14894i
\(534\) −280.210 + 490.939i −0.524738 + 0.919361i
\(535\) −4.58476 26.0015i −0.00856964 0.0486009i
\(536\) −113.425 135.175i −0.211614 0.252192i
\(537\) −858.940 + 155.845i −1.59952 + 0.290215i
\(538\) −69.8289 + 25.4157i −0.129794 + 0.0472410i
\(539\) 18.9378i 0.0351351i
\(540\) −48.2370 7.76824i −0.0893278 0.0143856i
\(541\) −181.539 −0.335562 −0.167781 0.985824i \(-0.553660\pi\)
−0.167781 + 0.985824i \(0.553660\pi\)
\(542\) −136.777 375.792i −0.252356 0.693343i
\(543\) 511.355 433.413i 0.941723 0.798182i
\(544\) 63.9603 53.6691i 0.117574 0.0986564i
\(545\) −143.562 + 25.3139i −0.263417 + 0.0464476i
\(546\) −514.095 + 300.218i −0.941566 + 0.549850i
\(547\) −584.502 490.456i −1.06856 0.896628i −0.0736388 0.997285i \(-0.523461\pi\)
−0.994921 + 0.100657i \(0.967906\pi\)
\(548\) 74.5163 + 43.0220i 0.135979 + 0.0785073i
\(549\) −91.4998 490.456i −0.166666 0.893363i
\(550\) −126.454 219.025i −0.229917 0.398227i
\(551\) 513.062 + 90.4667i 0.931147 + 0.164186i
\(552\) −33.5729 + 196.076i −0.0608205 + 0.355211i
\(553\) −164.433 59.8487i −0.297347 0.108225i
\(554\) −39.3914 + 108.227i −0.0711036 + 0.195356i
\(555\) 62.1335 + 168.114i 0.111952 + 0.302909i
\(556\) −83.5038 + 473.574i −0.150187 + 0.851752i
\(557\) 154.424 89.1568i 0.277243 0.160066i −0.354932 0.934892i \(-0.615496\pi\)
0.632174 + 0.774826i \(0.282163\pi\)
\(558\) −53.7261 143.182i −0.0962834 0.256598i
\(559\) −544.096 + 942.401i −0.973337 + 1.68587i
\(560\) −16.7045 + 19.9077i −0.0298295 + 0.0355494i
\(561\) 327.465 1.62215i 0.583717 0.00289153i
\(562\) 51.5300 + 292.241i 0.0916903 + 0.520002i
\(563\) −83.6205 99.6550i −0.148527 0.177007i 0.686651 0.726987i \(-0.259080\pi\)
−0.835178 + 0.549980i \(0.814635\pi\)
\(564\) 0.644462 1.79831i 0.00114266 0.00318850i
\(565\) 57.5311 20.9396i 0.101825 0.0370612i
\(566\) 90.9940i 0.160767i
\(567\) 280.776 509.367i 0.495197 0.898354i
\(568\) −186.464 −0.328282
\(569\) −334.788 919.824i −0.588380 1.61656i −0.773465 0.633839i \(-0.781478\pi\)
0.185084 0.982723i \(-0.440744\pi\)
\(570\) 47.5984 + 17.0579i 0.0835060 + 0.0299261i
\(571\) 353.588 296.696i 0.619244 0.519607i −0.278322 0.960488i \(-0.589778\pi\)
0.897566 + 0.440880i \(0.145334\pi\)
\(572\) 284.653 50.1919i 0.497644 0.0877481i
\(573\) 4.37754 + 883.699i 0.00763969 + 1.54223i
\(574\) 595.195 + 499.428i 1.03692 + 0.870083i
\(575\) 490.959 + 283.455i 0.853842 + 0.492966i
\(576\) −11.7996 + 71.0265i −0.0204854 + 0.123310i
\(577\) −192.832 333.994i −0.334197 0.578846i 0.649133 0.760675i \(-0.275132\pi\)
−0.983330 + 0.181829i \(0.941798\pi\)
\(578\) −99.0883 17.4719i −0.171433 0.0302283i
\(579\) −158.439 + 58.5573i −0.273642 + 0.101135i
\(580\) −67.2564 24.4793i −0.115959 0.0422057i
\(581\) −201.911 + 554.745i −0.347523 + 0.954811i
\(582\) −288.238 49.3533i −0.495255 0.0847994i
\(583\) 0.339426 1.92498i 0.000582206 0.00330185i
\(584\) −111.226 + 64.2165i −0.190456 + 0.109960i
\(585\) −103.490 120.882i −0.176906 0.206636i
\(586\) 97.0961 168.175i 0.165693 0.286989i
\(587\) −633.940 + 755.500i −1.07997 + 1.28705i −0.124414 + 0.992230i \(0.539705\pi\)
−0.955552 + 0.294823i \(0.904739\pi\)
\(588\) −7.74799 13.2677i −0.0131769 0.0225641i
\(589\) 27.4822 + 155.859i 0.0466590 + 0.264617i
\(590\) −52.0631 62.0464i −0.0882425 0.105163i
\(591\) 328.544 + 387.628i 0.555912 + 0.655885i
\(592\) 248.191 90.3342i 0.419242 0.152592i
\(593\) 216.884i 0.365741i 0.983137 + 0.182870i \(0.0585388\pi\)
−0.983137 + 0.182870i \(0.941461\pi\)
\(594\) −213.600 + 184.710i −0.359597 + 0.310960i
\(595\) −95.8932 −0.161165
\(596\) −22.8378 62.7463i −0.0383184 0.105279i
\(597\) 57.2952 + 315.782i 0.0959719 + 0.528948i
\(598\) −496.328 + 416.469i −0.829981 + 0.696436i
\(599\) 641.044 113.033i 1.07019 0.188703i 0.389316 0.921104i \(-0.372711\pi\)
0.680874 + 0.732401i \(0.261600\pi\)
\(600\) 178.202 + 101.711i 0.297003 + 0.169519i
\(601\) −165.422 138.806i −0.275245 0.230958i 0.494707 0.869060i \(-0.335275\pi\)
−0.769952 + 0.638102i \(0.779720\pi\)
\(602\) −489.716 282.737i −0.813481 0.469663i
\(603\) 285.547 + 483.457i 0.473545 + 0.801753i
\(604\) −143.575 248.679i −0.237707 0.411721i
\(605\) −59.0820 10.4177i −0.0976562 0.0172194i
\(606\) 579.006 + 480.976i 0.955455 + 0.793690i
\(607\) 611.890 + 222.710i 1.00806 + 0.366902i 0.792686 0.609630i \(-0.208682\pi\)
0.215370 + 0.976532i \(0.430904\pi\)
\(608\) 25.4844 70.0177i 0.0419151 0.115161i
\(609\) 544.431 655.393i 0.893975 1.07618i
\(610\) 12.3174 69.8554i 0.0201925 0.114517i
\(611\) 5.38825 3.11091i 0.00881874 0.00509150i
\(612\) −228.756 + 135.112i −0.373784 + 0.220771i
\(613\) −428.616 + 742.385i −0.699211 + 1.21107i 0.269529 + 0.962992i \(0.413132\pi\)
−0.968740 + 0.248077i \(0.920201\pi\)
\(614\) 329.801 393.041i 0.537135 0.640132i
\(615\) −102.949 + 180.370i −0.167396 + 0.293284i
\(616\) 26.0821 + 147.919i 0.0423410 + 0.240128i
\(617\) 633.317 + 754.757i 1.02645 + 1.22327i 0.974446 + 0.224623i \(0.0721149\pi\)
0.0519994 + 0.998647i \(0.483441\pi\)
\(618\) 71.3105 12.9385i 0.115389 0.0209361i
\(619\) 83.7604 30.4863i 0.135316 0.0492509i −0.273475 0.961879i \(-0.588173\pi\)
0.408790 + 0.912628i \(0.365951\pi\)
\(620\) 21.7425i 0.0350686i
\(621\) 207.633 597.968i 0.334352 0.962912i
\(622\) 311.479 0.500770
\(623\) −327.217 899.023i −0.525229 1.44305i
\(624\) −178.891 + 151.623i −0.286684 + 0.242986i
\(625\) 432.258 362.707i 0.691612 0.580331i
\(626\) −60.4788 + 10.6640i −0.0966115 + 0.0170352i
\(627\) 252.358 147.371i 0.402485 0.235041i
\(628\) 184.311 + 154.656i 0.293490 + 0.246267i
\(629\) 844.020 + 487.295i 1.34184 + 0.774715i
\(630\) 62.8161 53.7784i 0.0997080 0.0853625i
\(631\) 71.5623 + 123.950i 0.113411 + 0.196433i 0.917143 0.398557i \(-0.130489\pi\)
−0.803733 + 0.594991i \(0.797156\pi\)
\(632\) −67.8797 11.9690i −0.107405 0.0189383i
\(633\) −17.8316 + 104.142i −0.0281701 + 0.164522i
\(634\) 161.309 + 58.7116i 0.254430 + 0.0926050i
\(635\) 16.1386 44.3405i 0.0254152 0.0698276i
\(636\) 0.549764 + 1.48750i 0.000864409 + 0.00233883i
\(637\) 8.68959 49.2811i 0.0136414 0.0773644i
\(638\) −358.248 + 206.835i −0.561518 + 0.324192i
\(639\) 585.303 + 97.2359i 0.915967 + 0.152169i
\(640\) −5.11825 + 8.86507i −0.00799727 + 0.0138517i
\(641\) −176.476 + 210.316i −0.275314 + 0.328106i −0.885929 0.463821i \(-0.846478\pi\)
0.610615 + 0.791928i \(0.290922\pi\)
\(642\) 123.803 0.613277i 0.192839 0.000955260i
\(643\) −157.474 893.080i −0.244905 1.38893i −0.820713 0.571341i \(-0.806423\pi\)
0.575807 0.817585i \(-0.304688\pi\)
\(644\) −216.417 257.915i −0.336051 0.400490i
\(645\) 50.9920 142.288i 0.0790573 0.220602i
\(646\) 258.363 94.0363i 0.399942 0.145567i
\(647\) 766.329i 1.18443i 0.805779 + 0.592217i \(0.201747\pi\)
−0.805779 + 0.592217i \(0.798253\pi\)
\(648\) 74.0768 216.796i 0.114316 0.334562i
\(649\) −468.132 −0.721312
\(650\) 228.567 + 627.983i 0.351642 + 0.966128i
\(651\) 243.656 + 87.3192i 0.374280 + 0.134131i
\(652\) 350.136 293.799i 0.537018 0.450612i
\(653\) −491.110 + 86.5959i −0.752082 + 0.132612i −0.536532 0.843880i \(-0.680266\pi\)
−0.215551 + 0.976493i \(0.569155\pi\)
\(654\) −3.38610 683.555i −0.00517752 1.04519i
\(655\) 27.4127 + 23.0020i 0.0418514 + 0.0351175i
\(656\) 265.046 + 153.024i 0.404033 + 0.233269i
\(657\) 382.622 143.572i 0.582377 0.218526i
\(658\) 1.61657 + 2.79999i 0.00245680 + 0.00425530i
\(659\) −987.874 174.189i −1.49905 0.264323i −0.636888 0.770956i \(-0.719779\pi\)
−0.862162 + 0.506633i \(0.830890\pi\)
\(660\) −37.6584 + 13.9182i −0.0570582 + 0.0210882i
\(661\) −40.4553 14.7245i −0.0612032 0.0222761i 0.311237 0.950332i \(-0.399257\pi\)
−0.372440 + 0.928056i \(0.621479\pi\)
\(662\) 67.2780 184.845i 0.101628 0.279222i
\(663\) −852.893 146.036i −1.28642 0.220265i
\(664\) −40.3797 + 229.005i −0.0608129 + 0.344887i
\(665\) −74.1112 + 42.7881i −0.111445 + 0.0643430i
\(666\) −826.169 + 154.130i −1.24049 + 0.231427i
\(667\) 463.634 803.037i 0.695103 1.20395i
\(668\) −249.816 + 297.720i −0.373977 + 0.445688i
\(669\) −163.917 280.692i −0.245018 0.419570i
\(670\) 13.8621 + 78.6159i 0.0206897 + 0.117337i
\(671\) −263.525 314.057i −0.392735 0.468043i
\(672\) −78.7906 92.9599i −0.117248 0.138333i
\(673\) −254.900 + 92.7760i −0.378752 + 0.137854i −0.524379 0.851485i \(-0.675702\pi\)
0.145627 + 0.989340i \(0.453480\pi\)
\(674\) 34.2857i 0.0508689i
\(675\) −506.329 412.195i −0.750117 0.610660i
\(676\) −425.770 −0.629838
\(677\) 332.978 + 914.850i 0.491844 + 1.35133i 0.898991 + 0.437967i \(0.144301\pi\)
−0.407147 + 0.913362i \(0.633476\pi\)
\(678\) 51.2512 + 282.470i 0.0755917 + 0.416623i
\(679\) 379.144 318.139i 0.558385 0.468541i
\(680\) −37.1985 + 6.55909i −0.0547036 + 0.00964572i
\(681\) −590.999 337.321i −0.867839 0.495332i
\(682\) −96.2654 80.7762i −0.141152 0.118440i
\(683\) −1043.61 602.531i −1.52799 0.882183i −0.999446 0.0332748i \(-0.989406\pi\)
−0.528540 0.848908i \(-0.677260\pi\)
\(684\) −116.507 + 206.493i −0.170331 + 0.301891i
\(685\) −19.4629 33.7107i −0.0284130 0.0492127i
\(686\) −464.421 81.8899i −0.676998 0.119373i
\(687\) −484.722 402.656i −0.705564 0.586107i
\(688\) −209.307 76.1817i −0.304226 0.110729i
\(689\) −1.76655 + 4.85355i −0.00256393 + 0.00704435i
\(690\) 57.5052 69.2256i 0.0833409 0.100327i
\(691\) 44.6727 253.352i 0.0646494 0.366645i −0.935270 0.353935i \(-0.884843\pi\)
0.999919 0.0127094i \(-0.00404563\pi\)
\(692\) 212.635 122.765i 0.307275 0.177406i
\(693\) −4.73494 477.912i −0.00683253 0.689628i
\(694\) 180.322 312.326i 0.259829 0.450038i
\(695\) 139.836 166.651i 0.201204 0.239785i
\(696\) 166.364 291.476i 0.239029 0.418788i
\(697\) 196.102 + 1112.15i 0.281352 + 1.59563i
\(698\) 569.090 + 678.215i 0.815315 + 0.971655i
\(699\) 123.345 22.3796i 0.176459 0.0320166i
\(700\) −326.329 + 118.774i −0.466185 + 0.169677i
\(701\) 357.086i 0.509395i 0.967021 + 0.254697i \(0.0819759\pi\)
−0.967021 + 0.254697i \(0.918024\pi\)
\(702\) 640.597 382.653i 0.912532 0.545090i
\(703\) 869.736 1.23718
\(704\) 20.2353 + 55.5959i 0.0287433 + 0.0789715i
\(705\) −0.659263 + 0.558775i −0.000935124 + 0.000792589i
\(706\) −145.264 + 121.891i −0.205756 + 0.172650i
\(707\) −1254.61 + 221.221i −1.77455 + 0.312901i
\(708\) 327.969 191.526i 0.463234 0.270516i
\(709\) 137.566 + 115.432i 0.194029 + 0.162809i 0.734626 0.678472i \(-0.237357\pi\)
−0.540598 + 0.841281i \(0.681802\pi\)
\(710\) 73.0537 + 42.1776i 0.102893 + 0.0594050i
\(711\) 206.830 + 72.9677i 0.290900 + 0.102627i
\(712\) −188.426 326.363i −0.264643 0.458375i
\(713\) 277.408 + 48.9145i 0.389072 + 0.0686038i
\(714\) 75.8869 443.203i 0.106284 0.620733i
\(715\) −122.876 44.7231i −0.171854 0.0625498i
\(716\) 199.048 546.879i 0.277999 0.763797i
\(717\) 387.901 + 1049.54i 0.541006 + 1.46380i
\(718\) 136.283 772.897i 0.189809 1.07646i
\(719\) 768.741 443.833i 1.06918 0.617292i 0.141223 0.989978i \(-0.454897\pi\)
0.927957 + 0.372686i \(0.121563\pi\)
\(720\) 20.6889 25.1581i 0.0287346 0.0349418i
\(721\) −61.3310 + 106.228i −0.0850638 + 0.147335i
\(722\) −170.447 + 203.131i −0.236076 + 0.281344i
\(723\) −348.374 + 1.72572i −0.481845 + 0.00238689i
\(724\) 77.6001 + 440.092i 0.107182 + 0.607862i
\(725\) −614.780 732.666i −0.847972 1.01057i
\(726\) 94.9048 264.823i 0.130723 0.364770i
\(727\) −822.255 + 299.276i −1.13103 + 0.411659i −0.838664 0.544649i \(-0.816663\pi\)
−0.292361 + 0.956308i \(0.594441\pi\)
\(728\) 396.891i 0.545179i
\(729\) −345.577 + 641.886i −0.474043 + 0.880502i
\(730\) 58.1023 0.0795922
\(731\) −281.107 772.336i −0.384552 1.05655i
\(732\) 313.113 + 112.210i 0.427750 + 0.153293i
\(733\) 22.5932 18.9579i 0.0308229 0.0258634i −0.627246 0.778821i \(-0.715818\pi\)
0.658069 + 0.752958i \(0.271374\pi\)
\(734\) 252.569 44.5348i 0.344100 0.0606741i
\(735\) 0.0344311 + 6.95065i 4.68451e−5 + 0.00945666i
\(736\) −101.593 85.2464i −0.138034 0.115824i
\(737\) 399.572 + 230.693i 0.542161 + 0.313017i
\(738\) −752.170 618.551i −1.01920 0.838146i
\(739\) 589.760 + 1021.50i 0.798052 + 1.38227i 0.920883 + 0.389839i \(0.127469\pi\)
−0.122831 + 0.992428i \(0.539197\pi\)
\(740\) −117.671 20.7485i −0.159015 0.0280386i
\(741\) −724.322 + 267.702i −0.977492 + 0.361272i
\(742\) −2.52213 0.917982i −0.00339910 0.00123717i
\(743\) −178.261 + 489.768i −0.239921 + 0.659176i 0.760036 + 0.649881i \(0.225181\pi\)
−0.999957 + 0.00929571i \(0.997041\pi\)
\(744\) 100.491 + 17.2064i 0.135068 + 0.0231268i
\(745\) −5.24553 + 29.7489i −0.00704097 + 0.0399313i
\(746\) −435.539 + 251.458i −0.583832 + 0.337076i
\(747\) 246.170 697.780i 0.329545 0.934110i
\(748\) −109.156 + 189.064i −0.145931 + 0.252760i
\(749\) −134.687 + 160.514i −0.179823 + 0.214305i
\(750\) −95.2047 163.029i −0.126940 0.217372i
\(751\) 11.9742 + 67.9089i 0.0159443 + 0.0904246i 0.991742 0.128253i \(-0.0409369\pi\)
−0.975797 + 0.218677i \(0.929826\pi\)
\(752\) 0.818613 + 0.975585i 0.00108858 + 0.00129732i
\(753\) −358.818 423.346i −0.476518 0.562212i
\(754\) 1027.16 373.856i 1.36228 0.495830i
\(755\) 129.905i 0.172059i
\(756\) 198.844 + 332.884i 0.263022 + 0.440323i
\(757\) 376.111 0.496845 0.248422 0.968652i \(-0.420088\pi\)
0.248422 + 0.968652i \(0.420088\pi\)
\(758\) 276.480 + 759.622i 0.364749 + 1.00214i
\(759\) −92.8581 511.787i −0.122343 0.674291i
\(760\) −25.8222 + 21.6674i −0.0339765 + 0.0285097i
\(761\) −21.1240 + 3.72472i −0.0277582 + 0.00489451i −0.187510 0.982263i \(-0.560042\pi\)
0.159752 + 0.987157i \(0.448931\pi\)
\(762\) 192.163 + 109.680i 0.252183 + 0.143937i
\(763\) 886.250 + 743.652i 1.16153 + 0.974642i
\(764\) −510.210 294.570i −0.667814 0.385563i
\(765\) 120.185 1.19074i 0.157104 0.00155652i
\(766\) 294.539 + 510.156i