Properties

Label 54.3.f.a.47.5
Level $54$
Weight $3$
Character 54.47
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 47.5
Character \(\chi\) \(=\) 54.47
Dual form 54.3.f.a.23.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.483690 + 1.32893i) q^{2} +(0.320982 - 2.98278i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(5.90332 - 1.04091i) q^{5} +(4.11915 - 1.01618i) q^{6} +(5.59840 + 4.69762i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(-8.79394 - 1.91484i) q^{9} +O(q^{10})\) \(q+(0.483690 + 1.32893i) q^{2} +(0.320982 - 2.98278i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(5.90332 - 1.04091i) q^{5} +(4.11915 - 1.01618i) q^{6} +(5.59840 + 4.69762i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(-8.79394 - 1.91484i) q^{9} +(4.23867 + 7.34160i) q^{10} +(-20.3832 - 3.59412i) q^{11} +(3.34281 + 4.98253i) q^{12} +(6.40830 + 2.33243i) q^{13} +(-3.53490 + 9.71205i) q^{14} +(-1.20996 - 17.9424i) q^{15} +(0.694593 - 3.93923i) q^{16} +(1.96510 - 1.13455i) q^{17} +(-1.70886 - 12.6127i) q^{18} +(-12.1634 + 21.0675i) q^{19} +(-7.70624 + 9.18394i) q^{20} +(15.8089 - 15.1909i) q^{21} +(-5.08285 - 28.8263i) q^{22} +(-15.5320 - 18.5103i) q^{23} +(-5.00453 + 6.85235i) q^{24} +(10.2734 - 3.73921i) q^{25} +9.64433i q^{26} +(-8.53423 + 25.6158i) q^{27} -14.6164 q^{28} +(6.32777 + 17.3854i) q^{29} +(23.2589 - 10.2865i) q^{30} +(16.6469 - 13.9684i) q^{31} +(5.57091 - 0.982302i) q^{32} +(-17.2631 + 59.6451i) q^{33} +(2.45823 + 2.06270i) q^{34} +(37.9390 + 21.9041i) q^{35} +(15.9348 - 8.37157i) q^{36} +(22.3832 + 38.7688i) q^{37} +(-33.8805 - 5.97405i) q^{38} +(9.01408 - 18.3659i) q^{39} +(-15.9322 - 5.79885i) q^{40} +(17.5398 - 48.1902i) q^{41} +(27.8343 + 13.6612i) q^{42} +(6.41470 - 36.3796i) q^{43} +(35.8494 - 20.6977i) q^{44} +(-53.9066 - 2.15015i) q^{45} +(17.0861 - 29.5941i) q^{46} +(8.15595 - 9.71989i) q^{47} +(-11.5269 - 3.33624i) q^{48} +(0.765740 + 4.34273i) q^{49} +(9.93826 + 11.8440i) q^{50} +(-2.75335 - 6.22562i) q^{51} +(-12.8166 + 4.66486i) q^{52} +17.7730i q^{53} +(-38.1694 + 1.04871i) q^{54} -124.070 q^{55} +(-7.06980 - 19.4241i) q^{56} +(58.9356 + 43.0429i) q^{57} +(-20.0432 + 16.8183i) q^{58} +(64.9049 - 11.4445i) q^{59} +(24.9201 + 25.9339i) q^{60} +(32.3438 + 27.1396i) q^{61} +(26.6150 + 15.3662i) q^{62} +(-40.2369 - 52.0306i) q^{63} +(4.00000 + 6.92820i) q^{64} +(40.2581 + 7.09859i) q^{65} +(-87.6139 + 5.90830i) q^{66} +(-111.190 - 40.4700i) q^{67} +(-1.55216 + 4.26451i) q^{68} +(-60.1976 + 40.3870i) q^{69} +(-10.7582 + 61.0129i) q^{70} +(-46.1702 + 26.6564i) q^{71} +(18.8327 + 17.1269i) q^{72} +(33.8569 - 58.6419i) q^{73} +(-40.6944 + 48.4976i) q^{74} +(-7.85565 - 31.8434i) q^{75} +(-8.44858 - 47.9143i) q^{76} +(-97.2298 - 115.874i) q^{77} +(28.7669 + 3.09566i) q^{78} +(104.610 - 38.0750i) q^{79} -23.9776i q^{80} +(73.6668 + 33.6779i) q^{81} +72.5250 q^{82} +(8.63542 + 23.7256i) q^{83} +(-4.69160 + 43.5975i) q^{84} +(10.4196 - 8.74311i) q^{85} +(51.4485 - 9.07175i) q^{86} +(53.8879 - 13.2939i) q^{87} +(44.8457 + 37.6300i) q^{88} +(-35.4447 - 20.4640i) q^{89} +(-23.2167 - 72.6779i) q^{90} +(24.9194 + 43.1616i) q^{91} +(47.5927 + 8.39188i) q^{92} +(-36.3214 - 54.1378i) q^{93} +(16.8620 + 6.13725i) q^{94} +(-49.8747 + 137.030i) q^{95} +(-1.14183 - 16.9321i) q^{96} +(7.02010 - 39.8130i) q^{97} +(-5.40078 + 3.11814i) q^{98} +(172.367 + 70.6370i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.483690 + 1.32893i 0.241845 + 0.664463i
\(3\) 0.320982 2.98278i 0.106994 0.994260i
\(4\) −1.53209 + 1.28558i −0.383022 + 0.321394i
\(5\) 5.90332 1.04091i 1.18066 0.208183i 0.451341 0.892352i \(-0.350946\pi\)
0.729324 + 0.684169i \(0.239835\pi\)
\(6\) 4.11915 1.01618i 0.686525 0.169363i
\(7\) 5.59840 + 4.69762i 0.799772 + 0.671088i 0.948143 0.317844i \(-0.102959\pi\)
−0.148371 + 0.988932i \(0.547403\pi\)
\(8\) −2.44949 1.41421i −0.306186 0.176777i
\(9\) −8.79394 1.91484i −0.977105 0.212760i
\(10\) 4.23867 + 7.34160i 0.423867 + 0.734160i
\(11\) −20.3832 3.59412i −1.85302 0.326738i −0.867653 0.497170i \(-0.834372\pi\)
−0.985369 + 0.170433i \(0.945483\pi\)
\(12\) 3.34281 + 4.98253i 0.278568 + 0.415211i
\(13\) 6.40830 + 2.33243i 0.492946 + 0.179418i 0.576519 0.817084i \(-0.304411\pi\)
−0.0835725 + 0.996502i \(0.526633\pi\)
\(14\) −3.53490 + 9.71205i −0.252493 + 0.693718i
\(15\) −1.20996 17.9424i −0.0806639 1.19616i
\(16\) 0.694593 3.93923i 0.0434120 0.246202i
\(17\) 1.96510 1.13455i 0.115594 0.0667382i −0.441088 0.897464i \(-0.645407\pi\)
0.556682 + 0.830725i \(0.312074\pi\)
\(18\) −1.70886 12.6127i −0.0949367 0.700705i
\(19\) −12.1634 + 21.0675i −0.640176 + 1.10882i 0.345217 + 0.938523i \(0.387805\pi\)
−0.985393 + 0.170295i \(0.945528\pi\)
\(20\) −7.70624 + 9.18394i −0.385312 + 0.459197i
\(21\) 15.8089 15.1909i 0.752807 0.723378i
\(22\) −5.08285 28.8263i −0.231039 1.31028i
\(23\) −15.5320 18.5103i −0.675303 0.804795i 0.314192 0.949359i \(-0.398266\pi\)
−0.989495 + 0.144564i \(0.953822\pi\)
\(24\) −5.00453 + 6.85235i −0.208522 + 0.285515i
\(25\) 10.2734 3.73921i 0.410935 0.149568i
\(26\) 9.64433i 0.370936i
\(27\) −8.53423 + 25.6158i −0.316083 + 0.948732i
\(28\) −14.6164 −0.522014
\(29\) 6.32777 + 17.3854i 0.218199 + 0.599497i 0.999702 0.0244045i \(-0.00776896\pi\)
−0.781503 + 0.623901i \(0.785547\pi\)
\(30\) 23.2589 10.2865i 0.775297 0.342884i
\(31\) 16.6469 13.9684i 0.536998 0.450595i −0.333512 0.942746i \(-0.608234\pi\)
0.870510 + 0.492151i \(0.163789\pi\)
\(32\) 5.57091 0.982302i 0.174091 0.0306970i
\(33\) −17.2631 + 59.6451i −0.523124 + 1.80743i
\(34\) 2.45823 + 2.06270i 0.0723009 + 0.0606677i
\(35\) 37.9390 + 21.9041i 1.08397 + 0.625831i
\(36\) 15.9348 8.37157i 0.442632 0.232544i
\(37\) 22.3832 + 38.7688i 0.604951 + 1.04781i 0.992059 + 0.125771i \(0.0401405\pi\)
−0.387109 + 0.922034i \(0.626526\pi\)
\(38\) −33.8805 5.97405i −0.891592 0.157212i
\(39\) 9.01408 18.3659i 0.231130 0.470920i
\(40\) −15.9322 5.79885i −0.398305 0.144971i
\(41\) 17.5398 48.1902i 0.427800 1.17537i −0.519345 0.854565i \(-0.673824\pi\)
0.947145 0.320806i \(-0.103954\pi\)
\(42\) 27.8343 + 13.6612i 0.662721 + 0.325267i
\(43\) 6.41470 36.3796i 0.149179 0.846036i −0.814737 0.579830i \(-0.803119\pi\)
0.963916 0.266206i \(-0.0857701\pi\)
\(44\) 35.8494 20.6977i 0.814760 0.470402i
\(45\) −53.9066 2.15015i −1.19793 0.0477812i
\(46\) 17.0861 29.5941i 0.371438 0.643350i
\(47\) 8.15595 9.71989i 0.173531 0.206806i −0.672268 0.740308i \(-0.734680\pi\)
0.845799 + 0.533502i \(0.179124\pi\)
\(48\) −11.5269 3.33624i −0.240144 0.0695050i
\(49\) 0.765740 + 4.34273i 0.0156273 + 0.0886271i
\(50\) 9.93826 + 11.8440i 0.198765 + 0.236879i
\(51\) −2.75335 6.22562i −0.0539873 0.122071i
\(52\) −12.8166 + 4.66486i −0.246473 + 0.0897089i
\(53\) 17.7730i 0.335339i 0.985843 + 0.167670i \(0.0536242\pi\)
−0.985843 + 0.167670i \(0.946376\pi\)
\(54\) −38.1694 + 1.04871i −0.706840 + 0.0194206i
\(55\) −124.070 −2.25582
\(56\) −7.06980 19.4241i −0.126246 0.346859i
\(57\) 58.9356 + 43.0429i 1.03396 + 0.755139i
\(58\) −20.0432 + 16.8183i −0.345573 + 0.289970i
\(59\) 64.9049 11.4445i 1.10008 0.193974i 0.406003 0.913872i \(-0.366922\pi\)
0.694080 + 0.719897i \(0.255811\pi\)
\(60\) 24.9201 + 25.9339i 0.415335 + 0.432231i
\(61\) 32.3438 + 27.1396i 0.530226 + 0.444912i 0.868179 0.496251i \(-0.165290\pi\)
−0.337954 + 0.941163i \(0.609735\pi\)
\(62\) 26.6150 + 15.3662i 0.429274 + 0.247841i
\(63\) −40.2369 52.0306i −0.638680 0.825882i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) 40.2581 + 7.09859i 0.619356 + 0.109209i
\(66\) −87.6139 + 5.90830i −1.32748 + 0.0895197i
\(67\) −111.190 40.4700i −1.65956 0.604030i −0.669266 0.743023i \(-0.733391\pi\)
−0.990293 + 0.138993i \(0.955613\pi\)
\(68\) −1.55216 + 4.26451i −0.0228258 + 0.0627134i
\(69\) −60.1976 + 40.3870i −0.872429 + 0.585319i
\(70\) −10.7582 + 61.0129i −0.153689 + 0.871613i
\(71\) −46.1702 + 26.6564i −0.650284 + 0.375442i −0.788565 0.614951i \(-0.789176\pi\)
0.138281 + 0.990393i \(0.455842\pi\)
\(72\) 18.8327 + 17.1269i 0.261565 + 0.237873i
\(73\) 33.8569 58.6419i 0.463793 0.803314i −0.535353 0.844629i \(-0.679821\pi\)
0.999146 + 0.0413148i \(0.0131546\pi\)
\(74\) −40.6944 + 48.4976i −0.549924 + 0.655374i
\(75\) −7.85565 31.8434i −0.104742 0.424579i
\(76\) −8.44858 47.9143i −0.111165 0.630451i
\(77\) −97.2298 115.874i −1.26273 1.50486i
\(78\) 28.7669 + 3.09566i 0.368807 + 0.0396879i
\(79\) 104.610 38.0750i 1.32418 0.481962i 0.419385 0.907809i \(-0.362246\pi\)
0.904795 + 0.425846i \(0.140024\pi\)
\(80\) 23.9776i 0.299719i
\(81\) 73.6668 + 33.6779i 0.909467 + 0.415777i
\(82\) 72.5250 0.884452
\(83\) 8.63542 + 23.7256i 0.104041 + 0.285851i 0.980780 0.195115i \(-0.0625081\pi\)
−0.876739 + 0.480966i \(0.840286\pi\)
\(84\) −4.69160 + 43.5975i −0.0558524 + 0.519017i
\(85\) 10.4196 8.74311i 0.122584 0.102860i
\(86\) 51.4485 9.07175i 0.598238 0.105486i
\(87\) 53.8879 13.2939i 0.619401 0.152804i
\(88\) 44.8457 + 37.6300i 0.509610 + 0.427614i
\(89\) −35.4447 20.4640i −0.398254 0.229932i 0.287476 0.957788i \(-0.407184\pi\)
−0.685731 + 0.727855i \(0.740517\pi\)
\(90\) −23.2167 72.6779i −0.257963 0.807533i
\(91\) 24.9194 + 43.1616i 0.273839 + 0.474304i
\(92\) 47.5927 + 8.39188i 0.517312 + 0.0912161i
\(93\) −36.3214 54.1378i −0.390553 0.582127i
\(94\) 16.8620 + 6.13725i 0.179383 + 0.0652899i
\(95\) −49.8747 + 137.030i −0.524996 + 1.44242i
\(96\) −1.14183 16.9321i −0.0118940 0.176376i
\(97\) 7.02010 39.8130i 0.0723722 0.410443i −0.927002 0.375057i \(-0.877623\pi\)
0.999374 0.0353855i \(-0.0112659\pi\)
\(98\) −5.40078 + 3.11814i −0.0551100 + 0.0318178i
\(99\) 172.367 + 70.6370i 1.74108 + 0.713505i
\(100\) −10.9327 + 18.9360i −0.109327 + 0.189360i
\(101\) 7.45688 8.88677i 0.0738305 0.0879878i −0.727865 0.685721i \(-0.759487\pi\)
0.801695 + 0.597733i \(0.203932\pi\)
\(102\) 6.94163 6.67027i 0.0680552 0.0653948i
\(103\) 21.6451 + 122.756i 0.210147 + 1.19180i 0.889132 + 0.457650i \(0.151309\pi\)
−0.678985 + 0.734152i \(0.737580\pi\)
\(104\) −12.3985 14.7760i −0.119216 0.142077i
\(105\) 77.5128 106.133i 0.738217 1.01079i
\(106\) −23.6190 + 8.59660i −0.222820 + 0.0811000i
\(107\) 142.548i 1.33223i 0.745850 + 0.666113i \(0.232043\pi\)
−0.745850 + 0.666113i \(0.767957\pi\)
\(108\) −19.8558 50.2170i −0.183850 0.464972i
\(109\) −119.276 −1.09427 −0.547137 0.837043i \(-0.684282\pi\)
−0.547137 + 0.837043i \(0.684282\pi\)
\(110\) −60.0114 164.880i −0.545558 1.49891i
\(111\) 122.823 54.3200i 1.10652 0.489369i
\(112\) 22.3936 18.7905i 0.199943 0.167772i
\(113\) −102.092 + 18.0016i −0.903471 + 0.159306i −0.606037 0.795436i \(-0.707242\pi\)
−0.297434 + 0.954743i \(0.596131\pi\)
\(114\) −28.6943 + 99.1405i −0.251704 + 0.869653i
\(115\) −110.958 93.1047i −0.964851 0.809606i
\(116\) −32.0450 18.5012i −0.276250 0.159493i
\(117\) −51.8880 32.7821i −0.443487 0.280189i
\(118\) 46.6027 + 80.7183i 0.394938 + 0.684053i
\(119\) 16.3311 + 2.87961i 0.137236 + 0.0241984i
\(120\) −22.4106 + 45.6609i −0.186755 + 0.380508i
\(121\) 288.856 + 105.135i 2.38724 + 0.868885i
\(122\) −20.4222 + 56.1096i −0.167395 + 0.459915i
\(123\) −138.111 67.7855i −1.12285 0.551102i
\(124\) −7.54711 + 42.8018i −0.0608638 + 0.345176i
\(125\) −73.0275 + 42.1624i −0.584220 + 0.337299i
\(126\) 49.6827 78.6385i 0.394307 0.624115i
\(127\) 109.770 190.127i 0.864329 1.49706i −0.00338367 0.999994i \(-0.501077\pi\)
0.867712 0.497067i \(-0.165590\pi\)
\(128\) −7.27231 + 8.66680i −0.0568149 + 0.0677094i
\(129\) −106.453 30.8108i −0.825219 0.238844i
\(130\) 10.0389 + 56.9336i 0.0772225 + 0.437951i
\(131\) 83.9745 + 100.077i 0.641027 + 0.763946i 0.984532 0.175205i \(-0.0560587\pi\)
−0.343505 + 0.939151i \(0.611614\pi\)
\(132\) −50.2296 113.575i −0.380527 0.860413i
\(133\) −167.063 + 60.8058i −1.25611 + 0.457187i
\(134\) 167.339i 1.24880i
\(135\) −23.7165 + 160.101i −0.175678 + 1.18594i
\(136\) −6.41798 −0.0471911
\(137\) 26.4097 + 72.5602i 0.192772 + 0.529636i 0.997992 0.0633396i \(-0.0201751\pi\)
−0.805220 + 0.592976i \(0.797953\pi\)
\(138\) −82.7882 60.4634i −0.599915 0.438140i
\(139\) −81.8517 + 68.6818i −0.588861 + 0.494113i −0.887844 0.460145i \(-0.847797\pi\)
0.298982 + 0.954259i \(0.403353\pi\)
\(140\) −86.2852 + 15.2144i −0.616323 + 0.108674i
\(141\) −26.3744 27.4473i −0.187052 0.194662i
\(142\) −57.7564 48.4633i −0.406735 0.341291i
\(143\) −122.239 70.5747i −0.854818 0.493529i
\(144\) −13.6512 + 33.3113i −0.0947999 + 0.231329i
\(145\) 55.4516 + 96.0450i 0.382425 + 0.662379i
\(146\) 94.3070 + 16.6289i 0.645938 + 0.113896i
\(147\) 13.1992 0.890096i 0.0897903 0.00605507i
\(148\) −84.1332 30.6220i −0.568468 0.206905i
\(149\) 53.0524 145.760i 0.356056 0.978257i −0.624328 0.781162i \(-0.714627\pi\)
0.980384 0.197095i \(-0.0631506\pi\)
\(150\) 38.5179 25.8419i 0.256786 0.172279i
\(151\) −26.9250 + 152.699i −0.178311 + 1.01125i 0.755940 + 0.654641i \(0.227180\pi\)
−0.934252 + 0.356614i \(0.883931\pi\)
\(152\) 59.5880 34.4032i 0.392026 0.226337i
\(153\) −19.4534 + 6.21432i −0.127147 + 0.0406165i
\(154\) 106.959 185.258i 0.694538 1.20298i
\(155\) 83.7323 99.7883i 0.540208 0.643795i
\(156\) 9.80035 + 39.7264i 0.0628228 + 0.254657i
\(157\) −21.0948 119.634i −0.134362 0.762003i −0.975302 0.220875i \(-0.929109\pi\)
0.840941 0.541128i \(-0.182002\pi\)
\(158\) 101.198 + 120.603i 0.640492 + 0.763309i
\(159\) 53.0128 + 5.70480i 0.333414 + 0.0358793i
\(160\) 31.8644 11.5977i 0.199153 0.0724856i
\(161\) 176.591i 1.09684i
\(162\) −9.12361 + 114.187i −0.0563186 + 0.704860i
\(163\) −66.9033 −0.410450 −0.205225 0.978715i \(-0.565793\pi\)
−0.205225 + 0.978715i \(0.565793\pi\)
\(164\) 35.0796 + 96.3804i 0.213900 + 0.587685i
\(165\) −39.8242 + 370.073i −0.241359 + 2.24287i
\(166\) −27.3527 + 22.9517i −0.164776 + 0.138263i
\(167\) −7.14238 + 1.25939i −0.0427687 + 0.00754128i −0.194992 0.980805i \(-0.562468\pi\)
0.152223 + 0.988346i \(0.451357\pi\)
\(168\) −60.2071 + 14.8528i −0.358375 + 0.0884098i
\(169\) −93.8354 78.7373i −0.555239 0.465901i
\(170\) 16.6588 + 9.61798i 0.0979931 + 0.0565763i
\(171\) 147.305 161.976i 0.861431 0.947228i
\(172\) 36.9408 + 63.9833i 0.214772 + 0.371996i
\(173\) −71.4004 12.5898i −0.412719 0.0727735i −0.0365665 0.999331i \(-0.511642\pi\)
−0.376153 + 0.926558i \(0.622753\pi\)
\(174\) 43.7317 + 65.1829i 0.251332 + 0.374615i
\(175\) 75.0799 + 27.3268i 0.429028 + 0.156153i
\(176\) −28.3161 + 77.7979i −0.160887 + 0.442033i
\(177\) −13.3031 197.270i −0.0751586 1.11452i
\(178\) 10.0509 57.0015i 0.0564658 0.320233i
\(179\) 219.366 126.651i 1.22551 0.707547i 0.259420 0.965765i \(-0.416469\pi\)
0.966087 + 0.258218i \(0.0831352\pi\)
\(180\) 85.3539 66.0068i 0.474189 0.366705i
\(181\) 19.4150 33.6278i 0.107265 0.185789i −0.807396 0.590010i \(-0.799124\pi\)
0.914662 + 0.404221i \(0.132457\pi\)
\(182\) −45.3054 + 53.9928i −0.248931 + 0.296664i
\(183\) 91.3333 87.7630i 0.499089 0.479579i
\(184\) 11.8679 + 67.3063i 0.0644995 + 0.365795i
\(185\) 172.490 + 205.566i 0.932379 + 1.11117i
\(186\) 54.3768 74.4544i 0.292348 0.400292i
\(187\) −44.1328 + 16.0630i −0.236004 + 0.0858985i
\(188\) 25.3768i 0.134983i
\(189\) −168.111 + 103.317i −0.889477 + 0.546649i
\(190\) −206.226 −1.08540
\(191\) 67.8767 + 186.490i 0.355375 + 0.976385i 0.980614 + 0.195951i \(0.0627795\pi\)
−0.625238 + 0.780434i \(0.714998\pi\)
\(192\) 21.9492 9.70729i 0.114319 0.0505588i
\(193\) 43.6611 36.6360i 0.226223 0.189824i −0.522630 0.852560i \(-0.675049\pi\)
0.748853 + 0.662736i \(0.230605\pi\)
\(194\) 56.3040 9.92792i 0.290227 0.0511748i
\(195\) 34.0957 117.803i 0.174850 0.604116i
\(196\) −6.75608 5.66903i −0.0344698 0.0289236i
\(197\) −64.8251 37.4268i −0.329061 0.189984i 0.326363 0.945245i \(-0.394177\pi\)
−0.655424 + 0.755261i \(0.727510\pi\)
\(198\) −10.4993 + 263.229i −0.0530269 + 1.32944i
\(199\) −65.2158 112.957i −0.327717 0.567623i 0.654341 0.756200i \(-0.272946\pi\)
−0.982059 + 0.188576i \(0.939613\pi\)
\(200\) −30.4526 5.36961i −0.152263 0.0268481i
\(201\) −156.403 + 318.666i −0.778126 + 1.58540i
\(202\) 15.4167 + 5.61121i 0.0763201 + 0.0277783i
\(203\) −46.2446 + 127.056i −0.227806 + 0.625891i
\(204\) 12.2219 + 5.99857i 0.0599112 + 0.0294048i
\(205\) 53.3812 302.740i 0.260396 1.47678i
\(206\) −152.664 + 88.1404i −0.741085 + 0.427866i
\(207\) 101.143 + 192.520i 0.488614 + 0.930046i
\(208\) 13.6391 23.6237i 0.0655728 0.113575i
\(209\) 323.648 385.708i 1.54855 1.84549i
\(210\) 178.535 + 51.6734i 0.850166 + 0.246064i
\(211\) 5.49032 + 31.1372i 0.0260205 + 0.147570i 0.995050 0.0993753i \(-0.0316844\pi\)
−0.969030 + 0.246945i \(0.920573\pi\)
\(212\) −22.8485 27.2298i −0.107776 0.128442i
\(213\) 64.6902 + 146.272i 0.303710 + 0.686721i
\(214\) −189.436 + 68.9491i −0.885215 + 0.322192i
\(215\) 221.437i 1.02994i
\(216\) 57.1307 50.6763i 0.264494 0.234613i
\(217\) 158.815 0.731865
\(218\) −57.6925 158.509i −0.264644 0.727105i
\(219\) −164.048 119.811i −0.749079 0.547081i
\(220\) 190.086 159.501i 0.864029 0.725006i
\(221\) 15.2392 2.68708i 0.0689557 0.0121587i
\(222\) 131.596 + 136.949i 0.592773 + 0.616888i
\(223\) 78.1769 + 65.5982i 0.350569 + 0.294162i 0.801019 0.598639i \(-0.204292\pi\)
−0.450449 + 0.892802i \(0.648736\pi\)
\(224\) 35.8027 + 20.6707i 0.159833 + 0.0922799i
\(225\) −97.5035 + 13.2105i −0.433349 + 0.0587133i
\(226\) −73.3037 126.966i −0.324353 0.561796i
\(227\) −253.309 44.6652i −1.11590 0.196763i −0.414859 0.909886i \(-0.636169\pi\)
−0.701039 + 0.713123i \(0.747280\pi\)
\(228\) −145.629 + 9.82062i −0.638726 + 0.0430729i
\(229\) −258.391 94.0468i −1.12835 0.410685i −0.290655 0.956828i \(-0.593873\pi\)
−0.837692 + 0.546143i \(0.816095\pi\)
\(230\) 70.0601 192.489i 0.304609 0.836907i
\(231\) −376.836 + 252.822i −1.63132 + 1.09447i
\(232\) 9.08687 51.5342i 0.0391675 0.222130i
\(233\) −223.311 + 128.928i −0.958414 + 0.553341i −0.895685 0.444690i \(-0.853314\pi\)
−0.0627296 + 0.998031i \(0.519981\pi\)
\(234\) 18.4673 84.8117i 0.0789202 0.362443i
\(235\) 38.0296 65.8693i 0.161828 0.280295i
\(236\) −84.7273 + 100.974i −0.359014 + 0.427856i
\(237\) −79.9913 324.251i −0.337516 1.36815i
\(238\) 4.07239 + 23.0957i 0.0171109 + 0.0970406i
\(239\) −80.0566 95.4078i −0.334965 0.399196i 0.572102 0.820183i \(-0.306128\pi\)
−0.907067 + 0.420987i \(0.861684\pi\)
\(240\) −71.5198 7.69636i −0.297999 0.0320682i
\(241\) −61.5004 + 22.3843i −0.255188 + 0.0928809i −0.466447 0.884549i \(-0.654466\pi\)
0.211258 + 0.977430i \(0.432244\pi\)
\(242\) 434.721i 1.79637i
\(243\) 124.100 208.922i 0.510698 0.859760i
\(244\) −84.4436 −0.346080
\(245\) 9.04081 + 24.8394i 0.0369013 + 0.101385i
\(246\) 23.2792 216.326i 0.0946310 0.879375i
\(247\) −127.085 + 106.637i −0.514514 + 0.431729i
\(248\) −60.5309 + 10.6732i −0.244076 + 0.0430372i
\(249\) 73.5401 18.1421i 0.295342 0.0728597i
\(250\) −91.3534 76.6546i −0.365413 0.306618i
\(251\) 202.528 + 116.930i 0.806884 + 0.465855i 0.845873 0.533385i \(-0.179080\pi\)
−0.0389884 + 0.999240i \(0.512414\pi\)
\(252\) 128.536 + 27.9880i 0.510062 + 0.111063i
\(253\) 250.064 + 433.123i 0.988395 + 1.71195i
\(254\) 305.759 + 53.9135i 1.20378 + 0.212258i
\(255\) −22.7343 33.8859i −0.0891540 0.132886i
\(256\) −15.0351 5.47232i −0.0587308 0.0213763i
\(257\) 25.7075 70.6309i 0.100029 0.274828i −0.879576 0.475758i \(-0.842174\pi\)
0.979606 + 0.200929i \(0.0643962\pi\)
\(258\) −10.5450 156.371i −0.0408721 0.606090i
\(259\) −56.8110 + 322.191i −0.219347 + 1.24398i
\(260\) −70.8048 + 40.8792i −0.272326 + 0.157228i
\(261\) −22.3558 165.003i −0.0856545 0.632195i
\(262\) −92.3773 + 160.002i −0.352585 + 0.610695i
\(263\) −97.3609 + 116.030i −0.370194 + 0.441180i −0.918694 0.394971i \(-0.870755\pi\)
0.548500 + 0.836151i \(0.315199\pi\)
\(264\) 126.637 121.686i 0.479684 0.460933i
\(265\) 18.5001 + 104.920i 0.0698119 + 0.395923i
\(266\) −161.613 192.603i −0.607567 0.724070i
\(267\) −72.4166 + 99.1550i −0.271223 + 0.371367i
\(268\) 222.381 80.9400i 0.829780 0.302015i
\(269\) 170.868i 0.635198i 0.948225 + 0.317599i \(0.102877\pi\)
−0.948225 + 0.317599i \(0.897123\pi\)
\(270\) −224.234 + 45.9219i −0.830498 + 0.170081i
\(271\) −8.46530 −0.0312373 −0.0156186 0.999878i \(-0.504972\pi\)
−0.0156186 + 0.999878i \(0.504972\pi\)
\(272\) −3.10431 8.52903i −0.0114129 0.0313567i
\(273\) 136.740 60.4749i 0.500880 0.221520i
\(274\) −83.6530 + 70.1932i −0.305303 + 0.256180i
\(275\) −222.844 + 39.2934i −0.810342 + 0.142885i
\(276\) 40.3075 139.265i 0.146042 0.504583i
\(277\) 382.880 + 321.274i 1.38224 + 1.15984i 0.968376 + 0.249496i \(0.0802649\pi\)
0.413862 + 0.910340i \(0.364180\pi\)
\(278\) −130.864 75.5542i −0.470733 0.271778i
\(279\) −173.140 + 90.9615i −0.620572 + 0.326027i
\(280\) −61.9541 107.308i −0.221265 0.383242i
\(281\) −68.9552 12.1587i −0.245392 0.0432693i 0.0495990 0.998769i \(-0.484206\pi\)
−0.294991 + 0.955500i \(0.595317\pi\)
\(282\) 23.7185 48.3256i 0.0841080 0.171367i
\(283\) 33.6840 + 12.2600i 0.119025 + 0.0433214i 0.400846 0.916145i \(-0.368716\pi\)
−0.281821 + 0.959467i \(0.590939\pi\)
\(284\) 36.4680 100.195i 0.128409 0.352800i
\(285\) 392.720 + 192.749i 1.37796 + 0.676313i
\(286\) 34.6628 196.583i 0.121199 0.687352i
\(287\) 324.574 187.393i 1.13092 0.652937i
\(288\) −50.8712 2.02908i −0.176636 0.00704542i
\(289\) −141.926 + 245.822i −0.491092 + 0.850596i
\(290\) −100.815 + 120.147i −0.347639 + 0.414300i
\(291\) −116.500 33.7187i −0.400343 0.115872i
\(292\) 23.5168 + 133.370i 0.0805369 + 0.456747i
\(293\) −21.9392 26.1461i −0.0748779 0.0892360i 0.727305 0.686314i \(-0.240773\pi\)
−0.802183 + 0.597078i \(0.796328\pi\)
\(294\) 7.56718 + 17.1102i 0.0257387 + 0.0581980i
\(295\) 371.242 135.121i 1.25845 0.458037i
\(296\) 126.618i 0.427765i
\(297\) 266.021 491.459i 0.895695 1.65474i
\(298\) 219.366 0.736126
\(299\) −56.3596 154.847i −0.188494 0.517882i
\(300\) 52.9727 + 38.6880i 0.176576 + 0.128960i
\(301\) 206.809 173.534i 0.687074 0.576524i
\(302\) −215.950 + 38.0777i −0.715065 + 0.126085i
\(303\) −24.1137 25.0947i −0.0795833 0.0828209i
\(304\) 74.5414 + 62.5476i 0.245202 + 0.205749i
\(305\) 219.186 + 126.547i 0.718642 + 0.414908i
\(306\) −17.6678 22.8464i −0.0577379 0.0746614i
\(307\) −165.305 286.316i −0.538452 0.932627i −0.998988 0.0449854i \(-0.985676\pi\)
0.460535 0.887641i \(-0.347657\pi\)
\(308\) 297.929 + 52.5330i 0.967303 + 0.170562i
\(309\) 373.101 25.1603i 1.20745 0.0814249i
\(310\) 173.112 + 63.0075i 0.558425 + 0.203250i
\(311\) 82.6437 227.062i 0.265735 0.730102i −0.733019 0.680208i \(-0.761889\pi\)
0.998755 0.0498938i \(-0.0158883\pi\)
\(312\) −48.0532 + 32.2392i −0.154017 + 0.103331i
\(313\) −54.4006 + 308.521i −0.173804 + 0.985691i 0.765712 + 0.643184i \(0.222387\pi\)
−0.939515 + 0.342507i \(0.888724\pi\)
\(314\) 148.782 85.8993i 0.473828 0.273565i
\(315\) −291.690 265.270i −0.926002 0.842128i
\(316\) −111.324 + 192.819i −0.352291 + 0.610186i
\(317\) −317.348 + 378.201i −1.00110 + 1.19306i −0.0199518 + 0.999801i \(0.506351\pi\)
−0.981147 + 0.193262i \(0.938093\pi\)
\(318\) 18.0605 + 73.2095i 0.0567940 + 0.230219i
\(319\) −66.4953 377.114i −0.208449 1.18217i
\(320\) 30.8250 + 36.7358i 0.0963280 + 0.114799i
\(321\) 425.190 + 45.7554i 1.32458 + 0.142540i
\(322\) 234.677 85.4154i 0.728810 0.265265i
\(323\) 55.1997i 0.170897i
\(324\) −156.160 + 43.1066i −0.481974 + 0.133045i
\(325\) 74.5564 0.229404
\(326\) −32.3604 88.9096i −0.0992651 0.272729i
\(327\) −38.2854 + 355.774i −0.117081 + 1.08799i
\(328\) −111.115 + 93.2364i −0.338765 + 0.284257i
\(329\) 91.3206 16.1023i 0.277570 0.0489431i
\(330\) −511.063 + 126.077i −1.54868 + 0.382052i
\(331\) 198.545 + 166.599i 0.599833 + 0.503320i 0.891392 0.453233i \(-0.149730\pi\)
−0.291559 + 0.956553i \(0.594174\pi\)
\(332\) −43.7313 25.2483i −0.131721 0.0760491i
\(333\) −122.600 383.791i −0.368169 1.15252i
\(334\) −5.12833 8.88254i −0.0153543 0.0265944i
\(335\) −698.519 123.168i −2.08513 0.367665i
\(336\) −48.8599 72.8266i −0.145416 0.216746i
\(337\) −431.168 156.932i −1.27943 0.465675i −0.389187 0.921159i \(-0.627244\pi\)
−0.890244 + 0.455484i \(0.849466\pi\)
\(338\) 59.2488 162.785i 0.175292 0.481612i
\(339\) 20.9251 + 310.297i 0.0617259 + 0.915329i
\(340\) −4.72388 + 26.7905i −0.0138938 + 0.0787955i
\(341\) −389.523 + 224.891i −1.14230 + 0.659505i
\(342\) 286.504 + 117.411i 0.837730 + 0.343307i
\(343\) 162.937 282.216i 0.475036 0.822786i
\(344\) −67.1612 + 80.0396i −0.195236 + 0.232673i
\(345\) −313.326 + 301.078i −0.908192 + 0.872689i
\(346\) −17.8047 100.975i −0.0514587 0.291837i
\(347\) 173.848 + 207.184i 0.501002 + 0.597071i 0.955980 0.293432i \(-0.0947973\pi\)
−0.454978 + 0.890503i \(0.650353\pi\)
\(348\) −65.4707 + 89.6445i −0.188134 + 0.257599i
\(349\) −314.152 + 114.342i −0.900148 + 0.327627i −0.750312 0.661084i \(-0.770097\pi\)
−0.149836 + 0.988711i \(0.547875\pi\)
\(350\) 112.993i 0.322838i
\(351\) −114.437 + 144.248i −0.326031 + 0.410963i
\(352\) −117.084 −0.332624
\(353\) 179.081 + 492.021i 0.507312 + 1.39383i 0.884000 + 0.467487i \(0.154841\pi\)
−0.376688 + 0.926340i \(0.622937\pi\)
\(354\) 255.723 113.096i 0.722382 0.319482i
\(355\) −244.810 + 205.420i −0.689607 + 0.578649i
\(356\) 80.6123 14.2141i 0.226439 0.0399273i
\(357\) 13.8312 47.7877i 0.0387430 0.133859i
\(358\) 274.415 + 230.261i 0.766521 + 0.643188i
\(359\) −46.0527 26.5885i −0.128280 0.0740627i 0.434487 0.900678i \(-0.356930\pi\)
−0.562767 + 0.826616i \(0.690263\pi\)
\(360\) 129.003 + 81.5023i 0.358342 + 0.226395i
\(361\) −115.394 199.869i −0.319652 0.553653i
\(362\) 54.0798 + 9.53572i 0.149392 + 0.0263418i
\(363\) 406.312 827.848i 1.11932 2.28057i
\(364\) −93.6662 34.0917i −0.257325 0.0936586i
\(365\) 138.827 381.424i 0.380348 1.04500i
\(366\) 160.807 + 78.9252i 0.439365 + 0.215643i
\(367\) 76.2686 432.541i 0.207816 1.17859i −0.685129 0.728421i \(-0.740254\pi\)
0.892946 0.450164i \(-0.148635\pi\)
\(368\) −83.7047 + 48.3269i −0.227458 + 0.131323i
\(369\) −246.520 + 390.196i −0.668077 + 1.05744i
\(370\) −189.750 + 328.657i −0.512838 + 0.888261i
\(371\) −83.4906 + 99.5002i −0.225042 + 0.268195i
\(372\) 125.246 + 36.2500i 0.336682 + 0.0974462i
\(373\) −102.738 582.657i −0.275438 1.56208i −0.737568 0.675272i \(-0.764026\pi\)
0.462131 0.886812i \(-0.347085\pi\)
\(374\) −42.6931 50.8797i −0.114153 0.136042i
\(375\) 102.321 + 231.358i 0.272855 + 0.616955i
\(376\) −33.7239 + 12.2745i −0.0896913 + 0.0326450i
\(377\) 126.170i 0.334668i
\(378\) −218.614 173.434i −0.578344 0.458820i
\(379\) 198.665 0.524183 0.262092 0.965043i \(-0.415588\pi\)
0.262092 + 0.965043i \(0.415588\pi\)
\(380\) −99.7493 274.059i −0.262498 0.721208i
\(381\) −531.872 388.446i −1.39599 1.01954i
\(382\) −215.000 + 180.406i −0.562826 + 0.472267i
\(383\) 31.8457 5.61525i 0.0831479 0.0146612i −0.131919 0.991260i \(-0.542114\pi\)
0.215067 + 0.976599i \(0.431003\pi\)
\(384\) 23.5169 + 24.4736i 0.0612419 + 0.0637333i
\(385\) −694.594 582.833i −1.80414 1.51385i
\(386\) 69.8050 + 40.3019i 0.180842 + 0.104409i
\(387\) −126.071 + 307.637i −0.325766 + 0.794927i
\(388\) 40.4271 + 70.0219i 0.104194 + 0.180469i
\(389\) 215.378 + 37.9769i 0.553671 + 0.0976271i 0.443482 0.896284i \(-0.353743\pi\)
0.110189 + 0.993911i \(0.464854\pi\)
\(390\) 173.043 11.6692i 0.443699 0.0299211i
\(391\) −51.5227 18.7527i −0.131772 0.0479610i
\(392\) 4.26587 11.7204i 0.0108823 0.0298989i
\(393\) 325.462 218.355i 0.828147 0.555610i
\(394\) 18.3822 104.251i 0.0466553 0.264596i
\(395\) 577.915 333.659i 1.46308 0.844707i
\(396\) −354.891 + 113.368i −0.896188 + 0.286284i
\(397\) −264.698 + 458.471i −0.666746 + 1.15484i 0.312062 + 0.950062i \(0.398980\pi\)
−0.978809 + 0.204777i \(0.934353\pi\)
\(398\) 118.567 141.303i 0.297908 0.355033i
\(399\) 127.746 + 517.828i 0.320166 + 1.29782i
\(400\) −7.59378 43.0665i −0.0189844 0.107666i
\(401\) −167.829 200.011i −0.418526 0.498780i 0.515049 0.857161i \(-0.327774\pi\)
−0.933576 + 0.358380i \(0.883329\pi\)
\(402\) −499.135 53.7127i −1.24163 0.133614i
\(403\) 139.259 50.6862i 0.345556 0.125772i
\(404\) 23.2017i 0.0574299i
\(405\) 469.935 + 122.131i 1.16033 + 0.301557i
\(406\) −191.216 −0.470975
\(407\) −316.902 870.682i −0.778629 2.13927i
\(408\) −2.06006 + 19.1434i −0.00504916 + 0.0469202i
\(409\) 489.930 411.100i 1.19787 1.00513i 0.198184 0.980165i \(-0.436496\pi\)
0.999688 0.0249695i \(-0.00794888\pi\)
\(410\) 428.139 75.4924i 1.04424 0.184128i
\(411\) 224.908 55.4839i 0.547221 0.134997i
\(412\) −190.974 160.246i −0.463529 0.388947i
\(413\) 417.126 + 240.828i 1.00999 + 0.583118i
\(414\) −206.922 + 227.531i −0.499813 + 0.549593i
\(415\) 75.6740 + 131.071i 0.182347 + 0.315834i
\(416\) 37.9912 + 6.69888i 0.0913251 + 0.0161031i
\(417\) 178.590 + 266.191i 0.428272 + 0.638348i
\(418\) 669.123 + 243.541i 1.60077 + 0.582634i
\(419\) −244.237 + 671.034i −0.582904 + 1.60151i 0.200290 + 0.979737i \(0.435811\pi\)
−0.783194 + 0.621778i \(0.786411\pi\)
\(420\) 17.6852 + 262.253i 0.0421077 + 0.624413i
\(421\) −12.1583 + 68.9530i −0.0288795 + 0.163784i −0.995837 0.0911549i \(-0.970944\pi\)
0.966957 + 0.254939i \(0.0820553\pi\)
\(422\) −38.7234 + 22.3570i −0.0917616 + 0.0529786i
\(423\) −90.3350 + 69.8588i −0.213558 + 0.165151i
\(424\) 25.1348 43.5347i 0.0592801 0.102676i
\(425\) 15.9459 19.0036i 0.0375197 0.0447143i
\(426\) −163.094 + 156.719i −0.382850 + 0.367884i
\(427\) 53.5818 + 303.877i 0.125484 + 0.711656i
\(428\) −183.257 218.397i −0.428169 0.510272i
\(429\) −249.745 + 341.959i −0.582157 + 0.797106i
\(430\) 294.274 107.107i 0.684358 0.249086i
\(431\) 76.1177i 0.176607i −0.996094 0.0883036i \(-0.971855\pi\)
0.996094 0.0883036i \(-0.0281446\pi\)
\(432\) 94.9786 + 51.4108i 0.219858 + 0.119007i
\(433\) 109.713 0.253380 0.126690 0.991942i \(-0.459565\pi\)
0.126690 + 0.991942i \(0.459565\pi\)
\(434\) 76.8170 + 211.053i 0.176998 + 0.486297i
\(435\) 304.280 134.571i 0.699494 0.309359i
\(436\) 182.741 153.338i 0.419131 0.351693i
\(437\) 578.887 102.073i 1.32468 0.233578i
\(438\) 79.8711 275.959i 0.182354 0.630044i
\(439\) 87.3258 + 73.2751i 0.198920 + 0.166914i 0.736807 0.676103i \(-0.236333\pi\)
−0.537887 + 0.843017i \(0.680777\pi\)
\(440\) 303.908 + 175.461i 0.690701 + 0.398776i
\(441\) 1.58174 39.6559i 0.00358671 0.0899228i
\(442\) 10.9420 + 18.9521i 0.0247556 + 0.0428780i
\(443\) 170.087 + 29.9909i 0.383944 + 0.0676996i 0.362289 0.932066i \(-0.381995\pi\)
0.0216549 + 0.999766i \(0.493107\pi\)
\(444\) −118.344 + 241.122i −0.266540 + 0.543067i
\(445\) −230.542 83.9106i −0.518073 0.188563i
\(446\) −49.3618 + 135.621i −0.110677 + 0.304082i
\(447\) −417.742 205.030i −0.934545 0.458680i
\(448\) −10.1524 + 57.5773i −0.0226617 + 0.128521i
\(449\) 164.941 95.2288i 0.367352 0.212091i −0.304949 0.952369i \(-0.598639\pi\)
0.672301 + 0.740278i \(0.265306\pi\)
\(450\) −64.7172 123.185i −0.143816 0.273745i
\(451\) −530.719 + 919.233i −1.17676 + 2.03821i
\(452\) 133.272 158.827i 0.294849 0.351388i
\(453\) 446.826 + 129.325i 0.986371 + 0.285486i
\(454\) −63.1661 358.233i −0.139132 0.789059i
\(455\) 192.035 + 228.858i 0.422054 + 0.502985i
\(456\) −83.4903 188.781i −0.183093 0.413993i
\(457\) −135.071 + 49.1618i −0.295560 + 0.107575i −0.485544 0.874212i \(-0.661379\pi\)
0.189984 + 0.981787i \(0.439156\pi\)
\(458\) 388.872i 0.849066i
\(459\) 12.2918 + 60.0200i 0.0267794 + 0.130763i
\(460\) 289.690 0.629762
\(461\) 223.385 + 613.745i 0.484566 + 1.33133i 0.905540 + 0.424261i \(0.139466\pi\)
−0.420974 + 0.907073i \(0.638312\pi\)
\(462\) −518.253 378.499i −1.12176 0.819263i
\(463\) 17.1769 14.4132i 0.0370992 0.0311299i −0.624050 0.781385i \(-0.714514\pi\)
0.661149 + 0.750255i \(0.270069\pi\)
\(464\) 72.8804 12.8508i 0.157070 0.0276956i
\(465\) −270.770 281.785i −0.582301 0.605990i
\(466\) −279.349 234.402i −0.599462 0.503008i
\(467\) −413.326 238.634i −0.885065 0.510993i −0.0127402 0.999919i \(-0.504055\pi\)
−0.872325 + 0.488926i \(0.837389\pi\)
\(468\) 121.641 16.4808i 0.259916 0.0352154i
\(469\) −432.376 748.898i −0.921911 1.59680i
\(470\) 105.930 + 18.6783i 0.225383 + 0.0397411i
\(471\) −363.614 + 24.5206i −0.772004 + 0.0520606i
\(472\) −175.169 63.7563i −0.371120 0.135077i
\(473\) −261.505 + 718.478i −0.552864 + 1.51898i
\(474\) 392.214 263.139i 0.827456 0.555146i
\(475\) −46.1829 + 261.916i −0.0972272 + 0.551403i
\(476\) −28.7226 + 16.5830i −0.0603417 + 0.0348383i
\(477\) 34.0323 156.294i 0.0713466 0.327661i
\(478\) 88.0673 152.537i 0.184241 0.319115i
\(479\) 383.849 457.454i 0.801356 0.955019i −0.198329 0.980136i \(-0.563551\pi\)
0.999685 + 0.0251168i \(0.00799577\pi\)
\(480\) −24.3655 98.7671i −0.0507614 0.205765i
\(481\) 53.0126 + 300.649i 0.110213 + 0.625051i
\(482\) −59.4942 70.9024i −0.123432 0.147100i
\(483\) −526.733 56.6826i −1.09054 0.117355i
\(484\) −577.712 + 210.270i −1.19362 + 0.434442i
\(485\) 242.336i 0.499662i
\(486\) 337.667 + 63.8658i 0.694789 + 0.131411i
\(487\) 758.948 1.55842 0.779208 0.626766i \(-0.215622\pi\)
0.779208 + 0.626766i \(0.215622\pi\)
\(488\) −40.8445 112.219i −0.0836977 0.229957i
\(489\) −21.4748 + 199.558i −0.0439157 + 0.408094i
\(490\) −28.6368 + 24.0291i −0.0584425 + 0.0490391i
\(491\) 258.651 45.6071i 0.526783 0.0928861i 0.0960694 0.995375i \(-0.469373\pi\)
0.430714 + 0.902489i \(0.358262\pi\)
\(492\) 298.741 73.6983i 0.607198 0.149793i
\(493\) 32.1593 + 26.9849i 0.0652319 + 0.0547360i
\(494\) −203.182 117.307i −0.411300 0.237464i
\(495\) 1091.06 + 237.574i 2.20417 + 0.479947i
\(496\) −43.4621 75.2785i −0.0876252 0.151771i
\(497\) −383.701 67.6568i −0.772033 0.136130i
\(498\) 59.6800 + 88.9543i 0.119839 + 0.178623i
\(499\) 85.4398 + 31.0975i 0.171222 + 0.0623197i 0.426209 0.904625i \(-0.359849\pi\)
−0.254987 + 0.966945i \(0.582071\pi\)
\(500\) 57.6816 158.479i 0.115363 0.316958i
\(501\) 1.46392 + 21.7084i 0.00292199 + 0.0433301i
\(502\) −57.4301 + 325.702i −0.114403 + 0.648809i
\(503\) −368.263 + 212.617i −0.732134 + 0.422698i −0.819202 0.573505i \(-0.805583\pi\)
0.0870685 + 0.996202i \(0.472250\pi\)
\(504\) 24.9774 + 184.352i 0.0495583 + 0.365778i
\(505\) 34.7700 60.2234i 0.0688515 0.119254i
\(506\) −454.636 + 541.814i −0.898490 + 1.07078i
\(507\) −264.975 + 254.617i −0.522634 + 0.502203i
\(508\) 76.2453 + 432.408i 0.150089 + 0.851198i
\(509\) −434.422 517.724i −0.853481 1.01714i −0.999611 0.0278737i \(-0.991126\pi\)
0.146130 0.989265i \(-0.453318\pi\)
\(510\) 34.0355 46.6024i 0.0667362 0.0913772i
\(511\) 465.022 169.254i 0.910023 0.331221i
\(512\) 22.6274i 0.0441942i
\(513\) −435.856 491.369i −0.849622 0.957834i
\(514\) 106.298 0.206805
\(515\) 255.556 + 702.135i 0.496226 + 1.36337i
\(516\) 202.705 89.6487i 0.392840 0.173738i
\(517\) −201.179 + 168.809i −0.389128 + 0.326517i
\(518\) −455.647 + 80.3428i −0.879627 + 0.155102i
\(519\) −60.4709 + 208.931i −0.116514 + 0.402564i
\(520\) −88.5729 74.3215i −0.170333 0.142926i
\(521\) −677.597 391.211i −1.30057 0.750885i −0.320069 0.947394i \(-0.603706\pi\)
−0.980502 + 0.196509i \(0.937039\pi\)
\(522\) 208.463 109.519i 0.399355 0.209807i
\(523\) −342.909 593.936i −0.655658 1.13563i −0.981729 0.190287i \(-0.939058\pi\)
0.326071 0.945345i \(-0.394275\pi\)
\(524\) −257.313 45.3712i −0.491055 0.0865863i
\(525\) 105.609 215.175i 0.201160 0.409858i
\(526\) −201.288 73.2629i −0.382677 0.139283i
\(527\) 16.8650 46.3362i 0.0320019 0.0879244i
\(528\) 222.965 + 109.432i 0.422282 + 0.207258i
\(529\) −9.52859 + 54.0393i −0.0180124 + 0.102154i
\(530\) −130.482 + 75.3338i −0.246192 + 0.142139i
\(531\) −592.684 23.6402i −1.11617 0.0445201i
\(532\) 177.784 307.931i 0.334181 0.578819i
\(533\) 224.801 267.907i 0.421765 0.502640i
\(534\) −166.797 48.2761i −0.312354 0.0904047i
\(535\) 148.381 + 841.508i 0.277347 + 1.57291i
\(536\) 215.127 + 256.378i 0.401356 + 0.478317i
\(537\) −307.359 694.972i −0.572363 1.29418i
\(538\) −227.071 + 82.6472i −0.422066 + 0.153619i
\(539\) 91.2710i 0.169334i
\(540\) −169.487 275.779i −0.313864 0.510702i
\(541\) 884.789 1.63547 0.817735 0.575595i \(-0.195229\pi\)
0.817735 + 0.575595i \(0.195229\pi\)
\(542\) −4.09458 11.2498i −0.00755457 0.0207560i
\(543\) −94.0725 68.7047i −0.173246 0.126528i
\(544\) 9.83292 8.25080i 0.0180752 0.0151669i
\(545\) −704.124 + 124.156i −1.29197 + 0.227809i
\(546\) 146.507 + 152.467i 0.268327 + 0.279243i
\(547\) 263.600 + 221.186i 0.481901 + 0.404363i 0.851113 0.524982i \(-0.175928\pi\)
−0.369212 + 0.929345i \(0.620373\pi\)
\(548\) −133.744 77.2169i −0.244058 0.140907i
\(549\) −232.461 300.597i −0.423427 0.547536i
\(550\) −160.005 277.137i −0.290919 0.503886i
\(551\) −443.235 78.1542i −0.804419 0.141841i
\(552\) 204.569 13.7953i 0.370596 0.0249914i
\(553\) 764.512 + 278.260i 1.38248 + 0.503182i
\(554\) −241.755 + 664.216i −0.436381 + 1.19895i
\(555\) 668.523 448.517i 1.20455 0.808139i
\(556\) 37.1086 210.453i 0.0667420 0.378513i
\(557\) −274.575 + 158.526i −0.492953 + 0.284606i −0.725799 0.687907i \(-0.758530\pi\)
0.232846 + 0.972514i \(0.425196\pi\)
\(558\) −204.627 186.093i −0.366715 0.333499i
\(559\) 125.960 218.169i 0.225331 0.390285i
\(560\) 112.637 134.236i 0.201138 0.239707i
\(561\) 33.7466 + 136.794i 0.0601544 + 0.243840i
\(562\) −17.1950 97.5174i −0.0305960 0.173519i
\(563\) 130.488 + 155.510i 0.231773 + 0.276216i 0.869379 0.494147i \(-0.164519\pi\)
−0.637605 + 0.770363i \(0.720075\pi\)
\(564\) 75.6935 + 8.14550i 0.134208 + 0.0144424i
\(565\) −583.945 + 212.539i −1.03353 + 0.376174i
\(566\) 50.6935i 0.0895646i
\(567\) 254.210 + 534.601i 0.448343 + 0.942859i
\(568\) 150.791 0.265477
\(569\) −80.4994 221.170i −0.141475 0.388700i 0.848637 0.528975i \(-0.177424\pi\)
−0.990113 + 0.140275i \(0.955201\pi\)
\(570\) −66.1948 + 615.126i −0.116131 + 1.07917i
\(571\) 50.2848 42.1940i 0.0880645 0.0738949i −0.597693 0.801725i \(-0.703916\pi\)
0.685757 + 0.727830i \(0.259471\pi\)
\(572\) 278.010 49.0207i 0.486031 0.0857005i
\(573\) 578.044 142.601i 1.00880 0.248868i
\(574\) 406.024 + 340.695i 0.707359 + 0.593545i
\(575\) −228.780 132.086i −0.397878 0.229715i
\(576\) −21.9094 68.5856i −0.0380371 0.119072i
\(577\) 72.1281 + 124.930i 0.125005 + 0.216516i 0.921735 0.387820i \(-0.126772\pi\)
−0.796730 + 0.604336i \(0.793439\pi\)
\(578\) −395.328 69.7069i −0.683958 0.120600i
\(579\) −95.2627 141.991i −0.164530 0.245235i
\(580\) −208.430 75.8622i −0.359362 0.130797i
\(581\) −63.1094 + 173.392i −0.108622 + 0.298436i
\(582\) −11.5402 171.129i −0.0198285 0.294036i
\(583\) 63.8781 362.271i 0.109568 0.621391i
\(584\) −165.864 + 95.7618i −0.284014 + 0.163976i
\(585\) −340.435 139.512i −0.581940 0.238483i
\(586\) 24.1345 41.8022i 0.0411852 0.0713348i
\(587\) 364.747 434.688i 0.621375 0.740526i −0.359931 0.932979i \(-0.617200\pi\)
0.981306 + 0.192453i \(0.0616444\pi\)
\(588\) −19.0780 + 18.3322i −0.0324456 + 0.0311773i
\(589\) 91.7982 + 520.613i 0.155854 + 0.883894i
\(590\) 359.132 + 427.996i 0.608698 + 0.725418i
\(591\) −132.443 + 181.346i −0.224101 + 0.306845i
\(592\) 168.266 61.2440i 0.284234 0.103453i
\(593\) 174.635i 0.294494i −0.989100 0.147247i \(-0.952959\pi\)
0.989100 0.147247i \(-0.0470412\pi\)
\(594\) 781.785 + 115.809i 1.31614 + 0.194965i
\(595\) 99.4051 0.167067
\(596\) 106.105 + 291.521i 0.178028 + 0.489128i
\(597\) −357.859 + 158.267i −0.599429 + 0.265104i
\(598\) 178.519 149.796i 0.298527 0.250494i
\(599\) −424.905 + 74.9222i −0.709357 + 0.125079i −0.516674 0.856182i \(-0.672830\pi\)
−0.192683 + 0.981261i \(0.561719\pi\)
\(600\) −25.7911 + 89.1098i −0.0429852 + 0.148516i
\(601\) −636.447 534.042i −1.05898 0.888589i −0.0649703 0.997887i \(-0.520695\pi\)
−0.994009 + 0.109298i \(0.965140\pi\)
\(602\) 330.645 + 190.898i 0.549244 + 0.317106i
\(603\) 900.309 + 568.802i 1.49305 + 0.943288i
\(604\) −155.055 268.563i −0.256714 0.444641i
\(605\) 1814.65 + 319.971i 2.99942 + 0.528878i
\(606\) 21.6855 44.1834i 0.0357846 0.0729099i
\(607\) 352.792 + 128.406i 0.581205 + 0.211541i 0.615857 0.787858i \(-0.288810\pi\)
−0.0346516 + 0.999399i \(0.511032\pi\)
\(608\) −47.0663 + 129.314i −0.0774117 + 0.212687i
\(609\) 364.136 + 178.720i 0.597925 + 0.293465i
\(610\) −62.1537 + 352.491i −0.101891 + 0.577854i
\(611\) 74.9368 43.2648i 0.122646 0.0708098i
\(612\) 21.8154 34.5298i 0.0356461 0.0564212i
\(613\) 192.466 333.361i 0.313974 0.543820i −0.665245 0.746626i \(-0.731673\pi\)
0.979219 + 0.202806i \(0.0650060\pi\)
\(614\) 300.537 358.166i 0.489474 0.583333i
\(615\) −885.871 256.398i −1.44044 0.416908i
\(616\) 74.2929 + 421.336i 0.120605 + 0.683987i
\(617\) −106.165 126.523i −0.172066 0.205061i 0.673119 0.739534i \(-0.264954\pi\)
−0.845185 + 0.534474i \(0.820510\pi\)
\(618\) 213.901 + 483.653i 0.346118 + 0.782610i
\(619\) −449.740 + 163.692i −0.726560 + 0.264446i −0.678708 0.734408i \(-0.737460\pi\)
−0.0478519 + 0.998854i \(0.515238\pi\)
\(620\) 260.529i 0.420208i
\(621\) 606.708 239.892i 0.976986 0.386300i
\(622\) 341.722 0.549392
\(623\) −102.301 281.071i −0.164208 0.451157i
\(624\) −66.0863 48.2653i −0.105908 0.0773483i
\(625\) −596.591 + 500.599i −0.954545 + 0.800958i
\(626\) −436.315 + 76.9341i −0.696989 + 0.122898i
\(627\) −1046.60 1089.18i −1.66922 1.73712i
\(628\) 186.118 + 156.172i 0.296366 + 0.248681i
\(629\) 87.9703 + 50.7897i 0.139857 + 0.0807467i
\(630\) 211.437 515.943i 0.335614 0.818958i
\(631\) 124.618 + 215.844i 0.197493 + 0.342067i 0.947715 0.319119i \(-0.103387\pi\)
−0.750222 + 0.661186i \(0.770053\pi\)
\(632\) −310.088 54.6769i −0.490645 0.0865140i
\(633\) 94.6376 6.38195i 0.149506 0.0100821i
\(634\) −656.099 238.801i −1.03486 0.376657i
\(635\) 450.100 1236.64i 0.708819 1.94746i
\(636\) −88.5543 + 59.4117i −0.139236 + 0.0934147i
\(637\) −5.22202 + 29.6155i −0.00819783 + 0.0464922i
\(638\) 468.993 270.773i 0.735099 0.424410i
\(639\) 457.060 146.006i 0.715274 0.228492i
\(640\) −33.9094 + 58.7328i −0.0529834 + 0.0917700i
\(641\) 144.405 172.096i 0.225282 0.268480i −0.641550 0.767081i \(-0.721708\pi\)
0.866832 + 0.498601i \(0.166153\pi\)
\(642\) 144.854 + 587.177i 0.225630 + 0.914607i
\(643\) −63.2329 358.612i −0.0983404 0.557716i −0.993672 0.112317i \(-0.964173\pi\)
0.895332 0.445399i \(-0.146938\pi\)
\(644\) 227.021 + 270.554i 0.352518 + 0.420114i
\(645\) −660.499 71.0774i −1.02403 0.110198i
\(646\) −73.3564 + 26.6995i −0.113555 + 0.0413305i
\(647\) 1200.78i 1.85593i 0.372671 + 0.927964i \(0.378442\pi\)
−0.372671 + 0.927964i \(0.621558\pi\)
\(648\) −132.818 186.674i −0.204967 0.288078i
\(649\) −1364.11 −2.10186
\(650\) 36.0621 + 99.0799i 0.0554802 + 0.152431i
\(651\) 50.9767 473.709i 0.0783052 0.727664i
\(652\) 102.502 86.0092i 0.157211 0.131916i
\(653\) 626.194 110.415i 0.958949 0.169089i 0.327797 0.944748i \(-0.393694\pi\)
0.631152 + 0.775659i \(0.282583\pi\)
\(654\) −491.315 + 121.205i −0.751246 + 0.185329i
\(655\) 599.900 + 503.376i 0.915878 + 0.768513i
\(656\) −177.649 102.566i −0.270807 0.156350i
\(657\) −410.025 + 450.863i −0.624087 + 0.686245i
\(658\) 65.5696 + 113.570i 0.0996498 + 0.172599i
\(659\) 1147.84 + 202.395i 1.74179 + 0.307125i 0.951965 0.306207i \(-0.0990600\pi\)
0.789825 + 0.613332i \(0.210171\pi\)
\(660\) −414.743 618.182i −0.628398 0.936640i
\(661\) 904.893 + 329.354i 1.36898 + 0.498266i 0.918818 0.394683i \(-0.129145\pi\)
0.450158 + 0.892949i \(0.351368\pi\)
\(662\) −125.363 + 344.433i −0.189371 + 0.520292i
\(663\) −3.12346 46.3177i −0.00471111 0.0698608i
\(664\) 12.4007 70.3280i 0.0186758 0.105916i
\(665\) −922.931 + 532.854i −1.38787 + 0.801285i
\(666\) 450.729 348.562i 0.676770 0.523367i
\(667\) 223.526 387.159i 0.335122 0.580448i
\(668\) 9.32371 11.1116i 0.0139577 0.0166341i
\(669\) 220.758 212.129i 0.329983 0.317083i
\(670\) −174.185 987.855i −0.259978 1.47441i
\(671\) −561.728 669.441i −0.837150 0.997677i
\(672\) 73.1481 100.157i 0.108851 0.149043i
\(673\) 612.694 223.002i 0.910392 0.331355i 0.155982 0.987760i \(-0.450146\pi\)
0.754409 + 0.656404i \(0.227923\pi\)
\(674\) 648.897i 0.962755i
\(675\) 8.10715 + 295.072i 0.0120106 + 0.437143i
\(676\) 244.987 0.362407
\(677\) −258.040 708.958i −0.381152 1.04721i −0.970872 0.239598i \(-0.922984\pi\)
0.589720 0.807608i \(-0.299238\pi\)
\(678\) −402.240 + 177.895i −0.593274 + 0.262382i
\(679\) 226.327 189.911i 0.333325 0.279693i
\(680\) −37.8874 + 6.68058i −0.0557168 + 0.00982438i
\(681\) −214.534 + 741.228i −0.315028 + 1.08844i
\(682\) −487.272 408.870i −0.714475 0.599516i
\(683\) −405.766 234.269i −0.594094 0.343000i 0.172621 0.984988i \(-0.444776\pi\)
−0.766715 + 0.641988i \(0.778110\pi\)
\(684\) −17.4517 + 437.533i −0.0255142 + 0.639668i
\(685\) 231.434 + 400.856i 0.337860 + 0.585191i
\(686\) 453.855 + 80.0268i 0.661596 + 0.116657i
\(687\) −363.460 + 740.537i −0.529053 + 1.07793i
\(688\) −138.852 50.5380i −0.201820 0.0734563i
\(689\) −41.4542 + 113.895i −0.0601658 + 0.165304i
\(690\) −551.663 270.759i −0.799511 0.392405i
\(691\) 37.3428 211.781i 0.0540416 0.306485i −0.945791 0.324776i \(-0.894711\pi\)
0.999833 + 0.0182903i \(0.00582232\pi\)
\(692\) 125.577 72.5019i 0.181470 0.104772i
\(693\) 633.154 + 1205.17i 0.913642 + 1.73906i
\(694\) −191.243 + 331.243i −0.275567 + 0.477296i
\(695\) −411.705 + 490.651i −0.592382 + 0.705973i
\(696\) −150.798 43.6457i −0.216664 0.0627093i
\(697\) −20.2068 114.598i −0.0289911 0.164416i
\(698\) −303.904 362.178i −0.435392 0.518880i
\(699\) 312.886 + 707.470i 0.447620 + 1.01212i
\(700\) −150.160 + 54.6537i −0.214514 + 0.0780767i
\(701\) 848.227i 1.21002i −0.796216 0.605012i \(-0.793168\pi\)
0.796216 0.605012i \(-0.206832\pi\)
\(702\) −247.047 82.3070i −0.351919 0.117246i
\(703\) −1089.02 −1.54910
\(704\) −56.6322 155.596i −0.0804435 0.221017i
\(705\) −184.267 134.577i −0.261371 0.190889i
\(706\) −567.240 + 475.971i −0.803456 + 0.674180i
\(707\) 83.4932 14.7221i 0.118095 0.0208234i
\(708\) 273.988 + 285.134i 0.386988 + 0.402731i
\(709\) −63.9344 53.6473i −0.0901754 0.0756662i 0.596586 0.802549i \(-0.296524\pi\)
−0.686761 + 0.726883i \(0.740968\pi\)
\(710\) −391.401 225.975i −0.551268 0.318275i
\(711\) −992.844 + 134.518i −1.39640 + 0.189195i
\(712\) 57.8809 + 100.253i 0.0812934 + 0.140804i
\(713\) −517.120 91.1822i −0.725273 0.127885i
\(714\) 70.1964 4.73374i 0.0983143 0.00662989i
\(715\) −795.078 289.385i −1.11200 0.404734i
\(716\) −173.269 + 476.052i −0.241995 + 0.664876i
\(717\) −310.277 + 208.167i −0.432744 + 0.290331i
\(718\) 13.0590 74.0612i 0.0181880 0.103149i
\(719\) 1032.07 595.867i 1.43543 0.828744i 0.437899 0.899024i \(-0.355723\pi\)
0.997527 + 0.0702802i \(0.0223893\pi\)
\(720\) −45.9131 + 210.857i −0.0637682 + 0.292857i
\(721\) −455.481 + 788.916i −0.631735 + 1.09420i
\(722\) 209.796 250.025i 0.290576 0.346295i
\(723\) 47.0269 + 190.627i 0.0650441 + 0.263661i
\(724\) 13.4855 + 76.4803i 0.0186264 + 0.105636i
\(725\) 130.015 + 154.946i 0.179331 + 0.213719i
\(726\) 1296.68 + 139.538i 1.78606 + 0.192201i
\(727\) −633.829 + 230.695i −0.871842 + 0.317325i −0.738913 0.673801i \(-0.764661\pi\)
−0.132929 + 0.991126i \(0.542438\pi\)
\(728\) 140.965i 0.193634i
\(729\) −583.334 437.222i −0.800184 0.599755i
\(730\) 574.034 0.786348
\(731\) −28.6689 78.7672i −0.0392188 0.107753i
\(732\) −27.1049 + 251.876i −0.0370285 + 0.344094i
\(733\) −149.604 + 125.532i −0.204098 + 0.171259i −0.739107 0.673588i \(-0.764752\pi\)
0.535010 + 0.844846i \(0.320308\pi\)
\(734\) 611.705 107.860i 0.833386 0.146948i
\(735\) 76.9925 18.9937i 0.104752 0.0258418i
\(736\) −104.710 87.8621i −0.142269 0.119378i
\(737\) 2120.97 + 1224.54i 2.87784 + 1.66152i
\(738\) −637.781 138.874i −0.864202 0.188176i
\(739\) −718.905 1245.18i −0.972807 1.68495i −0.686989 0.726668i \(-0.741068\pi\)
−0.285818 0.958284i \(-0.592265\pi\)
\(740\) −528.540 93.1959i −0.714244 0.125940i
\(741\) 277.283 + 413.295i 0.374201 + 0.557753i
\(742\) −172.612 62.8256i −0.232631 0.0846707i
\(743\) −342.663 + 941.458i −0.461188 + 1.26710i 0.463405 + 0.886147i \(0.346628\pi\)
−0.924593 + 0.380957i \(0.875595\pi\)
\(744\) 12.4066 + 183.976i 0.0166755 + 0.247280i
\(745\) 161.461 915.693i 0.216727 1.22912i
\(746\) 724.615 418.357i 0.971334 0.560800i
\(747\) −30.5087 225.177i −0.0408416 0.301442i
\(748\) 46.9651 81.3460i 0.0627876 0.108751i
\(749\) −669.637 + 798.043i −0.894042 + 1.06548i
\(750\) −257.966 + 247.882i −0.343955 + 0.330510i
\(751\) −129.904 736.724i −0.172975 0.980990i −0.940455 0.339918i \(-0.889601\pi\)
0.767480 0.641073i \(-0.221510\pi\)
\(752\) −32.6238 38.8795i −0.0433827 0.0517015i
\(753\) 413.783 566.564i 0.549512 0.752409i
\(754\) −167.671 + 61.0271i −0.222375 + 0.0809378i
\(755\) 929.460i 1.23107i
\(756\) 124.740 374.410i 0.165000 0.495251i
\(757\) 788.946 1.04220 0.521100 0.853496i \(-0.325522\pi\)
0.521100 + 0.853496i \(0.325522\pi\)
\(758\) 96.0924 + 264.012i 0.126771 + 0.348300i
\(759\) 1372.18 606.861i 1.80788 0.799553i
\(760\) 315.956 265.119i 0.415732 0.348841i
\(761\) 512.126 90.3016i 0.672965 0.118662i 0.173284 0.984872i \(-0.444562\pi\)
0.499680 + 0.866210i \(0.333451\pi\)
\(762\) 258.955 894.706i 0.339836 1.17415i
\(763\) −667.754 560.312i −0.875170 0.734354i
\(764\) −343.739 198.458i −0.449921 0.259762i
\(765\) −108.371 + 56.9345i −0.141662 + 0.0744242i
\(766\) 22.8657 + 39.6045i 0.02