Properties

Label 54.3.f.a.47.2
Level $54$
Weight $3$
Character 54.47
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 47.2
Character \(\chi\) \(=\) 54.47
Dual form 54.3.f.a.23.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.483690 - 1.32893i) q^{2} +(-0.570511 - 2.94525i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(3.98669 - 0.702961i) q^{5} +(-3.63807 + 2.18276i) q^{6} +(-10.1193 - 8.49107i) q^{7} +(2.44949 + 1.41421i) q^{8} +(-8.34903 + 3.36060i) q^{9} +O(q^{10})\) \(q+(-0.483690 - 1.32893i) q^{2} +(-0.570511 - 2.94525i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(3.98669 - 0.702961i) q^{5} +(-3.63807 + 2.18276i) q^{6} +(-10.1193 - 8.49107i) q^{7} +(2.44949 + 1.41421i) q^{8} +(-8.34903 + 3.36060i) q^{9} +(-2.86250 - 4.95800i) q^{10} +(13.3731 + 2.35805i) q^{11} +(4.66042 + 3.77895i) q^{12} +(17.4463 + 6.34995i) q^{13} +(-6.38942 + 17.5548i) q^{14} +(-4.34485 - 11.3408i) q^{15} +(0.694593 - 3.93923i) q^{16} +(13.8790 - 8.01304i) q^{17} +(8.50433 + 9.46976i) q^{18} +(0.327006 - 0.566391i) q^{19} +(-5.20426 + 6.20219i) q^{20} +(-19.2352 + 34.6480i) q^{21} +(-3.33478 - 18.9125i) q^{22} +(4.24411 + 5.05793i) q^{23} +(2.76776 - 8.02119i) q^{24} +(-8.09277 + 2.94553i) q^{25} -26.2563i q^{26} +(14.6610 + 22.6728i) q^{27} +26.4195 q^{28} +(0.466584 + 1.28193i) q^{29} +(-12.9695 + 11.2594i) q^{30} +(-14.3033 + 12.0019i) q^{31} +(-5.57091 + 0.982302i) q^{32} +(-0.684487 - 40.7326i) q^{33} +(-17.3619 - 14.5683i) q^{34} +(-46.3112 - 26.7378i) q^{35} +(8.47116 - 15.8820i) q^{36} +(-8.43940 - 14.6175i) q^{37} +(-0.910861 - 0.160609i) q^{38} +(8.74887 - 55.0066i) q^{39} +(10.7595 + 3.91614i) q^{40} +(-14.6609 + 40.2805i) q^{41} +(55.3485 + 8.80326i) q^{42} +(0.0113866 - 0.0645766i) q^{43} +(-23.5203 + 13.5794i) q^{44} +(-30.9226 + 19.2667i) q^{45} +(4.66878 - 8.08657i) q^{46} +(30.0861 - 35.8552i) q^{47} +(-11.9983 + 0.201624i) q^{48} +(21.7924 + 123.591i) q^{49} +(7.82877 + 9.32997i) q^{50} +(-31.5186 - 36.3056i) q^{51} +(-34.8927 + 12.6999i) q^{52} -14.3109i q^{53} +(23.0390 - 30.4500i) q^{54} +54.9722 q^{55} +(-12.7788 - 35.1096i) q^{56} +(-1.85472 - 0.639983i) q^{57} +(1.47791 - 1.24011i) q^{58} +(-4.79039 + 0.844675i) q^{59} +(21.2361 + 11.7894i) q^{60} +(-12.0703 - 10.1282i) q^{61} +(22.8680 + 13.2029i) q^{62} +(113.021 + 36.8854i) q^{63} +(4.00000 + 6.92820i) q^{64} +(74.0169 + 13.0512i) q^{65} +(-53.7995 + 20.6116i) q^{66} +(-37.1304 - 13.5143i) q^{67} +(-10.9625 + 30.1192i) q^{68} +(12.4756 - 15.3856i) q^{69} +(-13.1323 + 74.4770i) q^{70} +(-60.9106 + 35.1667i) q^{71} +(-25.2035 - 3.57556i) q^{72} +(-34.1753 + 59.1934i) q^{73} +(-15.3435 + 18.2857i) q^{74} +(13.2923 + 22.1548i) q^{75} +(0.227136 + 1.28815i) q^{76} +(-115.304 - 137.414i) q^{77} +(-77.3315 + 14.9795i) q^{78} +(47.4059 - 17.2543i) q^{79} -16.1928i q^{80} +(58.4127 - 56.1155i) q^{81} +60.6211 q^{82} +(50.2457 + 138.049i) q^{83} +(-15.0726 - 77.8122i) q^{84} +(49.6984 - 41.7019i) q^{85} +(-0.0913252 + 0.0161031i) q^{86} +(3.50941 - 2.10556i) q^{87} +(29.4226 + 24.6885i) q^{88} +(-17.2957 - 9.98568i) q^{89} +(40.5610 + 31.7748i) q^{90} +(-122.626 - 212.395i) q^{91} +(-13.0047 - 2.29308i) q^{92} +(43.5089 + 35.2797i) q^{93} +(-62.2012 - 22.6394i) q^{94} +(0.905521 - 2.48790i) q^{95} +(6.07140 + 15.8473i) q^{96} +(18.3596 - 104.122i) q^{97} +(153.703 - 88.7402i) q^{98} +(-119.577 + 25.2544i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.483690 1.32893i −0.241845 0.664463i
\(3\) −0.570511 2.94525i −0.190170 0.981751i
\(4\) −1.53209 + 1.28558i −0.383022 + 0.321394i
\(5\) 3.98669 0.702961i 0.797338 0.140592i 0.239886 0.970801i \(-0.422890\pi\)
0.557452 + 0.830209i \(0.311779\pi\)
\(6\) −3.63807 + 2.18276i −0.606346 + 0.363793i
\(7\) −10.1193 8.49107i −1.44561 1.21301i −0.935708 0.352776i \(-0.885238\pi\)
−0.509901 0.860233i \(-0.670318\pi\)
\(8\) 2.44949 + 1.41421i 0.306186 + 0.176777i
\(9\) −8.34903 + 3.36060i −0.927670 + 0.373400i
\(10\) −2.86250 4.95800i −0.286250 0.495800i
\(11\) 13.3731 + 2.35805i 1.21574 + 0.214368i 0.744491 0.667632i \(-0.232692\pi\)
0.471249 + 0.882000i \(0.343803\pi\)
\(12\) 4.66042 + 3.77895i 0.388368 + 0.314913i
\(13\) 17.4463 + 6.34995i 1.34203 + 0.488458i 0.910450 0.413619i \(-0.135735\pi\)
0.431576 + 0.902077i \(0.357958\pi\)
\(14\) −6.38942 + 17.5548i −0.456387 + 1.25391i
\(15\) −4.34485 11.3408i −0.289657 0.756051i
\(16\) 0.694593 3.93923i 0.0434120 0.246202i
\(17\) 13.8790 8.01304i 0.816411 0.471355i −0.0327659 0.999463i \(-0.510432\pi\)
0.849177 + 0.528108i \(0.177098\pi\)
\(18\) 8.50433 + 9.46976i 0.472463 + 0.526098i
\(19\) 0.327006 0.566391i 0.0172108 0.0298100i −0.857292 0.514831i \(-0.827855\pi\)
0.874503 + 0.485021i \(0.161188\pi\)
\(20\) −5.20426 + 6.20219i −0.260213 + 0.310109i
\(21\) −19.2352 + 34.6480i −0.915962 + 1.64991i
\(22\) −3.33478 18.9125i −0.151581 0.859658i
\(23\) 4.24411 + 5.05793i 0.184526 + 0.219910i 0.850375 0.526177i \(-0.176375\pi\)
−0.665849 + 0.746087i \(0.731930\pi\)
\(24\) 2.76776 8.02119i 0.115323 0.334216i
\(25\) −8.09277 + 2.94553i −0.323711 + 0.117821i
\(26\) 26.2563i 1.00986i
\(27\) 14.6610 + 22.6728i 0.543001 + 0.839732i
\(28\) 26.4195 0.943554
\(29\) 0.466584 + 1.28193i 0.0160891 + 0.0442044i 0.947477 0.319823i \(-0.103624\pi\)
−0.931388 + 0.364028i \(0.881401\pi\)
\(30\) −12.9695 + 11.2594i −0.432316 + 0.375313i
\(31\) −14.3033 + 12.0019i −0.461397 + 0.387158i −0.843645 0.536902i \(-0.819595\pi\)
0.382247 + 0.924060i \(0.375150\pi\)
\(32\) −5.57091 + 0.982302i −0.174091 + 0.0306970i
\(33\) −0.684487 40.7326i −0.0207420 1.23432i
\(34\) −17.3619 14.5683i −0.510643 0.428480i
\(35\) −46.3112 26.7378i −1.32318 0.763937i
\(36\) 8.47116 15.8820i 0.235310 0.441168i
\(37\) −8.43940 14.6175i −0.228092 0.395067i 0.729151 0.684353i \(-0.239915\pi\)
−0.957243 + 0.289286i \(0.906582\pi\)
\(38\) −0.910861 0.160609i −0.0239700 0.00422656i
\(39\) 8.74887 55.0066i 0.224330 1.41043i
\(40\) 10.7595 + 3.91614i 0.268987 + 0.0979034i
\(41\) −14.6609 + 40.2805i −0.357583 + 0.982450i 0.622283 + 0.782792i \(0.286205\pi\)
−0.979866 + 0.199658i \(0.936017\pi\)
\(42\) 55.3485 + 8.80326i 1.31782 + 0.209601i
\(43\) 0.0113866 0.0645766i 0.000264805 0.00150178i −0.984675 0.174399i \(-0.944202\pi\)
0.984940 + 0.172897i \(0.0553129\pi\)
\(44\) −23.5203 + 13.5794i −0.534552 + 0.308624i
\(45\) −30.9226 + 19.2667i −0.687170 + 0.428149i
\(46\) 4.66878 8.08657i 0.101495 0.175795i
\(47\) 30.0861 35.8552i 0.640129 0.762876i −0.344262 0.938874i \(-0.611871\pi\)
0.984391 + 0.175998i \(0.0563152\pi\)
\(48\) −11.9983 + 0.201624i −0.249965 + 0.00420051i
\(49\) 21.7924 + 123.591i 0.444744 + 2.52227i
\(50\) 7.82877 + 9.32997i 0.156575 + 0.186599i
\(51\) −31.5186 36.3056i −0.618011 0.711875i
\(52\) −34.8927 + 12.6999i −0.671013 + 0.244229i
\(53\) 14.3109i 0.270017i −0.990844 0.135008i \(-0.956894\pi\)
0.990844 0.135008i \(-0.0431061\pi\)
\(54\) 23.0390 30.4500i 0.426649 0.563889i
\(55\) 54.9722 0.999494
\(56\) −12.7788 35.1096i −0.228194 0.626957i
\(57\) −1.85472 0.639983i −0.0325390 0.0112278i
\(58\) 1.47791 1.24011i 0.0254811 0.0213812i
\(59\) −4.79039 + 0.844675i −0.0811930 + 0.0143165i −0.214097 0.976812i \(-0.568681\pi\)
0.132904 + 0.991129i \(0.457570\pi\)
\(60\) 21.2361 + 11.7894i 0.353935 + 0.196490i
\(61\) −12.0703 10.1282i −0.197874 0.166036i 0.538467 0.842646i \(-0.319004\pi\)
−0.736341 + 0.676611i \(0.763448\pi\)
\(62\) 22.8680 + 13.2029i 0.368839 + 0.212949i
\(63\) 113.021 + 36.8854i 1.79399 + 0.585483i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) 74.0169 + 13.0512i 1.13872 + 0.200787i
\(66\) −53.7995 + 20.6116i −0.815144 + 0.312296i
\(67\) −37.1304 13.5143i −0.554185 0.201707i 0.0497202 0.998763i \(-0.484167\pi\)
−0.603905 + 0.797056i \(0.706389\pi\)
\(68\) −10.9625 + 30.1192i −0.161213 + 0.442929i
\(69\) 12.4756 15.3856i 0.180805 0.222979i
\(70\) −13.1323 + 74.4770i −0.187604 + 1.06396i
\(71\) −60.9106 + 35.1667i −0.857896 + 0.495306i −0.863307 0.504679i \(-0.831611\pi\)
0.00541136 + 0.999985i \(0.498278\pi\)
\(72\) −25.2035 3.57556i −0.350048 0.0496606i
\(73\) −34.1753 + 59.1934i −0.468155 + 0.810868i −0.999338 0.0363890i \(-0.988414\pi\)
0.531183 + 0.847257i \(0.321748\pi\)
\(74\) −15.3435 + 18.2857i −0.207344 + 0.247103i
\(75\) 13.2923 + 22.1548i 0.177231 + 0.295397i
\(76\) 0.227136 + 1.28815i 0.00298863 + 0.0169494i
\(77\) −115.304 137.414i −1.49745 1.78460i
\(78\) −77.3315 + 14.9795i −0.991429 + 0.192045i
\(79\) 47.4059 17.2543i 0.600074 0.218409i −0.0240804 0.999710i \(-0.507666\pi\)
0.624155 + 0.781301i \(0.285444\pi\)
\(80\) 16.1928i 0.202410i
\(81\) 58.4127 56.1155i 0.721145 0.692784i
\(82\) 60.6211 0.739281
\(83\) 50.2457 + 138.049i 0.605370 + 1.66324i 0.740211 + 0.672374i \(0.234725\pi\)
−0.134841 + 0.990867i \(0.543052\pi\)
\(84\) −15.0726 77.8122i −0.179436 0.926335i
\(85\) 49.6984 41.7019i 0.584687 0.490611i
\(86\) −0.0913252 + 0.0161031i −0.00106192 + 0.000187245i
\(87\) 3.50941 2.10556i 0.0403381 0.0242019i
\(88\) 29.4226 + 24.6885i 0.334348 + 0.280551i
\(89\) −17.2957 9.98568i −0.194334 0.112199i 0.399676 0.916656i \(-0.369123\pi\)
−0.594010 + 0.804458i \(0.702456\pi\)
\(90\) 40.5610 + 31.7748i 0.450678 + 0.353053i
\(91\) −122.626 212.395i −1.34754 2.33401i
\(92\) −13.0047 2.29308i −0.141355 0.0249248i
\(93\) 43.5089 + 35.2797i 0.467837 + 0.379351i
\(94\) −62.2012 22.6394i −0.661715 0.240844i
\(95\) 0.905521 2.48790i 0.00953180 0.0261884i
\(96\) 6.07140 + 15.8473i 0.0632437 + 0.165076i
\(97\) 18.3596 104.122i 0.189274 1.07343i −0.731066 0.682307i \(-0.760977\pi\)
0.920340 0.391120i \(-0.127912\pi\)
\(98\) 153.703 88.7402i 1.56839 0.905513i
\(99\) −119.577 + 25.2544i −1.20785 + 0.255095i
\(100\) 8.61214 14.9167i 0.0861214 0.149167i
\(101\) 38.7455 46.1751i 0.383619 0.457179i −0.539334 0.842092i \(-0.681324\pi\)
0.922953 + 0.384913i \(0.125768\pi\)
\(102\) −33.0023 + 59.4465i −0.323552 + 0.582809i
\(103\) −16.6921 94.6657i −0.162059 0.919085i −0.952045 0.305959i \(-0.901023\pi\)
0.789985 0.613126i \(-0.210088\pi\)
\(104\) 33.7544 + 40.2270i 0.324562 + 0.386798i
\(105\) −52.3285 + 151.653i −0.498367 + 1.44431i
\(106\) −19.0181 + 6.92202i −0.179416 + 0.0653021i
\(107\) 107.330i 1.00308i 0.865133 + 0.501542i \(0.167234\pi\)
−0.865133 + 0.501542i \(0.832766\pi\)
\(108\) −51.6095 15.8888i −0.477866 0.147119i
\(109\) 85.1199 0.780917 0.390458 0.920621i \(-0.372317\pi\)
0.390458 + 0.920621i \(0.372317\pi\)
\(110\) −26.5895 73.0540i −0.241722 0.664127i
\(111\) −38.2374 + 33.1956i −0.344481 + 0.299059i
\(112\) −40.4770 + 33.9643i −0.361402 + 0.303252i
\(113\) 165.620 29.2032i 1.46566 0.258436i 0.616828 0.787098i \(-0.288417\pi\)
0.848832 + 0.528662i \(0.177306\pi\)
\(114\) 0.0466212 + 2.77435i 0.000408958 + 0.0243364i
\(115\) 20.4755 + 17.1810i 0.178047 + 0.149400i
\(116\) −2.36286 1.36420i −0.0203695 0.0117603i
\(117\) −167.000 + 5.61425i −1.42735 + 0.0479850i
\(118\) 3.43957 + 5.95751i 0.0291489 + 0.0504874i
\(119\) −208.484 36.7614i −1.75197 0.308920i
\(120\) 5.39560 33.9236i 0.0449633 0.282697i
\(121\) 59.5777 + 21.6845i 0.492378 + 0.179211i
\(122\) −7.62133 + 20.9394i −0.0624699 + 0.171635i
\(123\) 127.000 + 20.1996i 1.03252 + 0.164224i
\(124\) 6.48460 36.7760i 0.0522952 0.296581i
\(125\) −117.839 + 68.0342i −0.942710 + 0.544274i
\(126\) −5.64915 168.038i −0.0448345 1.33363i
\(127\) −85.8323 + 148.666i −0.675845 + 1.17060i 0.300377 + 0.953821i \(0.402888\pi\)
−0.976221 + 0.216777i \(0.930446\pi\)
\(128\) 7.27231 8.66680i 0.0568149 0.0677094i
\(129\) −0.196691 + 0.00330527i −0.00152473 + 2.56223e-5i
\(130\) −18.4572 104.676i −0.141978 0.805198i
\(131\) 112.534 + 134.113i 0.859038 + 1.02376i 0.999433 + 0.0336659i \(0.0107182\pi\)
−0.140395 + 0.990096i \(0.544837\pi\)
\(132\) 53.4135 + 61.5260i 0.404648 + 0.466106i
\(133\) −8.11832 + 2.95483i −0.0610400 + 0.0222167i
\(134\) 55.8803i 0.417017i
\(135\) 74.3871 + 80.0831i 0.551015 + 0.593208i
\(136\) 45.3286 0.333299
\(137\) 16.7909 + 46.1327i 0.122561 + 0.336735i 0.985767 0.168118i \(-0.0537690\pi\)
−0.863205 + 0.504853i \(0.831547\pi\)
\(138\) −26.4806 9.13727i −0.191888 0.0662121i
\(139\) −107.159 + 89.9168i −0.770926 + 0.646884i −0.940946 0.338557i \(-0.890061\pi\)
0.170020 + 0.985441i \(0.445617\pi\)
\(140\) 105.326 18.5719i 0.752332 0.132656i
\(141\) −122.767 68.1553i −0.870688 0.483371i
\(142\) 76.1958 + 63.9359i 0.536590 + 0.450253i
\(143\) 218.339 + 126.058i 1.52685 + 0.881525i
\(144\) 7.43900 + 35.2230i 0.0516597 + 0.244604i
\(145\) 2.76127 + 4.78266i 0.0190432 + 0.0329839i
\(146\) 95.1939 + 16.7853i 0.652013 + 0.114967i
\(147\) 351.574 134.694i 2.39166 0.916288i
\(148\) 31.7218 + 11.5458i 0.214336 + 0.0780120i
\(149\) 82.1753 225.775i 0.551512 1.51527i −0.280134 0.959961i \(-0.590379\pi\)
0.831646 0.555306i \(-0.187399\pi\)
\(150\) 23.0127 28.3806i 0.153418 0.189204i
\(151\) 3.53844 20.0675i 0.0234334 0.132897i −0.970847 0.239701i \(-0.922951\pi\)
0.994280 + 0.106804i \(0.0340617\pi\)
\(152\) 1.60200 0.924912i 0.0105394 0.00608495i
\(153\) −88.9476 + 113.543i −0.581357 + 0.742111i
\(154\) −126.842 + 219.696i −0.823647 + 1.42660i
\(155\) −48.5860 + 57.9026i −0.313458 + 0.373565i
\(156\) 57.3111 + 95.5223i 0.367379 + 0.612323i
\(157\) −39.0295 221.347i −0.248596 1.40986i −0.811992 0.583669i \(-0.801617\pi\)
0.563396 0.826187i \(-0.309495\pi\)
\(158\) −45.8594 54.6531i −0.290250 0.345906i
\(159\) −42.1492 + 8.16452i −0.265089 + 0.0513492i
\(160\) −21.5190 + 7.83227i −0.134494 + 0.0489517i
\(161\) 87.2195i 0.541736i
\(162\) −102.827 50.4837i −0.634735 0.311628i
\(163\) −155.441 −0.953626 −0.476813 0.879005i \(-0.658208\pi\)
−0.476813 + 0.879005i \(0.658208\pi\)
\(164\) −29.3218 80.5609i −0.178791 0.491225i
\(165\) −31.3623 161.907i −0.190074 0.981255i
\(166\) 159.154 133.546i 0.958757 0.804493i
\(167\) −316.191 + 55.7529i −1.89336 + 0.333850i −0.994530 0.104454i \(-0.966690\pi\)
−0.898827 + 0.438304i \(0.855579\pi\)
\(168\) −96.1161 + 57.6673i −0.572120 + 0.343258i
\(169\) 134.591 + 112.936i 0.796399 + 0.668258i
\(170\) −79.4574 45.8747i −0.467396 0.269851i
\(171\) −0.826770 + 5.82775i −0.00483491 + 0.0340804i
\(172\) 0.0655728 + 0.113575i 0.000381237 + 0.000660323i
\(173\) −140.320 24.7423i −0.811100 0.143019i −0.247309 0.968937i \(-0.579546\pi\)
−0.563791 + 0.825918i \(0.690658\pi\)
\(174\) −4.49560 3.64531i −0.0258368 0.0209501i
\(175\) 106.903 + 38.9097i 0.610877 + 0.222341i
\(176\) 18.5778 51.0420i 0.105556 0.290011i
\(177\) 5.22075 + 13.6270i 0.0294958 + 0.0769888i
\(178\) −4.90448 + 27.8147i −0.0275533 + 0.156262i
\(179\) 186.101 107.445i 1.03967 0.600253i 0.119930 0.992782i \(-0.461733\pi\)
0.919740 + 0.392529i \(0.128400\pi\)
\(180\) 22.6074 69.2717i 0.125597 0.384843i
\(181\) −150.873 + 261.319i −0.833550 + 1.44375i 0.0616551 + 0.998098i \(0.480362\pi\)
−0.895205 + 0.445654i \(0.852971\pi\)
\(182\) −222.944 + 265.694i −1.22497 + 1.45986i
\(183\) −22.9438 + 41.3283i −0.125376 + 0.225838i
\(184\) 3.24290 + 18.3914i 0.0176245 + 0.0999533i
\(185\) −43.9208 52.3427i −0.237410 0.282934i
\(186\) 25.8393 74.8845i 0.138921 0.402605i
\(187\) 204.501 74.4322i 1.09359 0.398033i
\(188\) 93.6112i 0.497932i
\(189\) 44.1571 353.919i 0.233635 1.87259i
\(190\) −3.74422 −0.0197064
\(191\) −101.886 279.928i −0.533433 1.46559i −0.854960 0.518694i \(-0.826418\pi\)
0.321527 0.946900i \(-0.395804\pi\)
\(192\) 18.1233 15.7336i 0.0943920 0.0819460i
\(193\) 96.4229 80.9084i 0.499601 0.419215i −0.357852 0.933778i \(-0.616491\pi\)
0.857452 + 0.514564i \(0.172046\pi\)
\(194\) −147.251 + 25.9644i −0.759027 + 0.133837i
\(195\) −3.78846 225.444i −0.0194280 1.15613i
\(196\) −192.274 161.337i −0.980987 0.823146i
\(197\) −37.5877 21.7013i −0.190801 0.110159i 0.401557 0.915834i \(-0.368469\pi\)
−0.592357 + 0.805675i \(0.701803\pi\)
\(198\) 91.3995 + 146.694i 0.461613 + 0.740879i
\(199\) 37.8343 + 65.5310i 0.190122 + 0.329301i 0.945291 0.326230i \(-0.105778\pi\)
−0.755168 + 0.655531i \(0.772445\pi\)
\(200\) −23.9888 4.22986i −0.119944 0.0211493i
\(201\) −18.6199 + 117.068i −0.0926362 + 0.582430i
\(202\) −80.1041 29.1555i −0.396555 0.144334i
\(203\) 6.16346 16.9340i 0.0303619 0.0834185i
\(204\) 94.9628 + 15.1040i 0.465504 + 0.0740390i
\(205\) −30.1328 + 170.892i −0.146989 + 0.833618i
\(206\) −117.730 + 67.9714i −0.571505 + 0.329958i
\(207\) −52.4319 27.9661i −0.253294 0.135102i
\(208\) 37.1320 64.3145i 0.178519 0.309205i
\(209\) 5.70867 6.80333i 0.0273142 0.0325518i
\(210\) 226.846 3.81201i 1.08022 0.0181524i
\(211\) 37.4085 + 212.154i 0.177291 + 1.00547i 0.935466 + 0.353418i \(0.114981\pi\)
−0.758174 + 0.652052i \(0.773908\pi\)
\(212\) 18.3977 + 21.9255i 0.0867817 + 0.103422i
\(213\) 138.325 + 159.334i 0.649414 + 0.748047i
\(214\) 142.634 51.9144i 0.666512 0.242591i
\(215\) 0.265451i 0.00123466i
\(216\) 3.84794 + 76.2705i 0.0178145 + 0.353104i
\(217\) 246.648 1.13663
\(218\) −41.1716 113.118i −0.188861 0.518890i
\(219\) 193.837 + 66.8845i 0.885100 + 0.305409i
\(220\) −84.2223 + 70.6709i −0.382829 + 0.321231i
\(221\) 293.020 51.6673i 1.32588 0.233789i
\(222\) 62.6095 + 34.7583i 0.282025 + 0.156569i
\(223\) −63.7410 53.4851i −0.285834 0.239843i 0.488585 0.872516i \(-0.337513\pi\)
−0.774419 + 0.632673i \(0.781958\pi\)
\(224\) 64.7143 + 37.3628i 0.288903 + 0.166798i
\(225\) 57.6681 51.7889i 0.256302 0.230173i
\(226\) −118.917 205.971i −0.526183 0.911376i
\(227\) −61.5724 10.8569i −0.271244 0.0478276i 0.0363717 0.999338i \(-0.488420\pi\)
−0.307616 + 0.951511i \(0.599531\pi\)
\(228\) 3.66435 1.40388i 0.0160717 0.00615736i
\(229\) −136.445 49.6621i −0.595831 0.216865i 0.0264609 0.999650i \(-0.491576\pi\)
−0.622292 + 0.782785i \(0.713798\pi\)
\(230\) 12.9284 35.5206i 0.0562106 0.154437i
\(231\) −338.937 + 417.996i −1.46726 + 1.80950i
\(232\) −0.670028 + 3.79992i −0.00288805 + 0.0163790i
\(233\) −117.176 + 67.6517i −0.502902 + 0.290351i −0.729911 0.683542i \(-0.760439\pi\)
0.227009 + 0.973893i \(0.427105\pi\)
\(234\) 88.2369 + 219.215i 0.377081 + 0.936815i
\(235\) 94.7390 164.093i 0.403145 0.698267i
\(236\) 6.25341 7.45252i 0.0264975 0.0315785i
\(237\) −77.8639 129.778i −0.328540 0.547588i
\(238\) 51.9885 + 294.842i 0.218439 + 1.23883i
\(239\) 94.2026 + 112.266i 0.394153 + 0.469733i 0.926228 0.376964i \(-0.123032\pi\)
−0.532075 + 0.846697i \(0.678588\pi\)
\(240\) −47.6918 + 9.23816i −0.198716 + 0.0384923i
\(241\) −298.014 + 108.468i −1.23657 + 0.450075i −0.875843 0.482596i \(-0.839694\pi\)
−0.360728 + 0.932671i \(0.617472\pi\)
\(242\) 89.6629i 0.370508i
\(243\) −198.600 140.026i −0.817282 0.576238i
\(244\) 31.5133 0.129153
\(245\) 173.759 + 477.400i 0.709222 + 1.94857i
\(246\) −34.5850 178.544i −0.140589 0.725790i
\(247\) 9.30161 7.80498i 0.0376583 0.0315991i
\(248\) −52.0091 + 9.17061i −0.209714 + 0.0369783i
\(249\) 377.924 226.745i 1.51777 0.910623i
\(250\) 147.410 + 123.691i 0.589639 + 0.494766i
\(251\) −137.930 79.6340i −0.549522 0.317267i 0.199407 0.979917i \(-0.436098\pi\)
−0.748929 + 0.662650i \(0.769432\pi\)
\(252\) −220.577 + 88.7854i −0.875307 + 0.352323i
\(253\) 44.8302 + 77.6482i 0.177194 + 0.306910i
\(254\) 239.082 + 42.1566i 0.941268 + 0.165971i
\(255\) −151.176 122.583i −0.592848 0.480718i
\(256\) −15.0351 5.47232i −0.0587308 0.0213763i
\(257\) −20.7153 + 56.9148i −0.0806043 + 0.221458i −0.973448 0.228908i \(-0.926484\pi\)
0.892844 + 0.450367i \(0.148707\pi\)
\(258\) 0.0995297 + 0.259789i 0.000385774 + 0.00100693i
\(259\) −38.7174 + 219.577i −0.149488 + 0.847789i
\(260\) −130.179 + 75.1588i −0.500688 + 0.289072i
\(261\) −8.20357 9.13486i −0.0314313 0.0349995i
\(262\) 123.794 214.418i 0.472498 0.818390i
\(263\) 217.155 258.796i 0.825686 0.984014i −0.174314 0.984690i \(-0.555771\pi\)
1.00000 0.000676331i \(0.000215283\pi\)
\(264\) 55.9279 100.742i 0.211848 0.381599i
\(265\) −10.0600 57.0530i −0.0379622 0.215295i
\(266\) 7.85349 + 9.35943i 0.0295244 + 0.0351858i
\(267\) −19.5430 + 56.6372i −0.0731946 + 0.212124i
\(268\) 74.2607 27.0287i 0.277092 0.100853i
\(269\) 39.0580i 0.145197i 0.997361 + 0.0725986i \(0.0231292\pi\)
−0.997361 + 0.0725986i \(0.976871\pi\)
\(270\) 70.4443 137.590i 0.260905 0.509594i
\(271\) 247.005 0.911459 0.455730 0.890118i \(-0.349378\pi\)
0.455730 + 0.890118i \(0.349378\pi\)
\(272\) −21.9250 60.2384i −0.0806065 0.221465i
\(273\) −555.597 + 482.339i −2.03515 + 1.76681i
\(274\) 53.1853 44.6278i 0.194107 0.162875i
\(275\) −115.171 + 20.3078i −0.418805 + 0.0738466i
\(276\) 0.665628 + 39.6103i 0.00241170 + 0.143516i
\(277\) −146.095 122.589i −0.527420 0.442558i 0.339789 0.940502i \(-0.389644\pi\)
−0.867209 + 0.497943i \(0.834089\pi\)
\(278\) 171.324 + 98.9142i 0.616275 + 0.355806i
\(279\) 79.0853 148.272i 0.283460 0.531441i
\(280\) −75.6260 130.988i −0.270093 0.467814i
\(281\) 133.542 + 23.5471i 0.475239 + 0.0837975i 0.406137 0.913812i \(-0.366876\pi\)
0.0691020 + 0.997610i \(0.477987\pi\)
\(282\) −31.1922 + 196.114i −0.110611 + 0.695441i
\(283\) −436.119 158.734i −1.54106 0.560898i −0.574758 0.818324i \(-0.694904\pi\)
−0.966298 + 0.257425i \(0.917126\pi\)
\(284\) 48.1109 132.184i 0.169405 0.465436i
\(285\) −7.84410 1.24761i −0.0275231 0.00437759i
\(286\) 61.9136 351.129i 0.216481 1.22772i
\(287\) 490.381 283.122i 1.70865 0.986487i
\(288\) 43.2106 26.9229i 0.150037 0.0934823i
\(289\) −16.0823 + 27.8554i −0.0556482 + 0.0963855i
\(290\) 5.02021 5.98285i 0.0173111 0.0206305i
\(291\) −317.141 + 5.32937i −1.08983 + 0.0183140i
\(292\) −23.7379 134.624i −0.0812943 0.461043i
\(293\) 86.9857 + 103.665i 0.296879 + 0.353807i 0.893778 0.448510i \(-0.148045\pi\)
−0.596899 + 0.802317i \(0.703601\pi\)
\(294\) −349.052 402.066i −1.18725 1.36757i
\(295\) −18.5040 + 6.73492i −0.0627255 + 0.0228302i
\(296\) 47.7404i 0.161285i
\(297\) 142.601 + 337.777i 0.480137 + 1.13730i
\(298\) −339.785 −1.14022
\(299\) 41.9265 + 115.192i 0.140222 + 0.385258i
\(300\) −48.8467 16.8548i −0.162822 0.0561827i
\(301\) −0.663549 + 0.556783i −0.00220448 + 0.00184978i
\(302\) −28.3797 + 5.00411i −0.0939726 + 0.0165699i
\(303\) −158.102 87.7719i −0.521789 0.289676i
\(304\) −2.00401 1.68156i −0.00659213 0.00553146i
\(305\) −55.2403 31.8930i −0.181116 0.104567i
\(306\) 193.913 + 63.2852i 0.633703 + 0.206814i
\(307\) −174.308 301.910i −0.567778 0.983421i −0.996785 0.0801195i \(-0.974470\pi\)
0.429007 0.903301i \(-0.358864\pi\)
\(308\) 353.312 + 62.2984i 1.14712 + 0.202268i
\(309\) −269.291 + 103.170i −0.871493 + 0.333885i
\(310\) 100.449 + 36.5604i 0.324028 + 0.117937i
\(311\) −74.9120 + 205.819i −0.240875 + 0.661798i 0.759067 + 0.651012i \(0.225655\pi\)
−0.999942 + 0.0107853i \(0.996567\pi\)
\(312\) 99.2214 122.365i 0.318017 0.392197i
\(313\) 47.2508 267.973i 0.150961 0.856143i −0.811425 0.584457i \(-0.801308\pi\)
0.962386 0.271686i \(-0.0875813\pi\)
\(314\) −275.276 + 158.931i −0.876676 + 0.506149i
\(315\) 476.509 + 67.6013i 1.51273 + 0.214607i
\(316\) −50.4483 + 87.3789i −0.159646 + 0.276516i
\(317\) 300.183 357.744i 0.946949 1.12853i −0.0446266 0.999004i \(-0.514210\pi\)
0.991576 0.129527i \(-0.0413457\pi\)
\(318\) 31.2371 + 52.0640i 0.0982300 + 0.163723i
\(319\) 3.21684 + 18.2436i 0.0100842 + 0.0571901i
\(320\) 20.8170 + 24.8088i 0.0650532 + 0.0775274i
\(321\) 316.114 61.2330i 0.984779 0.190757i
\(322\) −115.908 + 42.1871i −0.359963 + 0.131016i
\(323\) 10.4812i 0.0324497i
\(324\) −17.3528 + 161.068i −0.0535579 + 0.497123i
\(325\) −159.893 −0.491979
\(326\) 75.1852 + 206.570i 0.230630 + 0.633650i
\(327\) −48.5619 250.700i −0.148507 0.766666i
\(328\) −92.8768 + 77.9329i −0.283161 + 0.237600i
\(329\) −608.897 + 107.365i −1.85075 + 0.326337i
\(330\) −199.993 + 119.991i −0.606039 + 0.363609i
\(331\) 79.5802 + 66.7757i 0.240423 + 0.201739i 0.755036 0.655684i \(-0.227620\pi\)
−0.514612 + 0.857423i \(0.672064\pi\)
\(332\) −254.453 146.909i −0.766426 0.442496i
\(333\) 119.584 + 93.6803i 0.359112 + 0.281322i
\(334\) 227.030 + 393.227i 0.679729 + 1.17733i
\(335\) −157.527 27.7763i −0.470231 0.0829144i
\(336\) 123.126 + 99.8381i 0.366446 + 0.297137i
\(337\) 529.219 + 192.620i 1.57038 + 0.571573i 0.973085 0.230447i \(-0.0740189\pi\)
0.597298 + 0.802020i \(0.296241\pi\)
\(338\) 84.9826 233.488i 0.251428 0.690792i
\(339\) −180.499 471.131i −0.532445 1.38977i
\(340\) −22.5314 + 127.782i −0.0662689 + 0.375830i
\(341\) −219.581 + 126.775i −0.643934 + 0.371775i
\(342\) 8.14455 1.72011i 0.0238145 0.00502955i
\(343\) 505.258 875.132i 1.47305 2.55140i
\(344\) 0.119217 0.142077i 0.000346560 0.000413014i
\(345\) 38.9208 70.1073i 0.112814 0.203210i
\(346\) 34.9908 + 198.443i 0.101130 + 0.573534i
\(347\) 174.719 + 208.222i 0.503512 + 0.600062i 0.956600 0.291403i \(-0.0941222\pi\)
−0.453088 + 0.891466i \(0.649678\pi\)
\(348\) −2.66987 + 7.73752i −0.00767205 + 0.0222343i
\(349\) −75.3775 + 27.4352i −0.215981 + 0.0786108i −0.447745 0.894161i \(-0.647773\pi\)
0.231763 + 0.972772i \(0.425550\pi\)
\(350\) 160.887i 0.459677i
\(351\) 111.811 + 488.654i 0.318549 + 1.39218i
\(352\) −76.8169 −0.218230
\(353\) −40.8280 112.174i −0.115660 0.317773i 0.868333 0.495982i \(-0.165192\pi\)
−0.983993 + 0.178209i \(0.942970\pi\)
\(354\) 15.5841 13.5292i 0.0440228 0.0382182i
\(355\) −218.111 + 183.017i −0.614397 + 0.515540i
\(356\) 39.3359 6.93598i 0.110494 0.0194831i
\(357\) 10.6710 + 635.012i 0.0298908 + 1.77875i
\(358\) −232.802 195.344i −0.650285 0.545654i
\(359\) −225.320 130.089i −0.627633 0.362364i 0.152202 0.988349i \(-0.451364\pi\)
−0.779835 + 0.625985i \(0.784697\pi\)
\(360\) −102.992 + 3.46241i −0.286089 + 0.00961782i
\(361\) 180.286 + 312.265i 0.499408 + 0.864999i
\(362\) 420.249 + 74.1013i 1.16091 + 0.204700i
\(363\) 29.8766 187.843i 0.0823047 0.517473i
\(364\) 460.924 + 167.763i 1.26627 + 0.460886i
\(365\) −94.6358 + 260.010i −0.259276 + 0.712355i
\(366\) 66.0200 + 10.5006i 0.180382 + 0.0286901i
\(367\) −68.0453 + 385.904i −0.185410 + 1.05151i 0.740018 + 0.672587i \(0.234817\pi\)
−0.925428 + 0.378924i \(0.876294\pi\)
\(368\) 22.8723 13.2053i 0.0621529 0.0358840i
\(369\) −12.9623 385.572i −0.0351281 1.04491i
\(370\) −48.3156 + 83.6851i −0.130583 + 0.226176i
\(371\) −121.515 + 144.815i −0.327533 + 0.390338i
\(372\) −112.014 + 1.88233i −0.301113 + 0.00506003i
\(373\) −19.2839 109.365i −0.0516996 0.293203i 0.947985 0.318315i \(-0.103117\pi\)
−0.999685 + 0.0251119i \(0.992006\pi\)
\(374\) −197.830 235.764i −0.528957 0.630386i
\(375\) 267.606 + 308.251i 0.713617 + 0.822001i
\(376\) 124.402 45.2788i 0.330857 0.120422i
\(377\) 25.3277i 0.0671823i
\(378\) −491.691 + 112.506i −1.30077 + 0.297634i
\(379\) 396.757 1.04685 0.523427 0.852071i \(-0.324653\pi\)
0.523427 + 0.852071i \(0.324653\pi\)
\(380\) 1.81104 + 4.97579i 0.00476590 + 0.0130942i
\(381\) 486.827 + 167.982i 1.27776 + 0.440898i
\(382\) −322.723 + 270.797i −0.844825 + 0.708893i
\(383\) 222.640 39.2574i 0.581305 0.102500i 0.124739 0.992190i \(-0.460191\pi\)
0.456566 + 0.889690i \(0.349079\pi\)
\(384\) −29.6749 16.4743i −0.0772783 0.0429018i
\(385\) −556.278 466.773i −1.44488 1.21240i
\(386\) −154.160 89.0043i −0.399378 0.230581i
\(387\) 0.121949 + 0.577418i 0.000315114 + 0.00149204i
\(388\) 105.729 + 183.127i 0.272497 + 0.471978i
\(389\) −637.851 112.470i −1.63972 0.289127i −0.723657 0.690160i \(-0.757540\pi\)
−0.916063 + 0.401033i \(0.868651\pi\)
\(390\) −297.767 + 114.080i −0.763504 + 0.292512i
\(391\) 99.4333 + 36.1908i 0.254305 + 0.0925595i
\(392\) −121.404 + 333.554i −0.309704 + 0.850904i
\(393\) 330.794 407.954i 0.841715 1.03805i
\(394\) −10.6586 + 60.4480i −0.0270523 + 0.153421i
\(395\) 176.863 102.112i 0.447755 0.258512i
\(396\) 150.737 192.418i 0.380648 0.485903i
\(397\) 180.080 311.908i 0.453602 0.785662i −0.545005 0.838433i \(-0.683472\pi\)
0.998607 + 0.0527712i \(0.0168054\pi\)
\(398\) 68.7858 81.9757i 0.172829 0.205969i
\(399\) 13.3343 + 22.2247i 0.0334193 + 0.0557011i
\(400\) 5.98193 + 33.9252i 0.0149548 + 0.0848131i
\(401\) 158.429 + 188.808i 0.395084 + 0.470843i 0.926514 0.376259i \(-0.122790\pi\)
−0.531431 + 0.847102i \(0.678345\pi\)
\(402\) 164.582 31.8803i 0.409407 0.0793043i
\(403\) −325.752 + 118.564i −0.808318 + 0.294204i
\(404\) 120.555i 0.298402i
\(405\) 193.426 264.777i 0.477596 0.653771i
\(406\) −25.4852 −0.0627714
\(407\) −78.3926 215.382i −0.192611 0.529194i
\(408\) −25.8605 133.504i −0.0633835 0.327216i
\(409\) 33.7067 28.2832i 0.0824124 0.0691522i −0.600651 0.799511i \(-0.705092\pi\)
0.683063 + 0.730359i \(0.260647\pi\)
\(410\) 241.677 42.6142i 0.589457 0.103937i
\(411\) 126.293 75.7727i 0.307282 0.184362i
\(412\) 147.274 + 123.577i 0.357460 + 0.299945i
\(413\) 55.6474 + 32.1280i 0.134739 + 0.0777918i
\(414\) −11.8041 + 83.2049i −0.0285123 + 0.200978i
\(415\) 297.357 + 515.038i 0.716524 + 1.24106i
\(416\) −103.430 18.2374i −0.248629 0.0438400i
\(417\) 325.963 + 264.311i 0.781686 + 0.633839i
\(418\) −11.8023 4.29570i −0.0282353 0.0102768i
\(419\) −102.584 + 281.846i −0.244830 + 0.672664i 0.755027 + 0.655694i \(0.227624\pi\)
−0.999856 + 0.0169693i \(0.994598\pi\)
\(420\) −114.789 299.618i −0.273307 0.713375i
\(421\) 65.6847 372.517i 0.156021 0.884837i −0.801826 0.597558i \(-0.796138\pi\)
0.957847 0.287280i \(-0.0927509\pi\)
\(422\) 263.843 152.330i 0.625220 0.360971i
\(423\) −130.695 + 400.463i −0.308971 + 0.946722i
\(424\) 20.2386 35.0543i 0.0477326 0.0826754i
\(425\) −88.7169 + 105.729i −0.208746 + 0.248773i
\(426\) 144.837 260.892i 0.339992 0.612423i
\(427\) 36.1434 + 204.979i 0.0846450 + 0.480046i
\(428\) −137.981 164.439i −0.322385 0.384203i
\(429\) 246.708 714.981i 0.575077 1.66662i
\(430\) −0.352765 + 0.128396i −0.000820385 + 0.000298596i
\(431\) 739.788i 1.71645i −0.513278 0.858223i \(-0.671569\pi\)
0.513278 0.858223i \(-0.328431\pi\)
\(432\) 99.4967 42.0049i 0.230316 0.0972335i
\(433\) −856.804 −1.97876 −0.989381 0.145344i \(-0.953571\pi\)
−0.989381 + 0.145344i \(0.953571\pi\)
\(434\) −119.301 327.777i −0.274887 0.755247i
\(435\) 12.5108 10.8612i 0.0287605 0.0249683i
\(436\) −130.411 + 109.428i −0.299108 + 0.250982i
\(437\) 4.25261 0.749850i 0.00973138 0.00171590i
\(438\) −4.87237 289.946i −0.0111241 0.661978i
\(439\) 614.827 + 515.901i 1.40052 + 1.17517i 0.960869 + 0.277003i \(0.0893413\pi\)
0.439648 + 0.898170i \(0.355103\pi\)
\(440\) 134.654 + 77.7424i 0.306031 + 0.176687i
\(441\) −597.286 958.630i −1.35439 2.17376i
\(442\) −210.393 364.411i −0.476002 0.824459i
\(443\) −301.057 53.0845i −0.679587 0.119829i −0.176809 0.984245i \(-0.556577\pi\)
−0.502778 + 0.864416i \(0.667689\pi\)
\(444\) 15.9076 100.016i 0.0358280 0.225260i
\(445\) −75.9722 27.6516i −0.170724 0.0621385i
\(446\) −40.2468 + 110.577i −0.0902396 + 0.247931i
\(447\) −711.846 113.220i −1.59250 0.253289i
\(448\) 18.3508 104.073i 0.0409616 0.232305i
\(449\) −357.480 + 206.391i −0.796169 + 0.459668i −0.842130 0.539275i \(-0.818698\pi\)
0.0459609 + 0.998943i \(0.485365\pi\)
\(450\) −96.7170 51.5868i −0.214927 0.114637i
\(451\) −291.045 + 504.105i −0.645333 + 1.11775i
\(452\) −216.201 + 257.658i −0.478321 + 0.570041i
\(453\) −61.1226 + 1.02713i −0.134928 + 0.00226739i
\(454\) 15.3539 + 87.0765i 0.0338192 + 0.191798i
\(455\) −638.178 760.551i −1.40259 1.67154i
\(456\) −3.63806 4.19061i −0.00797820 0.00918993i
\(457\) −465.412 + 169.396i −1.01841 + 0.370670i −0.796656 0.604433i \(-0.793400\pi\)
−0.221752 + 0.975103i \(0.571177\pi\)
\(458\) 205.347i 0.448356i
\(459\) 385.158 + 197.196i 0.839125 + 0.429620i
\(460\) −53.4576 −0.116212
\(461\) 278.892 + 766.250i 0.604972 + 1.66215i 0.741051 + 0.671449i \(0.234328\pi\)
−0.136079 + 0.990698i \(0.543450\pi\)
\(462\) 719.425 + 248.242i 1.55720 + 0.537319i
\(463\) 318.881 267.573i 0.688727 0.577910i −0.229815 0.973234i \(-0.573812\pi\)
0.918542 + 0.395324i \(0.129368\pi\)
\(464\) 5.37390 0.947563i 0.0115817 0.00204216i
\(465\) 198.257 + 110.064i 0.426358 + 0.236697i
\(466\) 146.581 + 122.996i 0.314552 + 0.263940i
\(467\) 123.567 + 71.3412i 0.264597 + 0.152765i 0.626430 0.779478i \(-0.284516\pi\)
−0.361833 + 0.932243i \(0.617849\pi\)
\(468\) 248.641 223.292i 0.531284 0.477120i
\(469\) 260.981 + 452.032i 0.556462 + 0.963820i
\(470\) −263.891 46.5312i −0.561471 0.0990025i
\(471\) −629.657 + 241.233i −1.33685 + 0.512172i
\(472\) −12.9286 4.70561i −0.0273910 0.00996952i
\(473\) 0.304549 0.836742i 0.000643868 0.00176901i
\(474\) −134.804 + 166.248i −0.284397 + 0.350734i
\(475\) −0.978063 + 5.54687i −0.00205908 + 0.0116776i
\(476\) 366.676 211.701i 0.770328 0.444749i
\(477\) 48.0931 + 119.482i 0.100824 + 0.250486i
\(478\) 103.629 179.490i 0.216797 0.375503i
\(479\) 66.5425 79.3023i 0.138920 0.165558i −0.692099 0.721803i \(-0.743314\pi\)
0.831019 + 0.556245i \(0.187758\pi\)
\(480\) 35.3449 + 58.9105i 0.0736351 + 0.122730i
\(481\) −54.4165 308.611i −0.113132 0.641603i
\(482\) 288.292 + 343.573i 0.598116 + 0.712807i
\(483\) −256.883 + 49.7597i −0.531850 + 0.103022i
\(484\) −119.155 + 43.3690i −0.246189 + 0.0896054i
\(485\) 428.010i 0.882495i
\(486\) −90.0233 + 331.653i −0.185233 + 0.682414i
\(487\) −757.163 −1.55475 −0.777374 0.629038i \(-0.783449\pi\)
−0.777374 + 0.629038i \(0.783449\pi\)
\(488\) −15.2427 41.8789i −0.0312350 0.0858173i
\(489\) 88.6809 + 457.813i 0.181352 + 0.936224i
\(490\) 550.384 461.827i 1.12323 0.942504i
\(491\) 559.039 98.5737i 1.13857 0.200761i 0.427592 0.903972i \(-0.359362\pi\)
0.710981 + 0.703211i \(0.248251\pi\)
\(492\) −220.544 + 132.321i −0.448260 + 0.268945i
\(493\) 16.7479 + 14.0531i 0.0339713 + 0.0285053i
\(494\) −14.8713 8.58596i −0.0301039 0.0173805i
\(495\) −458.965 + 184.740i −0.927201 + 0.373211i
\(496\) 37.3433 + 64.6805i 0.0752889 + 0.130404i
\(497\) 914.973 + 161.334i 1.84099 + 0.324617i
\(498\) −484.125 392.558i −0.972139 0.788270i
\(499\) −436.182 158.757i −0.874113 0.318151i −0.134282 0.990943i \(-0.542873\pi\)
−0.739832 + 0.672792i \(0.765095\pi\)
\(500\) 93.0763 255.725i 0.186153 0.511450i
\(501\) 344.597 + 899.454i 0.687818 + 1.79532i
\(502\) −39.1123 + 221.817i −0.0779130 + 0.441866i
\(503\) −6.81535 + 3.93484i −0.0135494 + 0.00782275i −0.506759 0.862088i \(-0.669157\pi\)
0.493210 + 0.869910i \(0.335823\pi\)
\(504\) 224.680 + 250.186i 0.445794 + 0.496402i
\(505\) 122.007 211.322i 0.241598 0.418460i
\(506\) 81.5048 97.1336i 0.161077 0.191964i
\(507\) 255.838 460.837i 0.504612 0.908949i
\(508\) −59.6185 338.113i −0.117359 0.665577i
\(509\) 39.3894 + 46.9424i 0.0773858 + 0.0922248i 0.803348 0.595510i \(-0.203050\pi\)
−0.725962 + 0.687734i \(0.758605\pi\)
\(510\) −89.7814 + 260.194i −0.176042 + 0.510184i
\(511\) 848.444 308.808i 1.66036 0.604322i
\(512\) 22.6274i 0.0441942i
\(513\) 17.6359 0.889752i 0.0343779 0.00173441i
\(514\) 85.6553 0.166645
\(515\) −133.093 365.669i −0.258432 0.710037i
\(516\) 0.297099 0.257925i 0.000575772 0.000499854i
\(517\) 486.893 408.552i 0.941766 0.790236i
\(518\) 310.529 54.7547i 0.599478 0.105704i
\(519\) 7.18211 + 427.395i 0.0138384 + 0.823496i
\(520\) 162.847 + 136.644i 0.313166 + 0.262778i
\(521\) 838.293 + 483.988i 1.60901 + 0.928961i 0.989593 + 0.143896i \(0.0459631\pi\)
0.619414 + 0.785064i \(0.287370\pi\)
\(522\) −8.17157 + 15.3204i −0.0156544 + 0.0293494i
\(523\) 182.559 + 316.201i 0.349061 + 0.604591i 0.986083 0.166255i \(-0.0531674\pi\)
−0.637022 + 0.770845i \(0.719834\pi\)
\(524\) −344.824 60.8018i −0.658061 0.116034i
\(525\) 53.6092 337.056i 0.102113 0.642012i
\(526\) −448.956 163.407i −0.853528 0.310659i
\(527\) −102.344 + 281.188i −0.194201 + 0.533563i
\(528\) −160.930 25.5962i −0.304793 0.0484777i
\(529\) 84.2897 478.031i 0.159338 0.903649i
\(530\) −70.9534 + 40.9649i −0.133874 + 0.0772923i
\(531\) 37.1565 23.1508i 0.0699746 0.0435985i
\(532\) 8.63934 14.9638i 0.0162394 0.0281274i
\(533\) −511.558 + 609.651i −0.959770 + 1.14381i
\(534\) 84.7194 1.42366i 0.158651 0.00266603i
\(535\) 75.4488 + 427.891i 0.141026 + 0.799797i
\(536\) −71.8383 85.6135i −0.134027 0.159727i
\(537\) −422.626 486.815i −0.787014 0.906546i
\(538\) 51.9052 18.8920i 0.0964781 0.0351152i
\(539\) 1704.19i 3.16176i
\(540\) −216.921 27.0643i −0.401705 0.0501190i
\(541\) 1.90773 0.00352630 0.00176315 0.999998i \(-0.499439\pi\)
0.00176315 + 0.999998i \(0.499439\pi\)
\(542\) −119.474 328.252i −0.220432 0.605631i
\(543\) 855.725 + 295.273i 1.57592 + 0.543780i
\(544\) −69.4475 + 58.2733i −0.127661 + 0.107120i
\(545\) 339.347 59.8360i 0.622655 0.109791i
\(546\) 909.729 + 505.045i 1.66617 + 0.924991i
\(547\) −0.552346 0.463474i −0.00100977 0.000847301i 0.642283 0.766468i \(-0.277988\pi\)
−0.643292 + 0.765621i \(0.722432\pi\)
\(548\) −85.0322 49.0934i −0.155168 0.0895864i
\(549\) 134.812 + 43.9971i 0.245559 + 0.0801404i
\(550\) 82.6948 + 143.232i 0.150354 + 0.260421i
\(551\) 0.878648 + 0.154929i 0.00159464 + 0.000281179i
\(552\) 52.3173 20.0437i 0.0947776 0.0363110i
\(553\) −626.220 227.925i −1.13240 0.412162i
\(554\) −92.2464 + 253.445i −0.166510 + 0.457482i
\(555\) −129.105 + 159.220i −0.232622 + 0.286883i
\(556\) 48.5818 275.521i 0.0873774 0.495542i
\(557\) −550.670 + 317.930i −0.988636 + 0.570789i −0.904866 0.425696i \(-0.860029\pi\)
−0.0837699 + 0.996485i \(0.526696\pi\)
\(558\) −235.295 33.3808i −0.421676 0.0598223i
\(559\) 0.608713 1.05432i 0.00108893 0.00188609i
\(560\) −137.494 + 163.859i −0.245525 + 0.292605i
\(561\) −335.892 559.842i −0.598738 0.997937i
\(562\) −33.3006 188.857i −0.0592538 0.336045i
\(563\) 61.9267 + 73.8014i 0.109994 + 0.131086i 0.818232 0.574888i \(-0.194954\pi\)
−0.708238 + 0.705973i \(0.750510\pi\)
\(564\) 275.709 53.4062i 0.488845 0.0946919i
\(565\) 639.746 232.848i 1.13229 0.412121i
\(566\) 656.348i 1.15962i
\(567\) −1067.57 + 71.8613i −1.88285 + 0.126739i
\(568\) −198.933 −0.350234
\(569\) −356.298 978.920i −0.626182 1.72042i −0.691324 0.722545i \(-0.742972\pi\)
0.0651419 0.997876i \(-0.479250\pi\)
\(570\) 2.13612 + 11.0277i 0.00374758 + 0.0193468i
\(571\) −199.435 + 167.346i −0.349274 + 0.293075i −0.800498 0.599335i \(-0.795432\pi\)
0.451225 + 0.892410i \(0.350987\pi\)
\(572\) −496.572 + 87.5590i −0.868132 + 0.153075i
\(573\) −766.333 + 459.781i −1.33741 + 0.802411i
\(574\) −613.440 514.737i −1.06871 0.896755i
\(575\) −49.2448 28.4315i −0.0856432 0.0494461i
\(576\) −56.6791 44.4014i −0.0984011 0.0770858i
\(577\) −192.470 333.369i −0.333571 0.577762i 0.649638 0.760243i \(-0.274920\pi\)
−0.983209 + 0.182482i \(0.941587\pi\)
\(578\) 44.7966 + 7.89885i 0.0775028 + 0.0136658i
\(579\) −293.306 237.831i −0.506574 0.410761i
\(580\) −10.3790 3.77764i −0.0178948 0.00651317i
\(581\) 663.734 1823.59i 1.14240 3.13872i
\(582\) 160.480 + 418.879i 0.275739 + 0.719724i
\(583\) 33.7457 191.381i 0.0578828 0.328270i
\(584\) −167.424 + 96.6624i −0.286685 + 0.165518i
\(585\) −661.830 + 139.777i −1.13133 + 0.238934i
\(586\) 95.6897 165.739i 0.163293 0.282832i
\(587\) 667.584 795.596i 1.13728 1.35536i 0.211465 0.977385i \(-0.432176\pi\)
0.925816 0.377974i \(-0.123379\pi\)
\(588\) −365.483 + 658.339i −0.621570 + 1.11962i
\(589\) 2.12050 + 12.0260i 0.00360017 + 0.0204176i
\(590\) 17.9004 + 21.3329i 0.0303397 + 0.0361574i
\(591\) −42.4715 + 123.086i −0.0718639 + 0.208268i
\(592\) −63.4435 + 23.0916i −0.107168 + 0.0390060i
\(593\) 464.135i 0.782690i −0.920244 0.391345i \(-0.872010\pi\)
0.920244 0.391345i \(-0.127990\pi\)
\(594\) 379.907 352.885i 0.639574 0.594083i
\(595\) −857.005 −1.44034
\(596\) 164.351 + 451.549i 0.275756 + 0.757633i
\(597\) 171.420 148.818i 0.287136 0.249276i
\(598\) 132.802 111.434i 0.222078 0.186345i
\(599\) 804.360 141.830i 1.34284 0.236778i 0.544385 0.838836i \(-0.316763\pi\)
0.798453 + 0.602057i \(0.205652\pi\)
\(600\) 1.22783 + 73.0661i 0.00204639 + 0.121777i
\(601\) 184.846 + 155.104i 0.307563 + 0.258076i 0.783484 0.621412i \(-0.213441\pi\)
−0.475921 + 0.879488i \(0.657885\pi\)
\(602\) 1.06088 + 0.612497i 0.00176225 + 0.00101744i
\(603\) 355.419 11.9486i 0.589418 0.0198152i
\(604\) 20.3771 + 35.2941i 0.0337369 + 0.0584340i
\(605\) 252.761 + 44.5686i 0.417787 + 0.0736671i
\(606\) −40.1701 + 252.560i −0.0662872 + 0.416766i
\(607\) 492.438 + 179.233i 0.811266 + 0.295277i 0.714147 0.699996i \(-0.246815\pi\)
0.0971191 + 0.995273i \(0.469037\pi\)
\(608\) −1.26535 + 3.47653i −0.00208118 + 0.00571798i
\(609\) −53.3911 8.49193i −0.0876701 0.0139441i
\(610\) −15.6643 + 88.8365i −0.0256791 + 0.145634i
\(611\) 752.570 434.497i 1.23170 0.711124i
\(612\) −9.69238 288.307i −0.0158372 0.471089i
\(613\) 164.324 284.617i 0.268064 0.464301i −0.700297 0.713851i \(-0.746949\pi\)
0.968362 + 0.249550i \(0.0802826\pi\)
\(614\) −316.905 + 377.673i −0.516132 + 0.615103i
\(615\) 520.511 8.74687i 0.846359 0.0142226i
\(616\) −88.1033 499.658i −0.143025 0.811134i
\(617\) −538.270 641.486i −0.872399 1.03968i −0.998861 0.0477134i \(-0.984807\pi\)
0.126462 0.991971i \(-0.459638\pi\)
\(618\) 267.359 + 307.966i 0.432620 + 0.498327i
\(619\) 193.537 70.4416i 0.312660 0.113799i −0.180924 0.983497i \(-0.557909\pi\)
0.493584 + 0.869698i \(0.335687\pi\)
\(620\) 151.173i 0.243827i
\(621\) −52.4542 + 170.380i −0.0844673 + 0.274364i
\(622\) 309.752 0.497994
\(623\) 90.2307 + 247.907i 0.144833 + 0.397924i
\(624\) −210.607 72.6710i −0.337511 0.116460i
\(625\) −257.029 + 215.673i −0.411246 + 0.345077i
\(626\) −378.971 + 66.8228i −0.605384 + 0.106746i
\(627\) −23.2944 12.9321i −0.0371521 0.0206254i
\(628\) 344.355 + 288.948i 0.548337 + 0.460109i
\(629\) −234.261 135.251i −0.372434 0.215025i
\(630\) −140.645 665.944i −0.223247 1.05705i
\(631\) −189.681 328.538i −0.300604 0.520662i 0.675669 0.737205i \(-0.263855\pi\)
−0.976273 + 0.216544i \(0.930522\pi\)
\(632\) 140.521 + 24.7777i 0.222344 + 0.0392053i
\(633\) 603.506 231.214i 0.953405 0.365267i
\(634\) −620.611 225.884i −0.978881 0.356284i
\(635\) −237.680 + 653.022i −0.374300 + 1.02838i
\(636\) 54.0802 66.6947i 0.0850317 0.104866i
\(637\) −404.599 + 2294.59i −0.635163 + 3.60219i
\(638\) 22.6885 13.0992i 0.0355619 0.0205317i
\(639\) 390.363 498.305i 0.610897 0.779819i
\(640\) 22.9000 39.6640i 0.0357813 0.0619750i
\(641\) −567.812 + 676.691i −0.885821 + 1.05568i 0.112255 + 0.993679i \(0.464193\pi\)
−0.998076 + 0.0620014i \(0.980252\pi\)
\(642\) −234.275 390.474i −0.364915 0.608216i
\(643\) −167.973 952.623i −0.261233 1.48153i −0.779550 0.626340i \(-0.784552\pi\)
0.518317 0.855189i \(-0.326559\pi\)
\(644\) 112.127 + 133.628i 0.174111 + 0.207497i
\(645\) −0.781822 + 0.151443i −0.00121213 + 0.000234795i
\(646\) −13.9288 + 5.06967i −0.0215616 + 0.00784779i
\(647\) 199.904i 0.308971i 0.987995 + 0.154485i \(0.0493719\pi\)
−0.987995 + 0.154485i \(0.950628\pi\)
\(648\) 222.441 54.8464i 0.343273 0.0846394i
\(649\) −66.0543 −0.101779
\(650\) 77.3386 + 212.486i 0.118983 + 0.326902i
\(651\) −140.716 726.441i −0.216153 1.11588i
\(652\) 238.150 199.831i 0.365260 0.306490i
\(653\) −164.505 + 29.0068i −0.251923 + 0.0444208i −0.298183 0.954509i \(-0.596381\pi\)
0.0462606 + 0.998929i \(0.485270\pi\)
\(654\) −309.673 + 185.796i −0.473505 + 0.284092i
\(655\) 542.914 + 455.559i 0.828877 + 0.695510i
\(656\) 148.491 + 85.7311i 0.226358 + 0.130688i
\(657\) 86.4056 609.057i 0.131515 0.927028i
\(658\) 437.197 + 757.248i 0.664434 + 1.15083i
\(659\) −126.902 22.3762i −0.192567 0.0339548i 0.0765325 0.997067i \(-0.475615\pi\)
−0.269100 + 0.963112i \(0.586726\pi\)
\(660\) 256.193 + 207.737i 0.388172 + 0.314754i
\(661\) 273.433 + 99.5215i 0.413666 + 0.150562i 0.540465 0.841366i \(-0.318248\pi\)
−0.126799 + 0.991928i \(0.540470\pi\)
\(662\) 50.2479 138.055i 0.0759031 0.208542i
\(663\) −319.345 833.542i −0.481666 1.25723i
\(664\) −72.1544 + 409.208i −0.108666 + 0.616277i
\(665\) −30.2881 + 17.4868i −0.0455460 + 0.0262960i
\(666\) 66.6525 204.231i 0.100079 0.306653i
\(667\) −4.50367 + 7.80058i −0.00675213 + 0.0116950i
\(668\) 412.757 491.905i 0.617900 0.736385i
\(669\) −121.162 + 218.247i −0.181109 + 0.326229i
\(670\) 39.2817 + 222.777i 0.0586293 + 0.332503i
\(671\) −137.535 163.908i −0.204970 0.244274i
\(672\) 73.1227 211.916i 0.108814 0.315351i
\(673\) 422.325 153.714i 0.627525 0.228401i −0.00862844 0.999963i \(-0.502747\pi\)
0.636154 + 0.771562i \(0.280524\pi\)
\(674\) 796.461i 1.18169i
\(675\) −185.432 140.301i −0.274713 0.207853i
\(676\) −351.393 −0.519813
\(677\) 389.411 + 1069.90i 0.575202 + 1.58035i 0.796170 + 0.605073i \(0.206856\pi\)
−0.220969 + 0.975281i \(0.570922\pi\)
\(678\) −538.793 + 467.751i −0.794680 + 0.689898i
\(679\) −1069.90 + 897.749i −1.57569 + 1.32216i
\(680\) 180.711 31.8642i 0.265752 0.0468592i
\(681\) 3.15150 + 187.540i 0.00462776 + 0.275389i
\(682\) 274.684 + 230.487i 0.402763 + 0.337958i
\(683\) 93.9542 + 54.2445i 0.137561 + 0.0794209i 0.567201 0.823579i \(-0.308026\pi\)
−0.429640 + 0.903000i \(0.641360\pi\)
\(684\) −6.22533 9.99151i −0.00910136 0.0146075i
\(685\) 99.3697 + 172.113i 0.145065 + 0.251260i
\(686\) −1407.37 248.158i −2.05156 0.361746i
\(687\) −68.4237 + 430.199i −0.0995978 + 0.626199i
\(688\) −0.246473 0.0897089i −0.000358246 0.000130391i
\(689\) 90.8733 249.672i 0.131892 0.362369i
\(690\) −111.993 17.8126i −0.162309 0.0258154i
\(691\) 195.940 1111.23i 0.283560 1.60815i −0.426825 0.904334i \(-0.640368\pi\)
0.710385 0.703813i \(-0.248521\pi\)
\(692\) 246.791 142.485i 0.356635 0.205903i
\(693\) 1424.47 + 759.783i 2.05551 + 1.09637i
\(694\) 192.202 332.903i 0.276947 0.479687i
\(695\) −364.001 + 433.799i −0.523742 + 0.624171i
\(696\) 11.5740 0.194494i 0.0166293 0.000279445i
\(697\) 119.291 + 676.530i 0.171149 + 0.970632i
\(698\) 72.9187 + 86.9011i 0.104468 + 0.124500i
\(699\) 266.102 + 306.518i 0.380689 + 0.438509i
\(700\) −213.807 + 77.8194i −0.305439 + 0.111171i
\(701\) 778.410i 1.11043i 0.831707 + 0.555214i \(0.187364\pi\)
−0.831707 + 0.555214i \(0.812636\pi\)
\(702\) 595.303 384.945i 0.848010 0.548354i
\(703\) −11.0389 −0.0157026
\(704\) 37.1555 + 102.084i 0.0527778 + 0.145006i
\(705\) −537.344 185.414i −0.762191 0.262998i
\(706\) −129.323 + 108.515i −0.183177 + 0.153704i
\(707\) −784.152 + 138.267i −1.10913 + 0.195569i
\(708\) −25.5172 14.1661i −0.0360413 0.0200087i
\(709\) −263.186 220.839i −0.371207 0.311480i 0.438032 0.898959i \(-0.355676\pi\)
−0.809239 + 0.587480i \(0.800120\pi\)
\(710\) 348.714 + 201.330i 0.491146 + 0.283563i
\(711\) −337.808 + 303.369i −0.475117 + 0.426679i
\(712\) −28.2438 48.9197i −0.0396682 0.0687074i
\(713\) −121.410 21.4078i −0.170280 0.0300249i
\(714\) 838.723 321.330i 1.17468 0.450042i
\(715\) 959.064 + 349.071i 1.34135 + 0.488211i
\(716\) −146.994 + 403.862i −0.205299 + 0.564054i
\(717\) 276.909 341.500i 0.386205 0.476290i
\(718\) −63.8933 + 362.357i −0.0889878 + 0.504675i
\(719\) −528.455 + 305.104i −0.734986 + 0.424344i −0.820243 0.572015i \(-0.806162\pi\)
0.0852574 + 0.996359i \(0.472829\pi\)
\(720\) 54.4174 + 135.194i 0.0755798 + 0.187769i
\(721\) −634.901 + 1099.68i −0.880584 + 1.52522i
\(722\) 327.774 390.626i 0.453981 0.541033i
\(723\) 489.486 + 815.843i 0.677021 + 1.12841i
\(724\) −104.795 594.322i −0.144744 0.820887i
\(725\) −7.55191 9.00001i −0.0104164 0.0124138i
\(726\) −264.080 + 51.1537i −0.363747 + 0.0704597i
\(727\) −195.866 + 71.2895i −0.269417 + 0.0980599i −0.473196 0.880957i \(-0.656900\pi\)
0.203779 + 0.979017i \(0.434678\pi\)
\(728\) 693.679i 0.952855i
\(729\) −299.108 + 664.812i −0.410299 + 0.911951i
\(730\) 391.308 0.536038
\(731\) −0.359421 0.987500i −0.000491684 0.00135089i
\(732\) −17.9787 92.8147i −0.0245611 0.126796i
\(733\) −191.068 + 160.325i −0.260665 + 0.218724i −0.763749 0.645514i \(-0.776643\pi\)
0.503083 + 0.864238i \(0.332199\pi\)
\(734\) 545.751 96.2306i 0.743530 0.131104i
\(735\) 1306.93 784.128i 1.77814 1.06684i
\(736\) −28.6120 24.0083i −0.0388749 0.0326200i
\(737\) −464.682 268.284i −0.630505 0.364022i
\(738\) −506.127 + 203.723i −0.685809 + 0.276048i
\(739\) −87.7232 151.941i −0.118705 0.205604i 0.800550 0.599267i \(-0.204541\pi\)
−0.919255 + 0.393663i \(0.871208\pi\)
\(740\) 134.581 + 23.7303i 0.181866 + 0.0320679i
\(741\) −28.2943 22.9428i −0.0381839 0.0309619i
\(742\) 251.224 + 91.4382i 0.338577 + 0.123232i
\(743\) 228.605 628.087i 0.307678 0.845340i −0.685430 0.728139i \(-0.740386\pi\)
0.993108 0.117201i \(-0.0373921\pi\)
\(744\) 56.6815 + 147.948i 0.0761849 + 0.198855i
\(745\) 168.897 957.860i 0.226707 1.28572i
\(746\) −136.010 + 78.5255i −0.182319 + 0.105262i
\(747\) −883.431 983.720i −1.18264 1.31689i
\(748\) −217.625 + 376.938i −0.290943 + 0.503928i
\(749\) 911.346 1086.10i 1.21675 1.45007i
\(750\) 280.204 504.726i 0.373605 0.672969i
\(751\) 73.4096 + 416.327i 0.0977491 + 0.554363i 0.993870 + 0.110553i \(0.0352623\pi\)
−0.896121 + 0.443810i \(0.853627\pi\)
\(752\) −120.344 143.421i −0.160032 0.190719i
\(753\) −155.852 + 451.671i −0.206974 + 0.599829i
\(754\) 33.6587 12.2508i 0.0446402 0.0162477i
\(755\) 82.4903i 0.109259i
\(756\) 387.337 + 599.003i 0.512351 + 0.792332i
\(757\) 938.792 1.24015 0.620074 0.784543i \(-0.287103\pi\)
0.620074 + 0.784543i \(0.287103\pi\)
\(758\) −191.907 527.261i −0.253176 0.695595i
\(759\) 203.117 176.335i 0.267612 0.232326i
\(760\) 5.73648 4.81348i 0.00754800 0.00633353i
\(761\) −708.743 + 124.971i −0.931331 + 0.164219i −0.618675 0.785647i \(-0.712330\pi\)
−0.312657 + 0.949866i \(0.601219\pi\)
\(762\) −12.2371 728.208i −0.0160592 0.955654i
\(763\) −861.351 722.759i −1.12890 0.947259i
\(764\) 515.967 + 297.894i 0.675349 + 0.389913i
\(765\) −274.790 + 515.187i −0.359203 + 0.673447i
\(766\) −159.859 276.883i −0.208693