Properties

Label 54.3.f.a.47.4
Level $54$
Weight $3$
Character 54.47
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 47.4
Character \(\chi\) \(=\) 54.47
Dual form 54.3.f.a.23.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.483690 + 1.32893i) q^{2} +(-1.47299 + 2.61348i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(-2.99623 + 0.528316i) q^{5} +(-4.18560 - 0.693383i) q^{6} +(6.30359 + 5.28934i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(-4.66059 - 7.69928i) q^{9} +O(q^{10})\) \(q+(0.483690 + 1.32893i) q^{2} +(-1.47299 + 2.61348i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(-2.99623 + 0.528316i) q^{5} +(-4.18560 - 0.693383i) q^{6} +(6.30359 + 5.28934i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(-4.66059 - 7.69928i) q^{9} +(-2.15134 - 3.72623i) q^{10} +(6.45500 + 1.13819i) q^{11} +(-1.10308 - 5.89773i) q^{12} +(17.4093 + 6.33646i) q^{13} +(-3.98016 + 10.9354i) q^{14} +(3.03268 - 8.60880i) q^{15} +(0.694593 - 3.93923i) q^{16} +(-11.4293 + 6.59870i) q^{17} +(7.97749 - 9.91764i) q^{18} +(17.4160 - 30.1654i) q^{19} +(3.91130 - 4.66131i) q^{20} +(-23.1087 + 8.68318i) q^{21} +(1.60964 + 9.12874i) q^{22} +(2.12998 + 2.53841i) q^{23} +(7.30410 - 4.31858i) q^{24} +(-14.7940 + 5.38459i) q^{25} +26.2005i q^{26} +(26.9869 - 0.839401i) q^{27} -16.4575 q^{28} +(-9.72486 - 26.7188i) q^{29} +(12.9073 - 0.133785i) q^{30} +(-10.6385 + 8.92675i) q^{31} +(5.57091 - 0.982302i) q^{32} +(-12.4828 + 15.1935i) q^{33} +(-14.2974 - 11.9970i) q^{34} +(-21.6815 - 12.5178i) q^{35} +(17.0384 + 5.80444i) q^{36} +(-3.33360 - 5.77397i) q^{37} +(48.5116 + 8.55390i) q^{38} +(-42.2040 + 36.1653i) q^{39} +(8.08639 + 2.94320i) q^{40} +(-19.4863 + 53.5382i) q^{41} +(-22.7168 - 26.5099i) q^{42} +(-5.68525 + 32.2426i) q^{43} +(-11.3529 + 6.55457i) q^{44} +(18.0319 + 20.6065i) q^{45} +(-2.34311 + 4.05838i) q^{46} +(34.5145 - 41.1328i) q^{47} +(9.27199 + 7.61776i) q^{48} +(3.24938 + 18.4281i) q^{49} +(-14.3114 - 17.0557i) q^{50} +(-0.410352 - 39.5901i) q^{51} +(-34.8186 + 12.6729i) q^{52} -98.5651i q^{53} +(14.1688 + 35.4576i) q^{54} -19.9420 q^{55} +(-7.96033 - 21.8708i) q^{56} +(53.1832 + 89.9499i) q^{57} +(30.8035 - 25.8472i) q^{58} +(101.204 - 17.8449i) q^{59} +(6.42093 + 17.0882i) q^{60} +(-5.50484 - 4.61911i) q^{61} +(-17.0087 - 9.81998i) q^{62} +(11.3457 - 73.1846i) q^{63} +(4.00000 + 6.92820i) q^{64} +(-55.5099 - 9.78789i) q^{65} +(-26.2288 - 9.23979i) q^{66} +(-28.2566 - 10.2846i) q^{67} +(9.02755 - 24.8030i) q^{68} +(-9.77153 + 1.82761i) q^{69} +(6.14813 - 34.8678i) q^{70} +(8.46959 - 4.88992i) q^{71} +(0.527644 + 25.4504i) q^{72} +(64.7978 - 112.233i) q^{73} +(6.06075 - 7.22291i) q^{74} +(7.71896 - 46.5954i) q^{75} +(12.0970 + 68.6057i) q^{76} +(34.6694 + 41.3174i) q^{77} +(-68.4747 - 38.5932i) q^{78} +(-96.4782 + 35.1152i) q^{79} +12.1698i q^{80} +(-37.5578 + 71.7664i) q^{81} -80.5737 q^{82} +(37.0524 + 101.800i) q^{83} +(24.2418 - 43.0114i) q^{84} +(30.7586 - 25.8095i) q^{85} +(-45.5980 + 8.04015i) q^{86} +(84.1539 + 13.9409i) q^{87} +(-14.2018 - 11.9167i) q^{88} +(-20.1649 - 11.6422i) q^{89} +(-18.6628 + 33.9302i) q^{90} +(76.2254 + 132.026i) q^{91} +(-6.52663 - 1.15082i) q^{92} +(-7.65951 - 40.9525i) q^{93} +(71.3568 + 25.9718i) q^{94} +(-36.2455 + 99.5837i) q^{95} +(-5.63868 + 16.0064i) q^{96} +(-8.89809 + 50.4636i) q^{97} +(-22.9179 + 13.2317i) q^{98} +(-21.3209 - 55.0035i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.483690 + 1.32893i 0.241845 + 0.664463i
\(3\) −1.47299 + 2.61348i −0.490997 + 0.871161i
\(4\) −1.53209 + 1.28558i −0.383022 + 0.321394i
\(5\) −2.99623 + 0.528316i −0.599246 + 0.105663i −0.465039 0.885290i \(-0.653960\pi\)
−0.134207 + 0.990953i \(0.542849\pi\)
\(6\) −4.18560 0.693383i −0.697599 0.115564i
\(7\) 6.30359 + 5.28934i 0.900513 + 0.755620i 0.970291 0.241942i \(-0.0777845\pi\)
−0.0697775 + 0.997563i \(0.522229\pi\)
\(8\) −2.44949 1.41421i −0.306186 0.176777i
\(9\) −4.66059 7.69928i −0.517843 0.855475i
\(10\) −2.15134 3.72623i −0.215134 0.372623i
\(11\) 6.45500 + 1.13819i 0.586818 + 0.103472i 0.459171 0.888348i \(-0.348147\pi\)
0.127647 + 0.991820i \(0.459258\pi\)
\(12\) −1.10308 5.89773i −0.0919229 0.491478i
\(13\) 17.4093 + 6.33646i 1.33918 + 0.487420i 0.909553 0.415588i \(-0.136424\pi\)
0.429623 + 0.903008i \(0.358646\pi\)
\(14\) −3.98016 + 10.9354i −0.284297 + 0.781101i
\(15\) 3.03268 8.60880i 0.202178 0.573920i
\(16\) 0.694593 3.93923i 0.0434120 0.246202i
\(17\) −11.4293 + 6.59870i −0.672311 + 0.388159i −0.796952 0.604043i \(-0.793555\pi\)
0.124641 + 0.992202i \(0.460222\pi\)
\(18\) 7.97749 9.91764i 0.443194 0.550980i
\(19\) 17.4160 30.1654i 0.916632 1.58765i 0.112139 0.993693i \(-0.464230\pi\)
0.804494 0.593961i \(-0.202437\pi\)
\(20\) 3.91130 4.66131i 0.195565 0.233065i
\(21\) −23.1087 + 8.68318i −1.10042 + 0.413485i
\(22\) 1.60964 + 9.12874i 0.0731656 + 0.414943i
\(23\) 2.12998 + 2.53841i 0.0926077 + 0.110366i 0.810358 0.585935i \(-0.199273\pi\)
−0.717750 + 0.696300i \(0.754828\pi\)
\(24\) 7.30410 4.31858i 0.304338 0.179941i
\(25\) −14.7940 + 5.38459i −0.591762 + 0.215384i
\(26\) 26.2005i 1.00771i
\(27\) 26.9869 0.839401i 0.999517 0.0310889i
\(28\) −16.4575 −0.587768
\(29\) −9.72486 26.7188i −0.335340 0.921339i −0.986697 0.162568i \(-0.948022\pi\)
0.651357 0.758771i \(-0.274200\pi\)
\(30\) 12.9073 0.133785i 0.430244 0.00445949i
\(31\) −10.6385 + 8.92675i −0.343177 + 0.287960i −0.798043 0.602600i \(-0.794131\pi\)
0.454866 + 0.890560i \(0.349687\pi\)
\(32\) 5.57091 0.982302i 0.174091 0.0306970i
\(33\) −12.4828 + 15.1935i −0.378267 + 0.460408i
\(34\) −14.2974 11.9970i −0.420512 0.352851i
\(35\) −21.6815 12.5178i −0.619470 0.357651i
\(36\) 17.0384 + 5.80444i 0.473290 + 0.161234i
\(37\) −3.33360 5.77397i −0.0900973 0.156053i 0.817455 0.575993i \(-0.195384\pi\)
−0.907552 + 0.419940i \(0.862051\pi\)
\(38\) 48.5116 + 8.55390i 1.27662 + 0.225103i
\(39\) −42.2040 + 36.1653i −1.08215 + 0.927316i
\(40\) 8.08639 + 2.94320i 0.202160 + 0.0735801i
\(41\) −19.4863 + 53.5382i −0.475276 + 1.30581i 0.438185 + 0.898885i \(0.355621\pi\)
−0.913461 + 0.406926i \(0.866601\pi\)
\(42\) −22.7168 26.5099i −0.540875 0.631187i
\(43\) −5.68525 + 32.2426i −0.132215 + 0.749829i 0.844544 + 0.535487i \(0.179872\pi\)
−0.976759 + 0.214342i \(0.931239\pi\)
\(44\) −11.3529 + 6.55457i −0.258019 + 0.148968i
\(45\) 18.0319 + 20.6065i 0.400708 + 0.457923i
\(46\) −2.34311 + 4.05838i −0.0509371 + 0.0882257i
\(47\) 34.5145 41.1328i 0.734352 0.875167i −0.261589 0.965179i \(-0.584246\pi\)
0.995941 + 0.0900128i \(0.0286908\pi\)
\(48\) 9.27199 + 7.61776i 0.193166 + 0.158703i
\(49\) 3.24938 + 18.4281i 0.0663138 + 0.376084i
\(50\) −14.3114 17.0557i −0.286229 0.341114i
\(51\) −0.410352 39.5901i −0.00804611 0.776276i
\(52\) −34.8186 + 12.6729i −0.669588 + 0.243710i
\(53\) 98.5651i 1.85972i −0.367914 0.929860i \(-0.619928\pi\)
0.367914 0.929860i \(-0.380072\pi\)
\(54\) 14.1688 + 35.4576i 0.262385 + 0.656623i
\(55\) −19.9420 −0.362581
\(56\) −7.96033 21.8708i −0.142149 0.390550i
\(57\) 53.1832 + 89.9499i 0.933038 + 1.57807i
\(58\) 30.8035 25.8472i 0.531096 0.445642i
\(59\) 101.204 17.8449i 1.71532 0.302457i 0.772314 0.635241i \(-0.219099\pi\)
0.943003 + 0.332785i \(0.107988\pi\)
\(60\) 6.42093 + 17.0882i 0.107016 + 0.284803i
\(61\) −5.50484 4.61911i −0.0902432 0.0757230i 0.596550 0.802576i \(-0.296538\pi\)
−0.686793 + 0.726853i \(0.740982\pi\)
\(62\) −17.0087 9.81998i −0.274334 0.158387i
\(63\) 11.3457 73.1846i 0.180090 1.16166i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) −55.5099 9.78789i −0.853998 0.150583i
\(66\) −26.2288 9.23979i −0.397406 0.139997i
\(67\) −28.2566 10.2846i −0.421740 0.153501i 0.122427 0.992477i \(-0.460932\pi\)
−0.544167 + 0.838977i \(0.683154\pi\)
\(68\) 9.02755 24.8030i 0.132758 0.364750i
\(69\) −9.77153 + 1.82761i −0.141616 + 0.0264870i
\(70\) 6.14813 34.8678i 0.0878304 0.498111i
\(71\) 8.46959 4.88992i 0.119290 0.0688721i −0.439168 0.898405i \(-0.644727\pi\)
0.558458 + 0.829533i \(0.311393\pi\)
\(72\) 0.527644 + 25.4504i 0.00732838 + 0.353477i
\(73\) 64.7978 112.233i 0.887642 1.53744i 0.0449857 0.998988i \(-0.485676\pi\)
0.842656 0.538453i \(-0.180991\pi\)
\(74\) 6.06075 7.22291i 0.0819020 0.0976070i
\(75\) 7.71896 46.5954i 0.102920 0.621272i
\(76\) 12.0970 + 68.6057i 0.159172 + 0.902707i
\(77\) 34.6694 + 41.3174i 0.450252 + 0.536589i
\(78\) −68.4747 38.5932i −0.877881 0.494784i
\(79\) −96.4782 + 35.1152i −1.22124 + 0.444496i −0.870590 0.492009i \(-0.836263\pi\)
−0.350653 + 0.936505i \(0.614040\pi\)
\(80\) 12.1698i 0.152123i
\(81\) −37.5578 + 71.7664i −0.463676 + 0.886005i
\(82\) −80.5737 −0.982606
\(83\) 37.0524 + 101.800i 0.446414 + 1.22651i 0.935204 + 0.354110i \(0.115216\pi\)
−0.488790 + 0.872402i \(0.662561\pi\)
\(84\) 24.2418 43.0114i 0.288593 0.512041i
\(85\) 30.7586 25.8095i 0.361865 0.303641i
\(86\) −45.5980 + 8.04015i −0.530209 + 0.0934902i
\(87\) 84.1539 + 13.9409i 0.967286 + 0.160240i
\(88\) −14.2018 11.9167i −0.161384 0.135417i
\(89\) −20.1649 11.6422i −0.226572 0.130811i 0.382418 0.923990i \(-0.375092\pi\)
−0.608989 + 0.793178i \(0.708425\pi\)
\(90\) −18.6628 + 33.9302i −0.207364 + 0.377002i
\(91\) 76.2254 + 132.026i 0.837641 + 1.45084i
\(92\) −6.52663 1.15082i −0.0709416 0.0125089i
\(93\) −7.65951 40.9525i −0.0823603 0.440350i
\(94\) 71.3568 + 25.9718i 0.759115 + 0.276295i
\(95\) −36.2455 + 99.5837i −0.381532 + 1.04825i
\(96\) −5.63868 + 16.0064i −0.0587362 + 0.166733i
\(97\) −8.89809 + 50.4636i −0.0917329 + 0.520243i 0.903967 + 0.427603i \(0.140642\pi\)
−0.995700 + 0.0926404i \(0.970469\pi\)
\(98\) −22.9179 + 13.2317i −0.233856 + 0.135017i
\(99\) −21.3209 55.0035i −0.215362 0.555590i
\(100\) 15.7435 27.2685i 0.157435 0.272685i
\(101\) −69.9824 + 83.4017i −0.692895 + 0.825760i −0.991703 0.128554i \(-0.958967\pi\)
0.298808 + 0.954313i \(0.403411\pi\)
\(102\) 52.4138 19.6946i 0.513861 0.193085i
\(103\) −19.5497 110.872i −0.189803 1.07643i −0.919627 0.392792i \(-0.871509\pi\)
0.729824 0.683635i \(-0.239602\pi\)
\(104\) −33.6828 40.1416i −0.323873 0.385977i
\(105\) 64.6517 38.2255i 0.615730 0.364053i
\(106\) 130.986 47.6749i 1.23571 0.449763i
\(107\) 125.974i 1.17733i 0.808378 + 0.588664i \(0.200346\pi\)
−0.808378 + 0.588664i \(0.799654\pi\)
\(108\) −40.2673 + 35.9798i −0.372845 + 0.333146i
\(109\) −71.2685 −0.653839 −0.326920 0.945052i \(-0.606011\pi\)
−0.326920 + 0.945052i \(0.606011\pi\)
\(110\) −9.64572 26.5014i −0.0876884 0.240922i
\(111\) 20.0005 0.207306i 0.180185 0.00186762i
\(112\) 25.2144 21.1574i 0.225128 0.188905i
\(113\) −40.2664 + 7.10006i −0.356340 + 0.0628324i −0.348953 0.937140i \(-0.613463\pi\)
−0.00738746 + 0.999973i \(0.502352\pi\)
\(114\) −93.8126 + 114.184i −0.822918 + 1.00162i
\(115\) −7.72298 6.48035i −0.0671564 0.0563509i
\(116\) 49.2484 + 28.4336i 0.424555 + 0.245117i
\(117\) −32.3514 163.571i −0.276508 1.39804i
\(118\) 72.6658 + 125.861i 0.615811 + 1.06662i
\(119\) −106.948 18.8579i −0.898725 0.158470i
\(120\) −19.6032 + 16.7983i −0.163360 + 0.139986i
\(121\) −73.3313 26.6904i −0.606044 0.220582i
\(122\) 3.47582 9.54973i 0.0284903 0.0782765i
\(123\) −111.218 129.789i −0.904212 1.05519i
\(124\) 4.82310 27.3531i 0.0388959 0.220590i
\(125\) 107.353 61.9800i 0.858821 0.495840i
\(126\) 102.745 20.3211i 0.815434 0.161278i
\(127\) 6.05212 10.4826i 0.0476545 0.0825399i −0.841214 0.540702i \(-0.818159\pi\)
0.888869 + 0.458162i \(0.151492\pi\)
\(128\) −7.27231 + 8.66680i −0.0568149 + 0.0677094i
\(129\) −75.8913 62.3514i −0.588304 0.483345i
\(130\) −13.8422 78.5029i −0.106478 0.603868i
\(131\) −47.7541 56.9111i −0.364535 0.434436i 0.552335 0.833622i \(-0.313737\pi\)
−0.916870 + 0.399187i \(0.869293\pi\)
\(132\) −0.407608 39.3253i −0.00308794 0.297919i
\(133\) 269.339 98.0313i 2.02510 0.737077i
\(134\) 42.5255i 0.317354i
\(135\) −80.4156 + 16.7727i −0.595671 + 0.124242i
\(136\) 37.3279 0.274470
\(137\) 14.1317 + 38.8266i 0.103151 + 0.283406i 0.980523 0.196406i \(-0.0629270\pi\)
−0.877371 + 0.479812i \(0.840705\pi\)
\(138\) −7.15514 12.1016i −0.0518488 0.0876931i
\(139\) −108.810 + 91.3026i −0.782807 + 0.656853i −0.943954 0.330077i \(-0.892925\pi\)
0.161147 + 0.986930i \(0.448481\pi\)
\(140\) 49.3105 8.69477i 0.352218 0.0621055i
\(141\) 56.6603 + 150.792i 0.401846 + 1.06944i
\(142\) 10.5950 + 8.89025i 0.0746126 + 0.0626074i
\(143\) 105.165 + 60.7169i 0.735418 + 0.424594i
\(144\) −33.5665 + 13.0113i −0.233100 + 0.0903561i
\(145\) 43.2539 + 74.9180i 0.298303 + 0.516676i
\(146\) 180.492 + 31.8255i 1.23624 + 0.217983i
\(147\) −52.9479 18.6523i −0.360190 0.126886i
\(148\) 12.5302 + 4.56063i 0.0846638 + 0.0308151i
\(149\) 79.8207 219.306i 0.535709 1.47185i −0.316471 0.948602i \(-0.602498\pi\)
0.852181 0.523247i \(-0.175280\pi\)
\(150\) 65.6555 12.2798i 0.437703 0.0818653i
\(151\) 1.35424 7.68028i 0.00896848 0.0508628i −0.979995 0.199022i \(-0.936224\pi\)
0.988964 + 0.148159i \(0.0473347\pi\)
\(152\) −85.3207 + 49.2599i −0.561320 + 0.324078i
\(153\) 104.072 + 57.2434i 0.680212 + 0.374140i
\(154\) −38.1385 + 66.0578i −0.247653 + 0.428947i
\(155\) 27.1592 32.3671i 0.175221 0.208820i
\(156\) 18.1670 109.665i 0.116455 0.702980i
\(157\) −4.42811 25.1131i −0.0282045 0.159956i 0.967453 0.253053i \(-0.0814345\pi\)
−0.995657 + 0.0930967i \(0.970323\pi\)
\(158\) −93.3310 111.228i −0.590703 0.703972i
\(159\) 257.598 + 145.186i 1.62012 + 0.913117i
\(160\) −16.1728 + 5.88641i −0.101080 + 0.0367900i
\(161\) 27.2673i 0.169362i
\(162\) −113.539 15.1989i −0.700855 0.0938203i
\(163\) −211.039 −1.29472 −0.647358 0.762186i \(-0.724126\pi\)
−0.647358 + 0.762186i \(0.724126\pi\)
\(164\) −38.9726 107.076i −0.237638 0.652905i
\(165\) 29.3744 52.1180i 0.178026 0.315867i
\(166\) −117.363 + 98.4797i −0.707009 + 0.593251i
\(167\) −11.3278 + 1.99740i −0.0678311 + 0.0119605i −0.207461 0.978243i \(-0.566520\pi\)
0.139630 + 0.990204i \(0.455409\pi\)
\(168\) 68.8845 + 11.4114i 0.410027 + 0.0679247i
\(169\) 133.471 + 111.996i 0.789771 + 0.662696i
\(170\) 49.1765 + 28.3921i 0.289274 + 0.167012i
\(171\) −313.421 + 6.49792i −1.83287 + 0.0379995i
\(172\) −32.7400 56.7074i −0.190349 0.329694i
\(173\) −227.512 40.1166i −1.31510 0.231888i −0.528281 0.849070i \(-0.677163\pi\)
−0.786820 + 0.617182i \(0.788274\pi\)
\(174\) 22.1780 + 118.577i 0.127460 + 0.681479i
\(175\) −121.737 44.3085i −0.695637 0.253191i
\(176\) 8.96719 24.6371i 0.0509499 0.139984i
\(177\) −102.435 + 290.780i −0.578727 + 1.64282i
\(178\) 5.71808 32.4288i 0.0321240 0.182185i
\(179\) 71.6862 41.3880i 0.400481 0.231218i −0.286210 0.958167i \(-0.592396\pi\)
0.686692 + 0.726949i \(0.259062\pi\)
\(180\) −54.1177 8.38975i −0.300654 0.0466097i
\(181\) 83.1040 143.940i 0.459138 0.795250i −0.539778 0.841808i \(-0.681492\pi\)
0.998916 + 0.0465572i \(0.0148250\pi\)
\(182\) −138.584 + 165.158i −0.761449 + 0.907459i
\(183\) 20.1805 7.58289i 0.110276 0.0414366i
\(184\) −1.62751 9.23005i −0.00884514 0.0501633i
\(185\) 13.0387 + 15.5389i 0.0704795 + 0.0839942i
\(186\) 50.7181 29.9872i 0.272678 0.161222i
\(187\) −81.2866 + 29.5859i −0.434687 + 0.158213i
\(188\) 107.390i 0.571224i
\(189\) 174.555 + 137.452i 0.923569 + 0.727259i
\(190\) −149.871 −0.788794
\(191\) 42.8208 + 117.649i 0.224192 + 0.615964i 0.999885 0.0151469i \(-0.00482159\pi\)
−0.775693 + 0.631111i \(0.782599\pi\)
\(192\) −23.9987 + 0.248747i −0.124993 + 0.00129556i
\(193\) −70.6839 + 59.3108i −0.366238 + 0.307310i −0.807271 0.590181i \(-0.799056\pi\)
0.441033 + 0.897491i \(0.354612\pi\)
\(194\) −71.3663 + 12.5838i −0.367867 + 0.0648650i
\(195\) 107.346 130.657i 0.550493 0.670034i
\(196\) −28.6691 24.0562i −0.146271 0.122736i
\(197\) 34.0836 + 19.6782i 0.173013 + 0.0998893i 0.584006 0.811749i \(-0.301484\pi\)
−0.410993 + 0.911639i \(0.634818\pi\)
\(198\) 62.7828 54.9384i 0.317085 0.277467i
\(199\) 95.3069 + 165.076i 0.478929 + 0.829530i 0.999708 0.0241618i \(-0.00769168\pi\)
−0.520779 + 0.853692i \(0.674358\pi\)
\(200\) 43.8528 + 7.73243i 0.219264 + 0.0386622i
\(201\) 68.5003 58.6991i 0.340797 0.292035i
\(202\) −144.684 52.6608i −0.716260 0.260697i
\(203\) 80.0235 219.863i 0.394204 1.08307i
\(204\) 51.5247 + 60.1280i 0.252572 + 0.294745i
\(205\) 30.1004 170.708i 0.146831 0.832721i
\(206\) 137.885 79.6077i 0.669343 0.386445i
\(207\) 9.61696 28.2298i 0.0464587 0.136376i
\(208\) 37.0532 64.1780i 0.178140 0.308548i
\(209\) 146.754 174.895i 0.702174 0.836818i
\(210\) 82.0702 + 67.4280i 0.390811 + 0.321086i
\(211\) 13.2835 + 75.3347i 0.0629551 + 0.357036i 0.999970 + 0.00774680i \(0.00246591\pi\)
−0.937015 + 0.349289i \(0.886423\pi\)
\(212\) 126.713 + 151.011i 0.597702 + 0.712314i
\(213\) 0.304088 + 29.3379i 0.00142764 + 0.137737i
\(214\) −167.410 + 60.9324i −0.782291 + 0.284731i
\(215\) 99.6100i 0.463302i
\(216\) −67.2913 36.1092i −0.311534 0.167172i
\(217\) −114.277 −0.526623
\(218\) −34.4718 94.7105i −0.158128 0.434452i
\(219\) 197.873 + 334.667i 0.903529 + 1.52816i
\(220\) 30.5529 25.6369i 0.138877 0.116531i
\(221\) −240.788 + 42.4575i −1.08954 + 0.192115i
\(222\) 9.94954 + 26.4790i 0.0448177 + 0.119275i
\(223\) −38.1027 31.9720i −0.170864 0.143372i 0.553346 0.832952i \(-0.313351\pi\)
−0.724210 + 0.689580i \(0.757795\pi\)
\(224\) 40.3125 + 23.2744i 0.179967 + 0.103904i
\(225\) 110.406 + 88.8081i 0.490695 + 0.394703i
\(226\) −28.9119 50.0769i −0.127929 0.221579i
\(227\) 298.583 + 52.6482i 1.31534 + 0.231930i 0.786922 0.617052i \(-0.211673\pi\)
0.528420 + 0.848983i \(0.322784\pi\)
\(228\) −197.119 69.4402i −0.864556 0.304562i
\(229\) −18.3111 6.66470i −0.0799611 0.0291035i 0.301730 0.953393i \(-0.402436\pi\)
−0.381691 + 0.924290i \(0.624658\pi\)
\(230\) 4.87638 13.3978i 0.0212017 0.0582511i
\(231\) −159.050 + 29.7477i −0.688528 + 0.128778i
\(232\) −13.9652 + 79.2005i −0.0601948 + 0.341382i
\(233\) −89.3347 + 51.5774i −0.383411 + 0.221362i −0.679301 0.733860i \(-0.737717\pi\)
0.295890 + 0.955222i \(0.404384\pi\)
\(234\) 201.725 122.110i 0.862074 0.521838i
\(235\) −81.6824 + 141.478i −0.347585 + 0.602034i
\(236\) −132.112 + 157.445i −0.559797 + 0.667140i
\(237\) 50.3386 303.869i 0.212399 1.28215i
\(238\) −26.6691 151.248i −0.112055 0.635495i
\(239\) −135.523 161.510i −0.567041 0.675773i 0.403980 0.914768i \(-0.367626\pi\)
−0.971021 + 0.238995i \(0.923182\pi\)
\(240\) −31.8056 17.9260i −0.132523 0.0746918i
\(241\) 58.1501 21.1649i 0.241287 0.0878211i −0.218546 0.975827i \(-0.570132\pi\)
0.459833 + 0.888005i \(0.347909\pi\)
\(242\) 110.362i 0.456040i
\(243\) −132.238 203.868i −0.544189 0.838963i
\(244\) 14.3721 0.0589021
\(245\) −19.4718 53.4982i −0.0794766 0.218360i
\(246\) 118.684 210.578i 0.482457 0.856008i
\(247\) 494.343 414.803i 2.00139 1.67936i
\(248\) 38.6832 6.82089i 0.155981 0.0275036i
\(249\) −320.632 53.1156i −1.28768 0.213316i
\(250\) 134.292 + 112.685i 0.537169 + 0.450738i
\(251\) −99.2490 57.3014i −0.395414 0.228293i 0.289089 0.957302i \(-0.406648\pi\)
−0.684503 + 0.729010i \(0.739981\pi\)
\(252\) 76.7017 + 126.711i 0.304372 + 0.502821i
\(253\) 10.8598 + 18.8097i 0.0429241 + 0.0743468i
\(254\) 16.8579 + 2.97250i 0.0663697 + 0.0117028i
\(255\) 22.1456 + 118.404i 0.0868454 + 0.464330i
\(256\) −15.0351 5.47232i −0.0587308 0.0213763i
\(257\) −60.5933 + 166.479i −0.235772 + 0.647777i 0.764224 + 0.644950i \(0.223122\pi\)
−0.999996 + 0.00282659i \(0.999100\pi\)
\(258\) 46.1526 131.013i 0.178886 0.507801i
\(259\) 9.52682 54.0293i 0.0367831 0.208607i
\(260\) 97.6292 56.3662i 0.375497 0.216793i
\(261\) −160.392 + 199.400i −0.614529 + 0.763985i
\(262\) 52.5325 90.9889i 0.200506 0.347286i
\(263\) 44.5945 53.1457i 0.169561 0.202075i −0.674572 0.738209i \(-0.735672\pi\)
0.844133 + 0.536135i \(0.180116\pi\)
\(264\) 52.0633 19.5629i 0.197210 0.0741020i
\(265\) 52.0735 + 295.324i 0.196504 + 1.11443i
\(266\) 260.553 + 310.515i 0.979521 + 1.16735i
\(267\) 60.1294 35.5517i 0.225204 0.133153i
\(268\) 56.5132 20.5691i 0.210870 0.0767504i
\(269\) 117.199i 0.435684i −0.975984 0.217842i \(-0.930098\pi\)
0.975984 0.217842i \(-0.0699018\pi\)
\(270\) −61.1858 98.7537i −0.226614 0.365754i
\(271\) 401.626 1.48201 0.741007 0.671497i \(-0.234349\pi\)
0.741007 + 0.671497i \(0.234349\pi\)
\(272\) 18.0551 + 49.6060i 0.0663791 + 0.182375i
\(273\) −457.328 + 4.74021i −1.67519 + 0.0173634i
\(274\) −44.7624 + 37.5601i −0.163366 + 0.137081i
\(275\) −101.624 + 17.9191i −0.369542 + 0.0651603i
\(276\) 12.6213 15.3621i 0.0457294 0.0556597i
\(277\) −165.256 138.666i −0.596592 0.500600i 0.293756 0.955880i \(-0.405095\pi\)
−0.890348 + 0.455280i \(0.849539\pi\)
\(278\) −173.965 100.439i −0.625773 0.361290i
\(279\) 118.311 + 40.3047i 0.424054 + 0.144461i
\(280\) 35.4057 + 61.3244i 0.126449 + 0.219016i
\(281\) −313.847 55.3398i −1.11689 0.196939i −0.415418 0.909631i \(-0.636365\pi\)
−0.701477 + 0.712692i \(0.747476\pi\)
\(282\) −172.985 + 148.234i −0.613421 + 0.525651i
\(283\) 408.351 + 148.628i 1.44294 + 0.525186i 0.940609 0.339491i \(-0.110255\pi\)
0.502328 + 0.864677i \(0.332477\pi\)
\(284\) −6.68980 + 18.3801i −0.0235556 + 0.0647186i
\(285\) −206.871 241.413i −0.725863 0.847063i
\(286\) −29.8212 + 169.124i −0.104270 + 0.591344i
\(287\) −406.016 + 234.413i −1.41469 + 0.816771i
\(288\) −33.5268 38.3139i −0.116412 0.133034i
\(289\) −57.4143 + 99.4445i −0.198665 + 0.344099i
\(290\) −78.6390 + 93.7183i −0.271169 + 0.323167i
\(291\) −118.779 97.5875i −0.408175 0.335352i
\(292\) 45.0081 + 255.254i 0.154137 + 0.874156i
\(293\) 341.948 + 407.518i 1.16706 + 1.39085i 0.904793 + 0.425852i \(0.140026\pi\)
0.262267 + 0.964995i \(0.415530\pi\)
\(294\) −0.822835 79.3858i −0.00279876 0.270020i
\(295\) −293.802 + 106.935i −0.995938 + 0.362492i
\(296\) 18.8577i 0.0637084i
\(297\) 175.156 + 25.2979i 0.589751 + 0.0851783i
\(298\) 330.049 1.10755
\(299\) 20.9969 + 57.6884i 0.0702236 + 0.192938i
\(300\) 48.0758 + 81.3117i 0.160253 + 0.271039i
\(301\) −206.380 + 173.173i −0.685647 + 0.575326i
\(302\) 10.8616 1.91519i 0.0359654 0.00634167i
\(303\) −114.886 305.748i −0.379160 1.00907i
\(304\) −106.732 89.5584i −0.351091 0.294600i
\(305\) 18.9341 + 10.9316i 0.0620790 + 0.0358413i
\(306\) −25.7335 + 165.993i −0.0840964 + 0.542460i
\(307\) −58.8902 102.001i −0.191825 0.332250i 0.754030 0.656840i \(-0.228107\pi\)
−0.945855 + 0.324590i \(0.894774\pi\)
\(308\) −106.233 18.7318i −0.344913 0.0608174i
\(309\) 318.558 + 112.221i 1.03093 + 0.363173i
\(310\) 56.1501 + 20.4370i 0.181129 + 0.0659256i
\(311\) 5.42440 14.9034i 0.0174418 0.0479210i −0.930666 0.365869i \(-0.880772\pi\)
0.948108 + 0.317948i \(0.102994\pi\)
\(312\) 154.524 28.9012i 0.495268 0.0926320i
\(313\) −15.1085 + 85.6847i −0.0482700 + 0.273753i −0.999384 0.0350863i \(-0.988829\pi\)
0.951114 + 0.308839i \(0.0999405\pi\)
\(314\) 31.2316 18.0316i 0.0994636 0.0574254i
\(315\) 4.67039 + 225.272i 0.0148266 + 0.715149i
\(316\) 102.670 177.830i 0.324905 0.562752i
\(317\) 120.434 143.528i 0.379918 0.452769i −0.541870 0.840462i \(-0.682284\pi\)
0.921788 + 0.387693i \(0.126728\pi\)
\(318\) −68.3433 + 412.554i −0.214916 + 1.29734i
\(319\) −32.3628 183.539i −0.101451 0.575357i
\(320\) −15.6452 18.6452i −0.0488913 0.0582663i
\(321\) −329.231 185.559i −1.02564 0.578065i
\(322\) −36.2362 + 13.1889i −0.112535 + 0.0409593i
\(323\) 459.692i 1.42320i
\(324\) −34.7192 158.236i −0.107158 0.488382i
\(325\) −291.673 −0.897456
\(326\) −102.077 280.455i −0.313120 0.860291i
\(327\) 104.978 186.259i 0.321033 0.569599i
\(328\) 123.446 103.584i 0.376360 0.315803i
\(329\) 435.131 76.7254i 1.32259 0.233208i
\(330\) 83.4691 + 13.8274i 0.252937 + 0.0419013i
\(331\) −14.7758 12.3984i −0.0446400 0.0374574i 0.620195 0.784448i \(-0.287054\pi\)
−0.664835 + 0.746990i \(0.731498\pi\)
\(332\) −187.640 108.334i −0.565180 0.326307i
\(333\) −28.9188 + 52.5764i −0.0868433 + 0.157887i
\(334\) −8.13353 14.0877i −0.0243519 0.0421787i
\(335\) 90.0967 + 15.8865i 0.268946 + 0.0474223i
\(336\) 18.1539 + 97.0620i 0.0540294 + 0.288875i
\(337\) 389.139 + 141.635i 1.15472 + 0.420282i 0.847207 0.531263i \(-0.178282\pi\)
0.307509 + 0.951545i \(0.400505\pi\)
\(338\) −84.2753 + 231.544i −0.249335 + 0.685043i
\(339\) 40.7563 115.694i 0.120225 0.341280i
\(340\) −13.9448 + 79.0849i −0.0410141 + 0.232603i
\(341\) −78.8317 + 45.5135i −0.231178 + 0.133471i
\(342\) −160.234 413.370i −0.468520 1.20868i
\(343\) 124.615 215.839i 0.363308 0.629268i
\(344\) 59.5239 70.9379i 0.173035 0.206215i
\(345\) 28.3122 10.6384i 0.0820643 0.0308359i
\(346\) −56.7334 321.751i −0.163969 0.929917i
\(347\) −72.6578 86.5902i −0.209389 0.249540i 0.651121 0.758974i \(-0.274299\pi\)
−0.860509 + 0.509434i \(0.829855\pi\)
\(348\) −146.853 + 86.8275i −0.421992 + 0.249504i
\(349\) −24.8178 + 9.03294i −0.0711112 + 0.0258824i −0.377331 0.926079i \(-0.623158\pi\)
0.306220 + 0.951961i \(0.400936\pi\)
\(350\) 183.210i 0.523458i
\(351\) 475.143 + 156.388i 1.35368 + 0.445551i
\(352\) 37.0783 0.105336
\(353\) 207.210 + 569.305i 0.586998 + 1.61276i 0.775962 + 0.630779i \(0.217265\pi\)
−0.188964 + 0.981984i \(0.560513\pi\)
\(354\) −435.971 + 4.51885i −1.23156 + 0.0127651i
\(355\) −22.7934 + 19.1259i −0.0642068 + 0.0538759i
\(356\) 45.8613 8.08659i 0.128824 0.0227151i
\(357\) 206.819 251.730i 0.579324 0.705127i
\(358\) 89.6755 + 75.2466i 0.250490 + 0.210186i
\(359\) −387.446 223.692i −1.07924 0.623097i −0.148546 0.988906i \(-0.547459\pi\)
−0.930690 + 0.365808i \(0.880793\pi\)
\(360\) −15.0268 75.9764i −0.0417411 0.211046i
\(361\) −426.135 738.088i −1.18043 2.04456i
\(362\) 231.483 + 40.8166i 0.639455 + 0.112753i
\(363\) 177.771 152.335i 0.489728 0.419657i
\(364\) −286.514 104.282i −0.787125 0.286490i
\(365\) −134.855 + 370.510i −0.369465 + 1.01510i
\(366\) 19.8382 + 23.1507i 0.0542028 + 0.0632532i
\(367\) 25.2806 143.373i 0.0688844 0.390663i −0.930800 0.365529i \(-0.880888\pi\)
0.999684 0.0251331i \(-0.00800095\pi\)
\(368\) 11.4788 6.62731i 0.0311925 0.0180090i
\(369\) 503.024 99.4891i 1.36321 0.269618i
\(370\) −14.3434 + 24.8435i −0.0387660 + 0.0671446i
\(371\) 521.345 621.314i 1.40524 1.67470i
\(372\) 64.3826 + 52.8960i 0.173071 + 0.142194i
\(373\) 37.2253 + 211.115i 0.0997998 + 0.565993i 0.993170 + 0.116672i \(0.0372227\pi\)
−0.893371 + 0.449320i \(0.851666\pi\)
\(374\) −78.6349 93.7134i −0.210254 0.250571i
\(375\) 3.85434 + 371.860i 0.0102782 + 0.991627i
\(376\) −142.714 + 51.9435i −0.379558 + 0.138148i
\(377\) 526.777i 1.39729i
\(378\) −98.2333 + 298.454i −0.259876 + 0.789561i
\(379\) 253.546 0.668988 0.334494 0.942398i \(-0.391435\pi\)
0.334494 + 0.942398i \(0.391435\pi\)
\(380\) −72.4910 199.167i −0.190766 0.524125i
\(381\) 18.4813 + 31.2578i 0.0485074 + 0.0820416i
\(382\) −135.635 + 113.811i −0.355065 + 0.297935i
\(383\) −552.793 + 97.4722i −1.44332 + 0.254497i −0.839820 0.542864i \(-0.817340\pi\)
−0.603502 + 0.797361i \(0.706229\pi\)
\(384\) −11.9385 31.7722i −0.0310898 0.0827401i
\(385\) −125.706 105.480i −0.326509 0.273974i
\(386\) −113.009 65.2456i −0.292769 0.169030i
\(387\) 274.742 106.497i 0.709927 0.275187i
\(388\) −51.2421 88.7539i −0.132067 0.228747i
\(389\) −37.4969 6.61172i −0.0963931 0.0169967i 0.125244 0.992126i \(-0.460029\pi\)
−0.221637 + 0.975129i \(0.571140\pi\)
\(390\) 225.555 + 79.4578i 0.578347 + 0.203738i
\(391\) −41.0943 14.9571i −0.105101 0.0382535i
\(392\) 18.1020 49.7348i 0.0461786 0.126875i
\(393\) 219.078 40.9749i 0.557449 0.104262i
\(394\) −9.66497 + 54.8128i −0.0245304 + 0.139119i
\(395\) 270.519 156.184i 0.684858 0.395403i
\(396\) 103.377 + 56.8606i 0.261052 + 0.143587i
\(397\) −382.127 + 661.864i −0.962538 + 1.66716i −0.246448 + 0.969156i \(0.579263\pi\)
−0.716090 + 0.698008i \(0.754070\pi\)
\(398\) −173.275 + 206.502i −0.435365 + 0.518848i
\(399\) −140.531 + 848.311i −0.352207 + 2.12609i
\(400\) 10.9353 + 62.0172i 0.0273383 + 0.155043i
\(401\) 10.0249 + 11.9472i 0.0249998 + 0.0297936i 0.778399 0.627769i \(-0.216032\pi\)
−0.753400 + 0.657563i \(0.771587\pi\)
\(402\) 111.140 + 62.6396i 0.276467 + 0.155820i
\(403\) −241.773 + 87.9980i −0.599932 + 0.218357i
\(404\) 217.746i 0.538976i
\(405\) 74.6164 234.871i 0.184238 0.579928i
\(406\) 330.888 0.814995
\(407\) −14.9465 41.0652i −0.0367236 0.100897i
\(408\) −54.9837 + 97.5558i −0.134764 + 0.239107i
\(409\) −346.354 + 290.625i −0.846830 + 0.710575i −0.959089 0.283104i \(-0.908636\pi\)
0.112259 + 0.993679i \(0.464191\pi\)
\(410\) 241.417 42.5684i 0.588823 0.103825i
\(411\) −122.289 20.2583i −0.297539 0.0492901i
\(412\) 172.486 + 144.733i 0.418656 + 0.351294i
\(413\) 732.335 + 422.814i 1.77321 + 1.02376i
\(414\) 42.1669 0.874215i 0.101852 0.00211163i
\(415\) −164.800 285.442i −0.397109 0.687813i
\(416\) 103.210 + 18.1987i 0.248101 + 0.0437469i
\(417\) −78.3413 418.862i −0.187869 1.00446i
\(418\) 303.406 + 110.431i 0.725852 + 0.264188i
\(419\) 130.522 358.605i 0.311507 0.855859i −0.680846 0.732427i \(-0.738388\pi\)
0.992353 0.123432i \(-0.0393902\pi\)
\(420\) −49.9103 + 141.679i −0.118834 + 0.337332i
\(421\) −18.0874 + 102.579i −0.0429629 + 0.243655i −0.998725 0.0504869i \(-0.983923\pi\)
0.955762 + 0.294142i \(0.0950338\pi\)
\(422\) −93.6891 + 54.0914i −0.222012 + 0.128179i
\(423\) −477.551 74.0338i −1.12896 0.175021i
\(424\) −139.392 + 241.434i −0.328755 + 0.569420i
\(425\) 133.554 159.163i 0.314245 0.374502i
\(426\) −38.8409 + 14.5946i −0.0911757 + 0.0342595i
\(427\) −10.2682 58.2339i −0.0240473 0.136379i
\(428\) −161.949 193.004i −0.378386 0.450943i
\(429\) −313.590 + 185.411i −0.730978 + 0.432193i
\(430\) 132.374 48.1803i 0.307847 0.112047i
\(431\) 754.466i 1.75050i 0.483669 + 0.875251i \(0.339304\pi\)
−0.483669 + 0.875251i \(0.660696\pi\)
\(432\) 15.4383 106.891i 0.0357369 0.247433i
\(433\) −22.8890 −0.0528615 −0.0264308 0.999651i \(-0.508414\pi\)
−0.0264308 + 0.999651i \(0.508414\pi\)
\(434\) −55.2747 151.866i −0.127361 0.349922i
\(435\) −259.510 + 2.68982i −0.596574 + 0.00618349i
\(436\) 109.190 91.6210i 0.250435 0.210140i
\(437\) 113.668 20.0427i 0.260110 0.0458643i
\(438\) −349.038 + 424.833i −0.796891 + 0.969938i
\(439\) −345.329 289.765i −0.786625 0.660057i 0.158282 0.987394i \(-0.449404\pi\)
−0.944908 + 0.327337i \(0.893849\pi\)
\(440\) 48.8477 + 28.2022i 0.111017 + 0.0640959i
\(441\) 126.739 110.904i 0.287391 0.251483i
\(442\) −172.890 299.453i −0.391153 0.677497i
\(443\) 382.296 + 67.4092i 0.862972 + 0.152165i 0.587579 0.809167i \(-0.300081\pi\)
0.275393 + 0.961332i \(0.411192\pi\)
\(444\) −30.3761 + 26.0298i −0.0684146 + 0.0586257i
\(445\) 66.5694 + 24.2293i 0.149594 + 0.0544478i
\(446\) 24.0585 66.1002i 0.0539428 0.148207i
\(447\) 455.576 + 531.645i 1.01919 + 1.18936i
\(448\) −11.4313 + 64.8299i −0.0255162 + 0.144710i
\(449\) −93.1858 + 53.8008i −0.207541 + 0.119824i −0.600168 0.799874i \(-0.704900\pi\)
0.392627 + 0.919698i \(0.371566\pi\)
\(450\) −64.6169 + 189.678i −0.143593 + 0.421506i
\(451\) −186.721 + 323.410i −0.414015 + 0.717095i
\(452\) 52.5641 62.6435i 0.116292 0.138592i
\(453\) 18.0775 + 14.8523i 0.0399062 + 0.0327865i
\(454\) 74.4558 + 422.260i 0.164000 + 0.930088i
\(455\) −298.140 355.310i −0.655253 0.780901i
\(456\) −3.06331 295.544i −0.00671779 0.648122i
\(457\) 170.310 61.9876i 0.372669 0.135640i −0.148894 0.988853i \(-0.547571\pi\)
0.521563 + 0.853213i \(0.325349\pi\)
\(458\) 27.5577i 0.0601697i
\(459\) −302.903 + 187.673i −0.659918 + 0.408873i
\(460\) 20.1633 0.0438332
\(461\) −200.952 552.110i −0.435904 1.19764i −0.942134 0.335237i \(-0.891183\pi\)
0.506230 0.862399i \(-0.331039\pi\)
\(462\) −116.463 196.977i −0.252085 0.426357i
\(463\) −37.7513 + 31.6771i −0.0815363 + 0.0684170i −0.682645 0.730750i \(-0.739170\pi\)
0.601109 + 0.799167i \(0.294726\pi\)
\(464\) −112.006 + 19.7498i −0.241393 + 0.0425642i
\(465\) 44.5855 + 118.657i 0.0958828 + 0.255175i
\(466\) −111.753 93.7718i −0.239813 0.201227i
\(467\) −614.382 354.714i −1.31559 0.759558i −0.332577 0.943076i \(-0.607918\pi\)
−0.983016 + 0.183518i \(0.941252\pi\)
\(468\) 259.848 + 209.015i 0.555230 + 0.446613i
\(469\) −123.719 214.288i −0.263794 0.456905i
\(470\) −227.523 40.1184i −0.484091 0.0853583i
\(471\) 72.1552 + 25.4185i 0.153196 + 0.0539672i
\(472\) −273.134 99.4126i −0.578674 0.210620i
\(473\) −73.3965 + 201.655i −0.155172 + 0.426332i
\(474\) 428.167 80.0818i 0.903306 0.168949i
\(475\) −95.2248 + 540.047i −0.200473 + 1.13694i
\(476\) 188.098 108.598i 0.395163 0.228147i
\(477\) −758.880 + 459.372i −1.59094 + 0.963043i
\(478\) 149.084 258.220i 0.311890 0.540210i
\(479\) −271.827 + 323.951i −0.567489 + 0.676308i −0.971114 0.238617i \(-0.923306\pi\)
0.403624 + 0.914925i \(0.367750\pi\)
\(480\) 8.43833 50.9379i 0.0175799 0.106121i
\(481\) −21.4491 121.644i −0.0445927 0.252898i
\(482\) 56.2531 + 67.0399i 0.116708 + 0.139087i
\(483\) −71.2625 40.1645i −0.147542 0.0831562i
\(484\) 146.663 53.3808i 0.303022 0.110291i
\(485\) 155.902i 0.321446i
\(486\) 206.963 274.343i 0.425850 0.564492i
\(487\) 444.129 0.911969 0.455985 0.889988i \(-0.349287\pi\)
0.455985 + 0.889988i \(0.349287\pi\)
\(488\) 6.95164 + 19.0995i 0.0142452 + 0.0391382i
\(489\) 310.858 551.546i 0.635702 1.12791i
\(490\) 61.6769 51.7530i 0.125871 0.105618i
\(491\) 399.029 70.3596i 0.812686 0.143298i 0.248166 0.968718i \(-0.420172\pi\)
0.564520 + 0.825419i \(0.309061\pi\)
\(492\) 337.249 + 55.8684i 0.685465 + 0.113554i
\(493\) 287.458 + 241.206i 0.583079 + 0.489261i
\(494\) 790.351 + 456.309i 1.59990 + 0.923703i
\(495\) 92.9414 + 153.539i 0.187760 + 0.310179i
\(496\) 27.7751 + 48.1079i 0.0559982 + 0.0969917i
\(497\) 79.2533 + 13.9745i 0.159463 + 0.0281177i
\(498\) −84.4995 451.787i −0.169678 0.907203i
\(499\) −545.267 198.461i −1.09272 0.397718i −0.268092 0.963393i \(-0.586393\pi\)
−0.824628 + 0.565676i \(0.808615\pi\)
\(500\) −84.7937 + 232.969i −0.169587 + 0.465938i
\(501\) 11.4656 32.5472i 0.0228854 0.0649644i
\(502\) 28.1437 159.611i 0.0560631 0.317949i
\(503\) −284.955 + 164.519i −0.566510 + 0.327075i −0.755754 0.654855i \(-0.772730\pi\)
0.189244 + 0.981930i \(0.439396\pi\)
\(504\) −131.290 + 163.220i −0.260495 + 0.323849i
\(505\) 165.621 286.864i 0.327962 0.568047i
\(506\) −19.7440 + 23.5299i −0.0390197 + 0.0465019i
\(507\) −489.301 + 183.856i −0.965090 + 0.362635i
\(508\) 4.20376 + 23.8407i 0.00827511 + 0.0469305i
\(509\) −346.327 412.736i −0.680406 0.810876i 0.309754 0.950817i \(-0.399753\pi\)
−0.990160 + 0.139941i \(0.955309\pi\)
\(510\) −146.639 + 86.7007i −0.287527 + 0.170001i
\(511\) 1002.10 364.734i 1.96105 0.713765i
\(512\) 22.6274i 0.0441942i
\(513\) 444.684 828.692i 0.866831 1.61538i
\(514\) −250.546 −0.487444
\(515\) 117.151 + 321.869i 0.227477 + 0.624989i
\(516\) 196.430 2.03600i 0.380678 0.00394573i
\(517\) 269.608 226.228i 0.521486 0.437579i
\(518\) 76.4089 13.4730i 0.147508 0.0260096i
\(519\) 439.968 535.509i 0.847723 1.03181i
\(520\) 122.129 + 102.478i 0.234863 + 0.197073i
\(521\) 258.670 + 149.343i 0.496488 + 0.286647i 0.727262 0.686360i \(-0.240793\pi\)
−0.230774 + 0.973007i \(0.574126\pi\)
\(522\) −342.568 116.702i −0.656260 0.223566i
\(523\) 416.746 + 721.825i 0.796837 + 1.38016i 0.921666 + 0.387984i \(0.126828\pi\)
−0.124829 + 0.992178i \(0.539838\pi\)
\(524\) 146.327 + 25.8014i 0.279250 + 0.0492393i
\(525\) 295.116 252.890i 0.562126 0.481696i
\(526\) 92.1966 + 33.5568i 0.175279 + 0.0637962i
\(527\) 62.6853 172.226i 0.118947 0.326805i
\(528\) 51.1802 + 59.7259i 0.0969321 + 0.113117i
\(529\) 89.9532 510.150i 0.170044 0.964366i
\(530\) −367.276 + 212.047i −0.692974 + 0.400089i
\(531\) −609.062 696.027i −1.14701 1.31079i
\(532\) −286.624 + 496.448i −0.538767 + 0.933172i
\(533\) −678.486 + 808.588i −1.27296 + 1.51705i
\(534\) 76.3296 + 62.7115i 0.142939 + 0.117437i
\(535\) −66.5542 377.448i −0.124400 0.705509i
\(536\) 54.6697 + 65.1528i 0.101996 + 0.121554i
\(537\) 2.57379 + 248.315i 0.00479290 + 0.462411i
\(538\) 155.749 56.6880i 0.289496 0.105368i
\(539\) 122.652i 0.227555i
\(540\) 101.641 129.078i 0.188225 0.239033i
\(541\) 639.685 1.18241 0.591206 0.806521i \(-0.298652\pi\)
0.591206 + 0.806521i \(0.298652\pi\)
\(542\) 194.262 + 533.731i 0.358417 + 0.984743i
\(543\) 253.774 + 429.214i 0.467356 + 0.790449i
\(544\) −57.1896 + 47.9878i −0.105128 + 0.0882129i
\(545\) 213.537 37.6523i 0.391811 0.0690868i
\(546\) −227.504 605.462i −0.416674 1.10890i
\(547\) 310.339 + 260.405i 0.567347 + 0.476060i 0.880764 0.473555i \(-0.157030\pi\)
−0.313418 + 0.949615i \(0.601474\pi\)
\(548\) −71.5656 41.3184i −0.130594 0.0753986i
\(549\) −9.90800 + 63.9110i −0.0180474 + 0.116414i
\(550\) −72.9677 126.384i −0.132669 0.229789i
\(551\) −975.353 171.981i −1.77015 0.312125i
\(552\) 26.5199 + 9.34232i 0.0480433 + 0.0169245i
\(553\) −793.896 288.954i −1.43562 0.522522i
\(554\) 104.345 286.685i 0.188348 0.517481i
\(555\) −59.8167 + 11.1877i −0.107778 + 0.0201581i
\(556\) 49.3305 279.767i 0.0887240 0.503179i
\(557\) 810.145 467.737i 1.45448 0.839744i 0.455748 0.890109i \(-0.349372\pi\)
0.998731 + 0.0503648i \(0.0160384\pi\)
\(558\) 3.66384 + 176.722i 0.00656602 + 0.316706i
\(559\) −303.280 + 525.297i −0.542541 + 0.939709i
\(560\) −64.3703 + 76.7135i −0.114947 + 0.136988i
\(561\) 42.4122 256.021i 0.0756011 0.456365i
\(562\) −78.2623 443.847i −0.139257 0.789764i
\(563\) 82.3153 + 98.0996i 0.146208 + 0.174244i 0.834178 0.551495i \(-0.185942\pi\)
−0.687970 + 0.725739i \(0.741498\pi\)
\(564\) −280.663 158.185i −0.497629 0.280470i
\(565\) 116.896 42.5468i 0.206896 0.0753041i
\(566\) 614.558i 1.08579i
\(567\) −616.346 + 253.730i −1.08703 + 0.447495i
\(568\) −27.6616 −0.0486999
\(569\) −10.7972 29.6651i −0.0189758 0.0521355i 0.929843 0.367956i \(-0.119942\pi\)
−0.948819 + 0.315821i \(0.897720\pi\)
\(570\) 220.759 391.685i 0.387296 0.687167i
\(571\) 323.739 271.649i 0.566968 0.475743i −0.313670 0.949532i \(-0.601559\pi\)
0.880638 + 0.473789i \(0.157114\pi\)
\(572\) −239.178 + 42.1735i −0.418143 + 0.0737300i
\(573\) −370.549 61.3848i −0.646682 0.107129i
\(574\) −507.904 426.182i −0.884849 0.742477i
\(575\) −45.1793 26.0843i −0.0785726 0.0453639i
\(576\) 34.6998 63.0866i 0.0602427 0.109525i
\(577\) 42.1505 + 73.0068i 0.0730511 + 0.126528i 0.900237 0.435400i \(-0.143393\pi\)
−0.827186 + 0.561928i \(0.810060\pi\)
\(578\) −159.925 28.1991i −0.276687 0.0487874i
\(579\) −50.8911 272.096i −0.0878948 0.469941i
\(580\) −162.582 59.1748i −0.280313 0.102026i
\(581\) −304.895 + 837.691i −0.524776 + 1.44181i
\(582\) 72.2344 205.050i 0.124114 0.352320i
\(583\) 112.186 636.238i 0.192429 1.09132i
\(584\) −317.443 + 183.276i −0.543567 + 0.313829i
\(585\) 183.349 + 473.004i 0.313417 + 0.808553i
\(586\) −376.165 + 651.537i −0.641919 + 1.11184i
\(587\) −474.170 + 565.094i −0.807786 + 0.962682i −0.999825 0.0187054i \(-0.994046\pi\)
0.192039 + 0.981387i \(0.438490\pi\)
\(588\) 105.100 39.4916i 0.178741 0.0671625i
\(589\) 83.9991 + 476.383i 0.142613 + 0.808799i
\(590\) −284.218 338.717i −0.481725 0.574097i
\(591\) −101.634 + 60.0912i −0.171969 + 0.101677i
\(592\) −25.0605 + 9.12127i −0.0423319 + 0.0154075i
\(593\) 361.460i 0.609545i −0.952425 0.304773i \(-0.901420\pi\)
0.952425 0.304773i \(-0.0985804\pi\)
\(594\) 51.1020 + 245.006i 0.0860304 + 0.412468i
\(595\) 330.405 0.555302
\(596\) 159.641 + 438.611i 0.267855 + 0.735925i
\(597\) −571.811 + 5.92683i −0.957807 + 0.00992768i
\(598\) −66.5077 + 55.8066i −0.111217 + 0.0933220i
\(599\) 201.974 35.6135i 0.337185 0.0594549i −0.00249203 0.999997i \(-0.500793\pi\)
0.339677 + 0.940542i \(0.389682\pi\)
\(600\) −84.8034 + 103.219i −0.141339 + 0.172031i
\(601\) 726.408 + 609.528i 1.20866 + 1.01419i 0.999339 + 0.0363443i \(0.0115713\pi\)
0.209326 + 0.977846i \(0.432873\pi\)
\(602\) −329.958 190.501i −0.548103 0.316448i
\(603\) 52.5087 + 265.488i 0.0870791 + 0.440278i
\(604\) 7.79876 + 13.5079i 0.0129119 + 0.0223640i
\(605\) 233.818 + 41.2285i 0.386477 + 0.0681463i
\(606\) 350.747 300.561i 0.578791 0.495976i
\(607\) 382.467 + 139.207i 0.630094 + 0.229335i 0.637272 0.770639i \(-0.280063\pi\)
−0.00717822 + 0.999974i \(0.502285\pi\)
\(608\) 67.3916 185.157i 0.110841 0.304534i
\(609\) 456.734 + 532.996i 0.749973 + 0.875199i
\(610\) −5.36907 + 30.4495i −0.00880176 + 0.0499173i
\(611\) 861.511 497.393i 1.41000 0.814064i
\(612\) −233.039 + 46.0910i −0.380783 + 0.0753120i
\(613\) −325.258 + 563.364i −0.530601 + 0.919028i 0.468761 + 0.883325i \(0.344700\pi\)
−0.999362 + 0.0357032i \(0.988633\pi\)
\(614\) 107.067 127.597i 0.174376 0.207813i
\(615\) 401.804 + 330.118i 0.653340 + 0.536777i
\(616\) −26.4907 150.236i −0.0430044 0.243890i
\(617\) −72.2760 86.1351i −0.117141 0.139603i 0.704287 0.709915i \(-0.251267\pi\)
−0.821428 + 0.570312i \(0.806822\pi\)
\(618\) 4.95054 + 477.621i 0.00801059 + 0.772849i
\(619\) −595.574 + 216.771i −0.962155 + 0.350196i −0.774878 0.632111i \(-0.782188\pi\)
−0.187277 + 0.982307i \(0.559966\pi\)
\(620\) 84.5044i 0.136297i
\(621\) 59.6123 + 66.7160i 0.0959941 + 0.107433i
\(622\) 22.4293 0.0360599
\(623\) −65.5316 180.047i −0.105187 0.288999i
\(624\) 113.149 + 191.371i 0.181329 + 0.306685i
\(625\) 12.5974 10.5704i 0.0201558 0.0169127i
\(626\) −121.176 + 21.3667i −0.193573 + 0.0341321i
\(627\) 240.917 + 641.159i 0.384238 + 1.02258i
\(628\) 39.0690 + 32.7828i 0.0622118 + 0.0522019i
\(629\) 76.2013 + 43.9949i 0.121147 + 0.0699441i
\(630\) −297.111 + 115.168i −0.471604 + 0.182807i
\(631\) −320.988 555.967i −0.508697 0.881089i −0.999949 0.0100717i \(-0.996794\pi\)
0.491252 0.871017i \(-0.336539\pi\)
\(632\) 285.983 + 50.4265i 0.452504 + 0.0797887i
\(633\) −216.452 76.2510i −0.341947 0.120460i
\(634\) 248.991 + 90.6251i 0.392730 + 0.142942i
\(635\) −12.5954 + 34.6056i −0.0198353 + 0.0544970i
\(636\) −581.311 + 108.725i −0.914010 + 0.170951i
\(637\) −60.1998 + 341.410i −0.0945052 + 0.535966i
\(638\) 228.256 131.784i 0.357768 0.206557i
\(639\) −77.1221 42.4198i −0.120692 0.0663847i
\(640\) 17.2107 29.8098i 0.0268917 0.0465778i
\(641\) 114.585 136.557i 0.178759 0.213037i −0.669223 0.743062i \(-0.733373\pi\)
0.847982 + 0.530025i \(0.177817\pi\)
\(642\) 87.3483 527.277i 0.136057 0.821304i
\(643\) −98.7806 560.213i −0.153625 0.871248i −0.960032 0.279889i \(-0.909702\pi\)
0.806408 0.591360i \(-0.201409\pi\)
\(644\) −35.0541 41.7759i −0.0544319 0.0648694i
\(645\) 260.329 + 146.725i 0.403611 + 0.227480i
\(646\) −610.897 + 222.348i −0.945661 + 0.344192i
\(647\) 331.991i 0.513124i −0.966528 0.256562i \(-0.917410\pi\)
0.966528 0.256562i \(-0.0825898\pi\)
\(648\) 193.490 122.676i 0.298596 0.189315i
\(649\) 673.580 1.03787
\(650\) −141.079 387.612i −0.217045 0.596326i
\(651\) 168.329 298.662i 0.258571 0.458774i
\(652\) 323.330 271.306i 0.495905 0.416114i
\(653\) 867.467 152.958i 1.32843 0.234239i 0.536011 0.844211i \(-0.319930\pi\)
0.792423 + 0.609972i \(0.208819\pi\)
\(654\) 298.301 + 49.4163i 0.456118 + 0.0755601i
\(655\) 173.149 + 145.289i 0.264350 + 0.221816i
\(656\) 197.364 + 113.948i 0.300860 + 0.173702i
\(657\) −1166.11 + 24.1761i −1.77490 + 0.0367977i
\(658\) 312.431 + 541.146i 0.474819 + 0.822410i
\(659\) −956.120 168.590i −1.45087 0.255827i −0.607994 0.793942i \(-0.708025\pi\)
−0.842871 + 0.538115i \(0.819137\pi\)
\(660\) 21.9975 + 117.612i 0.0333295 + 0.178201i
\(661\) 207.696 + 75.5952i 0.314215 + 0.114365i 0.494313 0.869284i \(-0.335419\pi\)
−0.180099 + 0.983649i \(0.557642\pi\)
\(662\) 9.32965 25.6330i 0.0140931 0.0387205i
\(663\) 243.717 691.835i 0.367598 1.04349i
\(664\) 53.2083 301.759i 0.0801330 0.454457i
\(665\) −755.209 + 436.020i −1.13565 + 0.655669i
\(666\) −83.8579 13.0003i −0.125913 0.0195200i
\(667\) 47.1096 81.5962i 0.0706291 0.122333i
\(668\) 14.7874 17.6229i 0.0221368 0.0263816i
\(669\) 139.683 52.4863i 0.208794 0.0784549i
\(670\) 22.4669 + 127.416i 0.0335327 + 0.190173i
\(671\) −30.2763 36.0819i −0.0451211 0.0537733i
\(672\) −120.207 + 71.0730i −0.178880 + 0.105763i
\(673\) −484.870 + 176.478i −0.720461 + 0.262226i −0.676121 0.736790i \(-0.736340\pi\)
−0.0443393 + 0.999017i \(0.514118\pi\)
\(674\) 585.645i 0.868909i
\(675\) −394.726 + 157.732i −0.584780 + 0.233677i
\(676\) −348.469 −0.515486
\(677\) −11.8258 32.4910i −0.0174679 0.0479927i 0.930652 0.365905i \(-0.119240\pi\)
−0.948120 + 0.317912i \(0.897018\pi\)
\(678\) 173.462 1.79794i 0.255844 0.00265183i
\(679\) −323.009 + 271.037i −0.475713 + 0.399171i
\(680\) −111.843 + 19.7209i −0.164475 + 0.0290014i
\(681\) −577.405 + 702.791i −0.847878 + 1.03200i
\(682\) −98.6142 82.7471i −0.144596 0.121330i
\(683\) 502.287 + 289.996i 0.735413 + 0.424591i 0.820399 0.571791i \(-0.193751\pi\)
−0.0849858 + 0.996382i \(0.527085\pi\)
\(684\) 471.835 412.882i 0.689817 0.603628i
\(685\) −62.8547 108.868i −0.0917587 0.158931i
\(686\) 347.109 + 61.2046i 0.505989 + 0.0892195i
\(687\) 44.3902 38.0387i 0.0646145 0.0553693i
\(688\) 123.062 + 44.7910i 0.178870 + 0.0651032i
\(689\) 624.554 1715.95i 0.906465 2.49049i
\(690\) 27.8319 + 32.4791i 0.0403361 + 0.0470712i
\(691\) −67.3628 + 382.033i −0.0974859 + 0.552870i 0.896471 + 0.443102i \(0.146122\pi\)
−0.993957 + 0.109768i \(0.964989\pi\)
\(692\) 400.142 231.022i 0.578240 0.333847i
\(693\) 156.534 459.493i 0.225879 0.663048i
\(694\) 79.9282 138.440i 0.115170 0.199481i
\(695\) 277.784 331.050i 0.399689 0.476331i
\(696\) −186.419 153.160i −0.267843 0.220057i
\(697\) −130.568 740.488i −0.187329 1.06239i
\(698\) −24.0082 28.6119i −0.0343957 0.0409912i
\(699\) −3.20743 309.448i −0.00458860 0.442701i
\(700\) 243.473 88.6170i 0.347819 0.126596i
\(701\) 1037.76i 1.48040i −0.672387 0.740200i \(-0.734731\pi\)
0.672387 0.740200i \(-0.265269\pi\)
\(702\) 21.9928 + 707.073i 0.0313287 + 1.00723i
\(703\) −232.232 −0.330344
\(704\) 17.9344 + 49.2743i 0.0254750 + 0.0699919i
\(705\) −249.433 421.871i −0.353806 0.598399i
\(706\) −656.339 + 550.734i −0.929659 + 0.780077i
\(707\) −882.280 + 155.570i −1.24792 + 0.220042i
\(708\) −216.880 577.188i −0.306328 0.815237i
\(709\) −818.303 686.637i −1.15416 0.968459i −0.154356 0.988015i \(-0.549330\pi\)
−0.999809 + 0.0195564i \(0.993775\pi\)
\(710\) −36.4419 21.0397i −0.0513266 0.0296334i
\(711\) 720.007 + 579.155i 1.01267 + 0.814564i
\(712\) 32.9291 + 57.0349i 0.0462488 + 0.0801052i
\(713\) −45.3195 7.99104i −0.0635616 0.0112076i
\(714\) 434.567 + 153.088i 0.608637 + 0.214408i
\(715\) −347.176 126.362i −0.485560 0.176730i
\(716\) −56.6221 + 155.568i −0.0790812 + 0.217274i
\(717\) 621.727 116.284i 0.867122 0.162181i
\(718\) 109.867 623.084i 0.153017 0.867805i
\(719\) 642.439 370.913i 0.893518 0.515873i 0.0184263 0.999830i \(-0.494134\pi\)
0.875092 + 0.483957i \(0.160801\pi\)
\(720\) 93.6987 56.7185i 0.130137 0.0787757i
\(721\) 463.206 802.296i 0.642449 1.11276i
\(722\) 774.747 923.307i 1.07306 1.27882i
\(723\) −30.3405 + 183.150i −0.0419647 + 0.253319i
\(724\) 57.7234 + 327.366i 0.0797285 + 0.452163i
\(725\) 287.740 + 342.915i 0.396883 + 0.472986i
\(726\) 288.429 + 162.562i 0.397285 + 0.223915i
\(727\) −148.771 + 54.1481i −0.204637 + 0.0744816i −0.442305 0.896865i \(-0.645839\pi\)
0.237668 + 0.971346i \(0.423617\pi\)
\(728\) 431.196i 0.592302i
\(729\) 727.591 45.3057i 0.998067 0.0621478i
\(730\) −557.608 −0.763847
\(731\) −147.781 406.026i −0.202163 0.555438i
\(732\) −21.1700 + 37.5613i −0.0289208 + 0.0513132i
\(733\) −419.711 + 352.179i −0.572594 + 0.480463i −0.882505 0.470302i \(-0.844145\pi\)
0.309912 + 0.950765i \(0.399700\pi\)
\(734\) 202.760 35.7521i 0.276240 0.0487086i
\(735\) 168.498 + 27.9133i 0.229250 + 0.0379773i
\(736\) 14.3594 + 12.0490i 0.0195101 + 0.0163709i
\(737\) −170.690 98.5482i −0.231602 0.133715i
\(738\) 375.521 + 620.359i 0.508836 + 0.840595i
\(739\) 264.592 + 458.286i 0.358040 + 0.620143i 0.987633 0.156781i \(-0.0501118\pi\)
−0.629593 + 0.776925i \(0.716778\pi\)
\(740\) −39.9529 7.04478i −0.0539904 0.00951997i
\(741\) 355.917 + 1902.96i 0.480320 + 2.56809i
\(742\) 1077.85 + 392.305i 1.45263 + 0.528713i
\(743\) −75.5254 + 207.504i −0.101649 + 0.279279i −0.980084 0.198583i \(-0.936366\pi\)
0.878435 + 0.477862i \(0.158588\pi\)
\(744\) −39.1537 + 111.145i −0.0526260 + 0.149388i
\(745\) −123.298 + 699.260i −0.165501 + 0.938605i
\(746\) −262.551 + 151.584i −0.351945 + 0.203196i
\(747\) 611.105 759.727i 0.818078 1.01704i
\(748\) 86.5033 149.828i 0.115646 0.200305i
\(749\) −666.320 + 794.090i −0.889613 + 1.06020i
\(750\) −492.311 + 184.987i −0.656414 + 0.246649i
\(751\) 62.2580 + 353.083i 0.0829001 + 0.470150i 0.997790 + 0.0664464i \(0.0211661\pi\)
−0.914890 + 0.403703i \(0.867723\pi\)
\(752\) −138.058 164.531i −0.183588 0.218792i
\(753\) 295.949 174.981i 0.393027 0.232379i
\(754\) 700.048 254.797i 0.928446 0.337927i
\(755\) 23.7274i 0.0314270i
\(756\) −444.138 + 13.8144i −0.587484 + 0.0182731i
\(757\) −1279.40 −1.69009 −0.845044 0.534697i \(-0.820426\pi\)
−0.845044 + 0.534697i \(0.820426\pi\)
\(758\) 122.638 + 336.944i 0.161791 + 0.444518i
\(759\) −65.1553 + 0.675336i −0.0858436 + 0.000889770i
\(760\) 229.616 192.670i 0.302126 0.253514i
\(761\) −1032.55 + 182.067i −1.35684 + 0.239247i −0.804292 0.594234i \(-0.797455\pi\)
−0.552547 + 0.833482i \(0.686344\pi\)
\(762\) −32.6001 + 39.6794i −0.0427823 + 0.0520727i
\(763\) −449.247 376.963i −0.588791 0.494054i
\(764\) −216.852 125.200i −0.283838 0.163874i
\(765\) −342.068 116.531i −0.447147 0.152328i
\(766\) −396.913 687.474i −0.518164