Properties

Label 54.3.f.a.41.6
Level $54$
Weight $3$
Character 54.41
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 41.6
Character \(\chi\) \(=\) 54.41
Dual form 54.3.f.a.29.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39273 - 0.245576i) q^{2} +(2.89593 - 0.783318i) q^{3} +(1.87939 - 0.684040i) q^{4} +(-3.55779 + 4.24001i) q^{5} +(3.84088 - 1.80212i) q^{6} +(-10.2625 - 3.73526i) q^{7} +(2.44949 - 1.41421i) q^{8} +(7.77283 - 4.53687i) q^{9} +O(q^{10})\) \(q+(1.39273 - 0.245576i) q^{2} +(2.89593 - 0.783318i) q^{3} +(1.87939 - 0.684040i) q^{4} +(-3.55779 + 4.24001i) q^{5} +(3.84088 - 1.80212i) q^{6} +(-10.2625 - 3.73526i) q^{7} +(2.44949 - 1.41421i) q^{8} +(7.77283 - 4.53687i) q^{9} +(-3.91380 + 6.77890i) q^{10} +(2.64446 + 3.15155i) q^{11} +(4.90675 - 3.45309i) q^{12} +(-0.953621 + 5.40825i) q^{13} +(-15.2102 - 2.68197i) q^{14} +(-6.98185 + 15.0657i) q^{15} +(3.06418 - 2.57115i) q^{16} +(4.10708 + 2.37123i) q^{17} +(9.71129 - 8.22744i) q^{18} +(-17.1665 - 29.7332i) q^{19} +(-3.78613 + 10.4023i) q^{20} +(-32.6455 - 2.77822i) q^{21} +(4.45696 + 3.73984i) q^{22} +(12.6292 + 34.6986i) q^{23} +(5.98577 - 6.01419i) q^{24} +(-0.978615 - 5.55000i) q^{25} +7.76642i q^{26} +(18.9558 - 19.2270i) q^{27} -21.8423 q^{28} +(-5.18449 + 0.914165i) q^{29} +(-6.02406 + 22.6970i) q^{30} +(34.9235 - 12.7111i) q^{31} +(3.63616 - 4.33340i) q^{32} +(10.1269 + 7.05521i) q^{33} +(6.30237 + 2.29387i) q^{34} +(52.3496 - 30.2240i) q^{35} +(11.5047 - 13.8434i) q^{36} +(-12.1981 + 21.1278i) q^{37} +(-31.2100 - 37.1946i) q^{38} +(1.47476 + 16.4089i) q^{39} +(-2.71850 + 15.4174i) q^{40} +(-22.6189 - 3.98833i) q^{41} +(-46.1486 + 4.14763i) q^{42} +(39.1915 - 32.8855i) q^{43} +(7.12575 + 4.11406i) q^{44} +(-8.41774 + 49.0981i) q^{45} +(26.1102 + 45.2243i) q^{46} +(28.3436 - 77.8733i) q^{47} +(6.85962 - 9.84610i) q^{48} +(53.8315 + 45.1700i) q^{49} +(-2.72589 - 7.48932i) q^{50} +(13.7513 + 3.64975i) q^{51} +(1.90724 + 10.8165i) q^{52} +16.2927i q^{53} +(21.6785 - 31.4331i) q^{54} -22.7711 q^{55} +(-30.4205 + 5.36395i) q^{56} +(-73.0035 - 72.6585i) q^{57} +(-6.99608 + 2.54637i) q^{58} +(-45.6558 + 54.4105i) q^{59} +(-2.81606 + 33.0901i) q^{60} +(-74.1675 - 26.9948i) q^{61} +(45.5174 - 26.2795i) q^{62} +(-96.7154 + 17.5263i) q^{63} +(4.00000 - 6.92820i) q^{64} +(-19.5383 - 23.2848i) q^{65} +(15.8365 + 7.33909i) q^{66} +(-12.1162 + 68.7145i) q^{67} +(9.34081 + 1.64704i) q^{68} +(63.7534 + 90.5919i) q^{69} +(65.4865 - 54.9497i) q^{70} +(-65.9072 - 38.0516i) q^{71} +(12.6234 - 22.1054i) q^{72} +(25.5063 + 44.1783i) q^{73} +(-11.8002 + 32.4208i) q^{74} +(-7.18141 - 15.3058i) q^{75} +(-52.6012 - 44.1376i) q^{76} +(-15.3671 - 42.2207i) q^{77} +(6.08357 + 22.4910i) q^{78} +(5.51385 + 31.2706i) q^{79} +22.1398i q^{80} +(39.8337 - 70.5286i) q^{81} -32.4815 q^{82} +(28.7447 - 5.06847i) q^{83} +(-63.2539 + 17.1095i) q^{84} +(-24.6662 + 8.97776i) q^{85} +(46.5072 - 55.4251i) q^{86} +(-14.2978 + 6.70846i) q^{87} +(10.9346 + 3.97985i) q^{88} +(-69.2878 + 40.0033i) q^{89} +(0.333680 + 70.4476i) q^{90} +(29.9878 - 51.9404i) q^{91} +(47.4704 + 56.5731i) q^{92} +(91.1791 - 64.1666i) q^{93} +(20.3511 - 115.417i) q^{94} +(187.144 + 32.9986i) q^{95} +(7.13562 - 15.3975i) q^{96} +(36.3741 - 30.5215i) q^{97} +(86.0653 + 49.6898i) q^{98} +(34.8531 + 12.4989i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39273 0.245576i 0.696364 0.122788i
\(3\) 2.89593 0.783318i 0.965310 0.261106i
\(4\) 1.87939 0.684040i 0.469846 0.171010i
\(5\) −3.55779 + 4.24001i −0.711559 + 0.848003i −0.993782 0.111346i \(-0.964484\pi\)
0.282223 + 0.959349i \(0.408928\pi\)
\(6\) 3.84088 1.80212i 0.640147 0.300353i
\(7\) −10.2625 3.73526i −1.46608 0.533609i −0.519045 0.854747i \(-0.673712\pi\)
−0.947032 + 0.321138i \(0.895935\pi\)
\(8\) 2.44949 1.41421i 0.306186 0.176777i
\(9\) 7.77283 4.53687i 0.863647 0.504096i
\(10\) −3.91380 + 6.77890i −0.391380 + 0.677890i
\(11\) 2.64446 + 3.15155i 0.240406 + 0.286505i 0.872734 0.488196i \(-0.162345\pi\)
−0.632328 + 0.774701i \(0.717901\pi\)
\(12\) 4.90675 3.45309i 0.408896 0.287757i
\(13\) −0.953621 + 5.40825i −0.0733555 + 0.416020i 0.925912 + 0.377740i \(0.123299\pi\)
−0.999267 + 0.0382793i \(0.987812\pi\)
\(14\) −15.2102 2.68197i −1.08644 0.191570i
\(15\) −6.98185 + 15.0657i −0.465456 + 1.00438i
\(16\) 3.06418 2.57115i 0.191511 0.160697i
\(17\) 4.10708 + 2.37123i 0.241593 + 0.139484i 0.615909 0.787817i \(-0.288789\pi\)
−0.374316 + 0.927301i \(0.622122\pi\)
\(18\) 9.71129 8.22744i 0.539516 0.457080i
\(19\) −17.1665 29.7332i −0.903499 1.56491i −0.822919 0.568158i \(-0.807656\pi\)
−0.0805801 0.996748i \(-0.525677\pi\)
\(20\) −3.78613 + 10.4023i −0.189306 + 0.520115i
\(21\) −32.6455 2.77822i −1.55455 0.132296i
\(22\) 4.45696 + 3.73984i 0.202589 + 0.169993i
\(23\) 12.6292 + 34.6986i 0.549098 + 1.50863i 0.834931 + 0.550354i \(0.185507\pi\)
−0.285833 + 0.958279i \(0.592270\pi\)
\(24\) 5.98577 6.01419i 0.249407 0.250591i
\(25\) −0.978615 5.55000i −0.0391446 0.222000i
\(26\) 7.76642i 0.298708i
\(27\) 18.9558 19.2270i 0.702065 0.712113i
\(28\) −21.8423 −0.780084
\(29\) −5.18449 + 0.914165i −0.178775 + 0.0315229i −0.262319 0.964981i \(-0.584487\pi\)
0.0835437 + 0.996504i \(0.473376\pi\)
\(30\) −6.02406 + 22.6970i −0.200802 + 0.756565i
\(31\) 34.9235 12.7111i 1.12656 0.410036i 0.289520 0.957172i \(-0.406504\pi\)
0.837044 + 0.547136i \(0.184282\pi\)
\(32\) 3.63616 4.33340i 0.113630 0.135419i
\(33\) 10.1269 + 7.05521i 0.306874 + 0.213794i
\(34\) 6.30237 + 2.29387i 0.185364 + 0.0674669i
\(35\) 52.3496 30.2240i 1.49570 0.863544i
\(36\) 11.5047 13.8434i 0.319576 0.384540i
\(37\) −12.1981 + 21.1278i −0.329679 + 0.571021i −0.982448 0.186536i \(-0.940274\pi\)
0.652769 + 0.757557i \(0.273607\pi\)
\(38\) −31.2100 37.1946i −0.821316 0.978806i
\(39\) 1.47476 + 16.4089i 0.0378144 + 0.420741i
\(40\) −2.71850 + 15.4174i −0.0679624 + 0.385434i
\(41\) −22.6189 3.98833i −0.551681 0.0972763i −0.109143 0.994026i \(-0.534811\pi\)
−0.442538 + 0.896750i \(0.645922\pi\)
\(42\) −46.1486 + 4.14763i −1.09878 + 0.0987531i
\(43\) 39.1915 32.8855i 0.911430 0.764780i −0.0609609 0.998140i \(-0.519416\pi\)
0.972390 + 0.233360i \(0.0749720\pi\)
\(44\) 7.12575 + 4.11406i 0.161949 + 0.0935013i
\(45\) −8.41774 + 49.0981i −0.187061 + 1.09107i
\(46\) 26.1102 + 45.2243i 0.567614 + 0.983136i
\(47\) 28.3436 77.8733i 0.603055 1.65688i −0.141992 0.989868i \(-0.545351\pi\)
0.745047 0.667012i \(-0.232427\pi\)
\(48\) 6.85962 9.84610i 0.142909 0.205127i
\(49\) 53.8315 + 45.1700i 1.09860 + 0.921836i
\(50\) −2.72589 7.48932i −0.0545178 0.149786i
\(51\) 13.7513 + 3.64975i 0.269632 + 0.0715638i
\(52\) 1.90724 + 10.8165i 0.0366777 + 0.208010i
\(53\) 16.2927i 0.307409i 0.988117 + 0.153704i \(0.0491204\pi\)
−0.988117 + 0.153704i \(0.950880\pi\)
\(54\) 21.6785 31.4331i 0.401454 0.582095i
\(55\) −22.7711 −0.414020
\(56\) −30.4205 + 5.36395i −0.543222 + 0.0957848i
\(57\) −73.0035 72.6585i −1.28076 1.27471i
\(58\) −6.99608 + 2.54637i −0.120622 + 0.0439029i
\(59\) −45.6558 + 54.4105i −0.773827 + 0.922212i −0.998637 0.0521911i \(-0.983380\pi\)
0.224810 + 0.974403i \(0.427824\pi\)
\(60\) −2.81606 + 33.0901i −0.0469343 + 0.551501i
\(61\) −74.1675 26.9948i −1.21586 0.442537i −0.347128 0.937818i \(-0.612843\pi\)
−0.868733 + 0.495281i \(0.835065\pi\)
\(62\) 45.5174 26.2795i 0.734151 0.423862i
\(63\) −96.7154 + 17.5263i −1.53516 + 0.278195i
\(64\) 4.00000 6.92820i 0.0625000 0.108253i
\(65\) −19.5383 23.2848i −0.300589 0.358228i
\(66\) 15.8365 + 7.33909i 0.239948 + 0.111198i
\(67\) −12.1162 + 68.7145i −0.180839 + 1.02559i 0.750347 + 0.661045i \(0.229887\pi\)
−0.931186 + 0.364545i \(0.881224\pi\)
\(68\) 9.34081 + 1.64704i 0.137365 + 0.0242211i
\(69\) 63.7534 + 90.5919i 0.923963 + 1.31293i
\(70\) 65.4865 54.9497i 0.935521 0.784995i
\(71\) −65.9072 38.0516i −0.928271 0.535937i −0.0420065 0.999117i \(-0.513375\pi\)
−0.886264 + 0.463180i \(0.846708\pi\)
\(72\) 12.6234 22.1054i 0.175324 0.307020i
\(73\) 25.5063 + 44.1783i 0.349402 + 0.605182i 0.986143 0.165896i \(-0.0530515\pi\)
−0.636741 + 0.771077i \(0.719718\pi\)
\(74\) −11.8002 + 32.4208i −0.159462 + 0.438119i
\(75\) −7.18141 15.3058i −0.0957522 0.204078i
\(76\) −52.6012 44.1376i −0.692121 0.580758i
\(77\) −15.3671 42.2207i −0.199572 0.548321i
\(78\) 6.08357 + 22.4910i 0.0779945 + 0.288346i
\(79\) 5.51385 + 31.2706i 0.0697956 + 0.395830i 0.999613 + 0.0278099i \(0.00885329\pi\)
−0.929818 + 0.368021i \(0.880036\pi\)
\(80\) 22.1398i 0.276747i
\(81\) 39.8337 70.5286i 0.491774 0.870723i
\(82\) −32.4815 −0.396115
\(83\) 28.7447 5.06847i 0.346322 0.0610659i 0.00221805 0.999998i \(-0.499294\pi\)
0.344104 + 0.938932i \(0.388183\pi\)
\(84\) −63.2539 + 17.1095i −0.753023 + 0.203684i
\(85\) −24.6662 + 8.97776i −0.290190 + 0.105621i
\(86\) 46.5072 55.4251i 0.540781 0.644478i
\(87\) −14.2978 + 6.70846i −0.164343 + 0.0771087i
\(88\) 10.9346 + 3.97985i 0.124256 + 0.0452256i
\(89\) −69.2878 + 40.0033i −0.778514 + 0.449475i −0.835903 0.548877i \(-0.815056\pi\)
0.0573893 + 0.998352i \(0.481722\pi\)
\(90\) 0.333680 + 70.4476i 0.00370755 + 0.782751i
\(91\) 29.9878 51.9404i 0.329536 0.570774i
\(92\) 47.4704 + 56.5731i 0.515983 + 0.614925i
\(93\) 91.1791 64.1666i 0.980421 0.689964i
\(94\) 20.3511 115.417i 0.216501 1.22784i
\(95\) 187.144 + 32.9986i 1.96994 + 0.347353i
\(96\) 7.13562 15.3975i 0.0743294 0.160391i
\(97\) 36.3741 30.5215i 0.374991 0.314655i −0.435741 0.900072i \(-0.643514\pi\)
0.810732 + 0.585417i \(0.199069\pi\)
\(98\) 86.0653 + 49.6898i 0.878217 + 0.507039i
\(99\) 34.8531 + 12.4989i 0.352052 + 0.126251i
\(100\) −5.63562 9.76118i −0.0563562 0.0976118i
\(101\) −15.6059 + 42.8769i −0.154514 + 0.424524i −0.992662 0.120918i \(-0.961416\pi\)
0.838148 + 0.545442i \(0.183638\pi\)
\(102\) 20.0481 + 1.70614i 0.196550 + 0.0167269i
\(103\) −10.9188 9.16192i −0.106007 0.0889507i 0.588243 0.808684i \(-0.299820\pi\)
−0.694251 + 0.719733i \(0.744264\pi\)
\(104\) 5.31254 + 14.5961i 0.0510821 + 0.140347i
\(105\) 127.926 128.533i 1.21834 1.22412i
\(106\) 4.00108 + 22.6913i 0.0377461 + 0.214069i
\(107\) 105.487i 0.985863i 0.870068 + 0.492931i \(0.164075\pi\)
−0.870068 + 0.492931i \(0.835925\pi\)
\(108\) 22.4731 49.1015i 0.208084 0.454644i
\(109\) 57.5260 0.527762 0.263881 0.964555i \(-0.414997\pi\)
0.263881 + 0.964555i \(0.414997\pi\)
\(110\) −31.7139 + 5.59202i −0.288308 + 0.0508366i
\(111\) −18.7752 + 70.7396i −0.169146 + 0.637293i
\(112\) −41.0502 + 14.9410i −0.366519 + 0.133402i
\(113\) −76.8178 + 91.5479i −0.679803 + 0.810158i −0.990082 0.140487i \(-0.955133\pi\)
0.310279 + 0.950646i \(0.399577\pi\)
\(114\) −119.517 83.2657i −1.04840 0.730401i
\(115\) −192.055 69.9022i −1.67004 0.607845i
\(116\) −9.11832 + 5.26446i −0.0786062 + 0.0453833i
\(117\) 17.1242 + 46.3639i 0.146361 + 0.396272i
\(118\) −50.2243 + 86.9910i −0.425629 + 0.737212i
\(119\) −33.2920 39.6758i −0.279765 0.333410i
\(120\) 4.20411 + 46.7770i 0.0350343 + 0.389809i
\(121\) 18.0724 102.493i 0.149358 0.847053i
\(122\) −109.924 19.3826i −0.901020 0.158874i
\(123\) −68.6270 + 6.16789i −0.557943 + 0.0501454i
\(124\) 56.9397 47.7781i 0.459192 0.385307i
\(125\) −92.8213 53.5904i −0.742570 0.428723i
\(126\) −130.394 + 48.1603i −1.03487 + 0.382224i
\(127\) −68.8561 119.262i −0.542174 0.939072i −0.998779 0.0494029i \(-0.984268\pi\)
0.456605 0.889669i \(-0.349065\pi\)
\(128\) 3.86952 10.6314i 0.0302306 0.0830579i
\(129\) 87.7359 125.934i 0.680124 0.976230i
\(130\) −32.9297 27.6313i −0.253305 0.212549i
\(131\) −21.9189 60.2217i −0.167320 0.459708i 0.827487 0.561484i \(-0.189769\pi\)
−0.994807 + 0.101777i \(0.967547\pi\)
\(132\) 23.8583 + 6.33229i 0.180745 + 0.0479719i
\(133\) 65.1105 + 369.260i 0.489552 + 2.77639i
\(134\) 98.6761i 0.736389i
\(135\) 14.0822 + 148.779i 0.104313 + 1.10206i
\(136\) 13.4137 0.0986300
\(137\) 75.1710 13.2547i 0.548694 0.0967495i 0.107573 0.994197i \(-0.465692\pi\)
0.441121 + 0.897448i \(0.354581\pi\)
\(138\) 111.038 + 110.514i 0.804626 + 0.800824i
\(139\) −100.055 + 36.4171i −0.719821 + 0.261993i −0.675850 0.737039i \(-0.736223\pi\)
−0.0439712 + 0.999033i \(0.514001\pi\)
\(140\) 77.7106 92.6118i 0.555075 0.661513i
\(141\) 21.0815 247.718i 0.149514 1.75686i
\(142\) −101.135 36.8103i −0.712221 0.259227i
\(143\) −19.5662 + 11.2966i −0.136827 + 0.0789969i
\(144\) 12.1524 33.8869i 0.0843914 0.235326i
\(145\) 14.5693 25.2347i 0.100478 0.174032i
\(146\) 46.3725 + 55.2646i 0.317620 + 0.378525i
\(147\) 191.275 + 88.6419i 1.30119 + 0.603006i
\(148\) −8.47273 + 48.0512i −0.0572482 + 0.324670i
\(149\) −84.0145 14.8140i −0.563856 0.0994230i −0.115547 0.993302i \(-0.536862\pi\)
−0.448308 + 0.893879i \(0.647973\pi\)
\(150\) −13.7605 19.5533i −0.0917367 0.130355i
\(151\) −42.4996 + 35.6614i −0.281454 + 0.236168i −0.772575 0.634923i \(-0.781032\pi\)
0.491121 + 0.871091i \(0.336587\pi\)
\(152\) −84.0983 48.5542i −0.553278 0.319435i
\(153\) 42.6816 0.202164i 0.278965 0.00132133i
\(154\) −31.7705 55.0282i −0.206302 0.357326i
\(155\) −70.3553 + 193.299i −0.453905 + 1.24709i
\(156\) 13.9960 + 29.8299i 0.0897180 + 0.191217i
\(157\) −12.9857 10.8963i −0.0827115 0.0694032i 0.600494 0.799629i \(-0.294970\pi\)
−0.683206 + 0.730226i \(0.739415\pi\)
\(158\) 15.3586 + 42.1974i 0.0972063 + 0.267072i
\(159\) 12.7623 + 47.1825i 0.0802663 + 0.296745i
\(160\) 5.43699 + 30.8347i 0.0339812 + 0.192717i
\(161\) 403.269i 2.50478i
\(162\) 38.1574 108.009i 0.235540 0.666724i
\(163\) 230.772 1.41578 0.707890 0.706322i \(-0.249647\pi\)
0.707890 + 0.706322i \(0.249647\pi\)
\(164\) −45.2379 + 7.97666i −0.275841 + 0.0486382i
\(165\) −65.9435 + 17.8370i −0.399657 + 0.108103i
\(166\) 38.7889 14.1180i 0.233668 0.0850481i
\(167\) 103.061 122.823i 0.617132 0.735469i −0.363442 0.931617i \(-0.618399\pi\)
0.980574 + 0.196147i \(0.0628431\pi\)
\(168\) −83.8938 + 39.3625i −0.499368 + 0.234301i
\(169\) 130.468 + 47.4866i 0.772001 + 0.280986i
\(170\) −32.1486 + 18.5610i −0.189109 + 0.109182i
\(171\) −268.328 153.229i −1.56917 0.896077i
\(172\) 51.1608 88.6132i 0.297447 0.515193i
\(173\) 204.014 + 243.135i 1.17927 + 1.40540i 0.894653 + 0.446762i \(0.147423\pi\)
0.284620 + 0.958640i \(0.408133\pi\)
\(174\) −18.2656 + 12.8543i −0.104974 + 0.0738750i
\(175\) −10.6876 + 60.6125i −0.0610721 + 0.346357i
\(176\) 16.2062 + 2.85759i 0.0920808 + 0.0162363i
\(177\) −89.5954 + 193.332i −0.506189 + 1.09227i
\(178\) −86.6752 + 72.7291i −0.486939 + 0.408591i
\(179\) −38.5365 22.2490i −0.215287 0.124296i 0.388479 0.921458i \(-0.373001\pi\)
−0.603766 + 0.797161i \(0.706334\pi\)
\(180\) 17.7649 + 98.0324i 0.0986940 + 0.544624i
\(181\) 19.0288 + 32.9588i 0.105131 + 0.182093i 0.913792 0.406183i \(-0.133140\pi\)
−0.808661 + 0.588276i \(0.799807\pi\)
\(182\) 29.0096 79.7032i 0.159393 0.437930i
\(183\) −235.929 20.0782i −1.28923 0.109717i
\(184\) 80.0064 + 67.1333i 0.434817 + 0.364855i
\(185\) −46.1836 126.888i −0.249641 0.685884i
\(186\) 111.230 111.758i 0.598011 0.600850i
\(187\) 3.38800 + 19.2143i 0.0181176 + 0.102750i
\(188\) 165.742i 0.881607i
\(189\) −266.352 + 126.514i −1.40927 + 0.669385i
\(190\) 268.745 1.41445
\(191\) 201.386 35.5097i 1.05438 0.185915i 0.380516 0.924774i \(-0.375746\pi\)
0.673859 + 0.738860i \(0.264635\pi\)
\(192\) 6.15674 23.1969i 0.0320663 0.120817i
\(193\) 108.871 39.6259i 0.564100 0.205316i −0.0442003 0.999023i \(-0.514074\pi\)
0.608300 + 0.793707i \(0.291852\pi\)
\(194\) 43.1639 51.4408i 0.222495 0.265159i
\(195\) −74.8209 52.1265i −0.383697 0.267316i
\(196\) 132.068 + 48.0689i 0.673817 + 0.245249i
\(197\) −76.7079 + 44.2873i −0.389380 + 0.224809i −0.681892 0.731453i \(-0.738842\pi\)
0.292511 + 0.956262i \(0.405509\pi\)
\(198\) 51.6104 + 8.84845i 0.260658 + 0.0446892i
\(199\) 134.773 233.434i 0.677253 1.17304i −0.298551 0.954394i \(-0.596503\pi\)
0.975805 0.218644i \(-0.0701632\pi\)
\(200\) −10.2460 12.2107i −0.0512300 0.0610535i
\(201\) 18.7376 + 208.483i 0.0932217 + 1.03723i
\(202\) −11.2053 + 63.5483i −0.0554717 + 0.314596i
\(203\) 56.6207 + 9.98375i 0.278920 + 0.0491810i
\(204\) 28.3405 2.54712i 0.138924 0.0124859i
\(205\) 97.3841 81.7149i 0.475044 0.398609i
\(206\) −17.4568 10.0787i −0.0847418 0.0489257i
\(207\) 255.588 + 212.409i 1.23472 + 1.02613i
\(208\) 10.9834 + 19.0238i 0.0528047 + 0.0914604i
\(209\) 48.3096 132.729i 0.231146 0.635069i
\(210\) 146.601 210.427i 0.698101 1.00203i
\(211\) −107.762 90.4231i −0.510721 0.428546i 0.350662 0.936502i \(-0.385957\pi\)
−0.861383 + 0.507957i \(0.830401\pi\)
\(212\) 11.1448 + 30.6202i 0.0525700 + 0.144435i
\(213\) −220.669 58.5684i −1.03601 0.274969i
\(214\) 25.9051 + 146.915i 0.121052 + 0.686520i
\(215\) 283.172i 1.31708i
\(216\) 19.2408 73.9039i 0.0890777 0.342148i
\(217\) −405.883 −1.87043
\(218\) 80.1181 14.1270i 0.367514 0.0648027i
\(219\) 108.470 + 107.958i 0.495298 + 0.492957i
\(220\) −42.7956 + 15.5763i −0.194526 + 0.0708015i
\(221\) −16.7408 + 19.9509i −0.0757502 + 0.0902756i
\(222\) −8.77679 + 103.132i −0.0395351 + 0.464557i
\(223\) −324.808 118.221i −1.45654 0.530137i −0.512130 0.858908i \(-0.671144\pi\)
−0.944410 + 0.328770i \(0.893366\pi\)
\(224\) −53.5026 + 30.8897i −0.238851 + 0.137901i
\(225\) −32.7862 38.6993i −0.145717 0.171997i
\(226\) −84.5044 + 146.366i −0.373913 + 0.647637i
\(227\) −118.546 141.278i −0.522230 0.622369i 0.438877 0.898547i \(-0.355376\pi\)
−0.961106 + 0.276178i \(0.910932\pi\)
\(228\) −186.903 86.6161i −0.819750 0.379895i
\(229\) 38.3747 217.634i 0.167575 0.950365i −0.778794 0.627279i \(-0.784168\pi\)
0.946370 0.323086i \(-0.104720\pi\)
\(230\) −284.646 50.1908i −1.23759 0.218221i
\(231\) −77.5742 110.231i −0.335819 0.477190i
\(232\) −11.4065 + 9.57121i −0.0491660 + 0.0412552i
\(233\) 364.370 + 210.369i 1.56382 + 0.902872i 0.996865 + 0.0791236i \(0.0252122\pi\)
0.566955 + 0.823748i \(0.308121\pi\)
\(234\) 35.2352 + 60.3670i 0.150578 + 0.257979i
\(235\) 229.343 + 397.234i 0.975929 + 1.69036i
\(236\) −48.5859 + 133.489i −0.205872 + 0.565630i
\(237\) 40.4625 + 86.2384i 0.170728 + 0.363875i
\(238\) −56.1101 47.0820i −0.235757 0.197823i
\(239\) −27.2416 74.8456i −0.113981 0.313162i 0.869565 0.493819i \(-0.164400\pi\)
−0.983546 + 0.180658i \(0.942177\pi\)
\(240\) 17.3425 + 64.1153i 0.0722603 + 0.267147i
\(241\) −9.36196 53.0943i −0.0388463 0.220308i 0.959205 0.282713i \(-0.0912343\pi\)
−0.998051 + 0.0624044i \(0.980123\pi\)
\(242\) 147.184i 0.608197i
\(243\) 60.1093 235.448i 0.247363 0.968923i
\(244\) −157.855 −0.646946
\(245\) −383.043 + 67.5407i −1.56344 + 0.275677i
\(246\) −94.0641 + 25.4433i −0.382374 + 0.103428i
\(247\) 177.175 64.4865i 0.717308 0.261079i
\(248\) 67.5685 80.5250i 0.272453 0.324697i
\(249\) 79.2724 37.1942i 0.318363 0.149374i
\(250\) −142.435 51.8422i −0.569741 0.207369i
\(251\) −179.256 + 103.494i −0.714167 + 0.412325i −0.812602 0.582819i \(-0.801950\pi\)
0.0984348 + 0.995144i \(0.468616\pi\)
\(252\) −169.777 + 99.0958i −0.673717 + 0.393237i
\(253\) −75.9567 + 131.561i −0.300224 + 0.520003i
\(254\) −125.186 149.190i −0.492857 0.587364i
\(255\) −64.3991 + 45.3204i −0.252546 + 0.177727i
\(256\) 2.77837 15.7569i 0.0108530 0.0615505i
\(257\) 201.153 + 35.4686i 0.782695 + 0.138010i 0.550696 0.834706i \(-0.314362\pi\)
0.231999 + 0.972716i \(0.425473\pi\)
\(258\) 91.2661 196.937i 0.353745 0.763322i
\(259\) 204.102 171.262i 0.788037 0.661241i
\(260\) −52.6477 30.3962i −0.202491 0.116908i
\(261\) −36.1507 + 30.6270i −0.138508 + 0.117345i
\(262\) −45.3161 78.4897i −0.172962 0.299579i
\(263\) 65.2110 179.166i 0.247951 0.681239i −0.751810 0.659379i \(-0.770819\pi\)
0.999761 0.0218596i \(-0.00695867\pi\)
\(264\) 34.7832 + 2.96015i 0.131755 + 0.0112127i
\(265\) −69.0812 57.9660i −0.260684 0.218740i
\(266\) 181.362 + 498.289i 0.681814 + 1.87327i
\(267\) −169.317 + 170.121i −0.634147 + 0.637158i
\(268\) 24.2324 + 137.429i 0.0904196 + 0.512795i
\(269\) 70.9150i 0.263624i 0.991275 + 0.131812i \(0.0420796\pi\)
−0.991275 + 0.131812i \(0.957920\pi\)
\(270\) 56.1491 + 203.750i 0.207960 + 0.754629i
\(271\) −117.923 −0.435141 −0.217570 0.976045i \(-0.569813\pi\)
−0.217570 + 0.976045i \(0.569813\pi\)
\(272\) 18.6816 3.29407i 0.0686824 0.0121106i
\(273\) 46.1568 173.906i 0.169072 0.637018i
\(274\) 101.438 36.9203i 0.370211 0.134746i
\(275\) 14.9032 17.7609i 0.0541934 0.0645852i
\(276\) 181.786 + 126.647i 0.658644 + 0.458867i
\(277\) 232.933 + 84.7808i 0.840915 + 0.306068i 0.726331 0.687346i \(-0.241224\pi\)
0.114584 + 0.993414i \(0.463446\pi\)
\(278\) −130.406 + 75.2902i −0.469088 + 0.270828i
\(279\) 213.786 257.244i 0.766256 0.922023i
\(280\) 85.4865 148.067i 0.305309 0.528811i
\(281\) 46.1416 + 54.9895i 0.164205 + 0.195692i 0.841872 0.539677i \(-0.181453\pi\)
−0.677667 + 0.735369i \(0.737009\pi\)
\(282\) −31.4727 350.181i −0.111605 1.24178i
\(283\) −52.2646 + 296.407i −0.184681 + 1.04738i 0.741685 + 0.670749i \(0.234027\pi\)
−0.926365 + 0.376627i \(0.877084\pi\)
\(284\) −149.894 26.4303i −0.527795 0.0930646i
\(285\) 567.805 51.0318i 1.99230 0.179059i
\(286\) −24.4762 + 20.5380i −0.0855813 + 0.0718112i
\(287\) 217.230 + 125.418i 0.756900 + 0.436997i
\(288\) 8.60314 50.1795i 0.0298720 0.174235i
\(289\) −133.255 230.804i −0.461088 0.798629i
\(290\) 14.0940 38.7229i 0.0486000 0.133527i
\(291\) 81.4289 116.881i 0.279824 0.401652i
\(292\) 78.1560 + 65.5806i 0.267657 + 0.224591i
\(293\) −34.3361 94.3376i −0.117188 0.321971i 0.867206 0.497949i \(-0.165913\pi\)
−0.984394 + 0.175978i \(0.943691\pi\)
\(294\) 288.162 + 76.4818i 0.980143 + 0.260142i
\(295\) −68.2672 387.163i −0.231414 1.31242i
\(296\) 69.0030i 0.233118i
\(297\) 110.723 + 8.89479i 0.372804 + 0.0299488i
\(298\) −120.647 −0.404857
\(299\) −199.702 + 35.2129i −0.667900 + 0.117769i
\(300\) −23.9665 23.8532i −0.0798882 0.0795107i
\(301\) −525.040 + 191.099i −1.74432 + 0.634881i
\(302\) −50.4328 + 60.1035i −0.166996 + 0.199018i
\(303\) −11.6074 + 136.393i −0.0383083 + 0.450142i
\(304\) −129.050 46.9703i −0.424506 0.154507i
\(305\) 378.331 218.429i 1.24043 0.716162i
\(306\) 59.3942 10.7631i 0.194099 0.0351736i
\(307\) −136.003 + 235.565i −0.443008 + 0.767312i −0.997911 0.0646029i \(-0.979422\pi\)
0.554903 + 0.831915i \(0.312755\pi\)
\(308\) −57.7613 68.8372i −0.187537 0.223498i
\(309\) −38.7967 17.9794i −0.125556 0.0581859i
\(310\) −50.5161 + 286.491i −0.162955 + 0.924165i
\(311\) 402.304 + 70.9371i 1.29358 + 0.228094i 0.777738 0.628588i \(-0.216367\pi\)
0.515845 + 0.856682i \(0.327478\pi\)
\(312\) 26.8181 + 38.1078i 0.0859555 + 0.122141i
\(313\) 186.473 156.470i 0.595761 0.499903i −0.294319 0.955707i \(-0.595093\pi\)
0.890080 + 0.455805i \(0.150648\pi\)
\(314\) −20.7614 11.9866i −0.0661192 0.0381739i
\(315\) 269.782 472.429i 0.856450 1.49978i
\(316\) 31.7530 + 54.9978i 0.100484 + 0.174044i
\(317\) −92.9426 + 255.358i −0.293194 + 0.805545i 0.702400 + 0.711782i \(0.252112\pi\)
−0.995595 + 0.0937628i \(0.970110\pi\)
\(318\) 29.3613 + 62.5782i 0.0923313 + 0.196787i
\(319\) −16.5912 13.9217i −0.0520101 0.0436417i
\(320\) 15.1445 + 41.6092i 0.0473266 + 0.130029i
\(321\) 82.6301 + 305.484i 0.257415 + 0.951663i
\(322\) −99.0331 561.644i −0.307556 1.74424i
\(323\) 162.822i 0.504094i
\(324\) 26.6184 159.798i 0.0821557 0.493204i
\(325\) 30.9490 0.0952278
\(326\) 321.403 56.6720i 0.985899 0.173841i
\(327\) 166.591 45.0612i 0.509454 0.137802i
\(328\) −61.0452 + 22.2186i −0.186113 + 0.0677397i
\(329\) −581.754 + 693.308i −1.76825 + 2.10732i
\(330\) −87.4610 + 41.0362i −0.265033 + 0.124352i
\(331\) 416.626 + 151.639i 1.25869 + 0.458125i 0.883329 0.468754i \(-0.155297\pi\)
0.375360 + 0.926879i \(0.377519\pi\)
\(332\) 50.5553 29.1881i 0.152275 0.0879161i
\(333\) 1.03998 + 219.564i 0.00312306 + 0.659351i
\(334\) 113.374 196.369i 0.339442 0.587931i
\(335\) −248.243 295.845i −0.741025 0.883120i
\(336\) −107.175 + 75.4236i −0.318973 + 0.224475i
\(337\) 26.8736 152.408i 0.0797435 0.452248i −0.918624 0.395133i \(-0.870699\pi\)
0.998368 0.0571153i \(-0.0181903\pi\)
\(338\) 193.368 + 34.0961i 0.572096 + 0.100876i
\(339\) −150.748 + 325.289i −0.444684 + 0.959554i
\(340\) −40.2161 + 33.7453i −0.118283 + 0.0992510i
\(341\) 132.414 + 76.4490i 0.388310 + 0.224191i
\(342\) −411.337 147.512i −1.20274 0.431321i
\(343\) −116.158 201.191i −0.338652 0.586562i
\(344\) 49.4919 135.978i 0.143872 0.395285i
\(345\) −610.933 51.9921i −1.77082 0.150702i
\(346\) 343.844 + 288.520i 0.993770 + 0.833872i
\(347\) −71.9673 197.728i −0.207398 0.569823i 0.791760 0.610832i \(-0.209165\pi\)
−0.999159 + 0.0410093i \(0.986943\pi\)
\(348\) −22.2823 + 22.3881i −0.0640295 + 0.0643335i
\(349\) −74.8630 424.569i −0.214507 1.21653i −0.881760 0.471699i \(-0.843641\pi\)
0.667252 0.744832i \(-0.267470\pi\)
\(350\) 87.0414i 0.248690i
\(351\) 85.9081 + 120.853i 0.244752 + 0.344310i
\(352\) 23.2726 0.0661154
\(353\) −269.966 + 47.6023i −0.764777 + 0.134851i −0.542412 0.840113i \(-0.682489\pi\)
−0.222365 + 0.974964i \(0.571378\pi\)
\(354\) −77.3044 + 291.261i −0.218374 + 0.822772i
\(355\) 395.823 144.068i 1.11500 0.405825i
\(356\) −102.855 + 122.577i −0.288917 + 0.344318i
\(357\) −127.490 88.8203i −0.357115 0.248796i
\(358\) −59.1346 21.5233i −0.165181 0.0601208i
\(359\) −40.2168 + 23.2192i −0.112025 + 0.0646774i −0.554965 0.831873i \(-0.687269\pi\)
0.442941 + 0.896551i \(0.353935\pi\)
\(360\) 48.8161 + 132.170i 0.135600 + 0.367138i
\(361\) −408.876 + 708.195i −1.13262 + 1.96176i
\(362\) 34.5958 + 41.2296i 0.0955685 + 0.113894i
\(363\) −27.9486 310.970i −0.0769934 0.856667i
\(364\) 20.8293 118.129i 0.0572234 0.324530i
\(365\) −278.063 49.0300i −0.761816 0.134329i
\(366\) −333.516 + 29.9750i −0.911247 + 0.0818988i
\(367\) −490.518 + 411.594i −1.33656 + 1.12151i −0.354067 + 0.935220i \(0.615201\pi\)
−0.982495 + 0.186288i \(0.940354\pi\)
\(368\) 127.914 + 73.8509i 0.347591 + 0.200682i
\(369\) −193.908 + 71.6185i −0.525495 + 0.194088i
\(370\) −95.4820 165.380i −0.258059 0.446972i
\(371\) 60.8574 167.204i 0.164036 0.450686i
\(372\) 127.468 182.964i 0.342656 0.491839i
\(373\) −3.55616 2.98397i −0.00953393 0.00799992i 0.638008 0.770030i \(-0.279759\pi\)
−0.647542 + 0.762030i \(0.724203\pi\)
\(374\) 9.43713 + 25.9283i 0.0252330 + 0.0693270i
\(375\) −310.782 82.4855i −0.828753 0.219961i
\(376\) −40.7022 230.834i −0.108251 0.613920i
\(377\) 28.9108i 0.0766864i
\(378\) −339.888 + 241.609i −0.899174 + 0.639177i
\(379\) 259.991 0.685992 0.342996 0.939337i \(-0.388558\pi\)
0.342996 + 0.939337i \(0.388558\pi\)
\(380\) 374.288 65.9971i 0.984969 0.173677i
\(381\) −292.823 291.439i −0.768563 0.764931i
\(382\) 271.755 98.9108i 0.711401 0.258929i
\(383\) −171.274 + 204.117i −0.447191 + 0.532942i −0.941800 0.336174i \(-0.890867\pi\)
0.494609 + 0.869116i \(0.335311\pi\)
\(384\) 2.87808 33.8189i 0.00749500 0.0880700i
\(385\) 233.689 + 85.0559i 0.606985 + 0.220924i
\(386\) 141.897 81.9242i 0.367609 0.212239i
\(387\) 155.431 433.420i 0.401631 1.11995i
\(388\) 47.4830 82.2430i 0.122379 0.211967i
\(389\) 15.2282 + 18.1483i 0.0391471 + 0.0466538i 0.785263 0.619163i \(-0.212528\pi\)
−0.746116 + 0.665816i \(0.768083\pi\)
\(390\) −117.006 54.2239i −0.300016 0.139036i
\(391\) −30.4088 + 172.457i −0.0777718 + 0.441066i
\(392\) 195.740 + 34.5142i 0.499336 + 0.0880464i
\(393\) −110.648 157.228i −0.281548 0.400072i
\(394\) −95.9574 + 80.5178i −0.243547 + 0.204360i
\(395\) −152.205 87.8756i −0.385329 0.222470i
\(396\) 74.0522 0.350753i 0.187000 0.000885740i
\(397\) 113.459 + 196.518i 0.285792 + 0.495006i 0.972801 0.231643i \(-0.0744100\pi\)
−0.687009 + 0.726649i \(0.741077\pi\)
\(398\) 130.377 358.208i 0.327580 0.900020i
\(399\) 477.803 + 1018.35i 1.19750 + 2.55225i
\(400\) −17.2685 14.4900i −0.0431713 0.0362251i
\(401\) −175.968 483.469i −0.438824 1.20566i −0.940258 0.340463i \(-0.889416\pi\)
0.501434 0.865196i \(-0.332806\pi\)
\(402\) 77.2947 + 285.759i 0.192275 + 0.710844i
\(403\) 35.4411 + 200.997i 0.0879432 + 0.498751i
\(404\) 91.2573i 0.225884i
\(405\) 157.322 + 419.821i 0.388450 + 1.03660i
\(406\) 81.3090 0.200268
\(407\) −98.8427 + 17.4286i −0.242857 + 0.0428222i
\(408\) 38.8451 10.5072i 0.0952085 0.0257529i
\(409\) 260.800 94.9234i 0.637653 0.232087i −0.00290599 0.999996i \(-0.500925\pi\)
0.640559 + 0.767909i \(0.278703\pi\)
\(410\) 115.562 137.722i 0.281859 0.335907i
\(411\) 207.307 97.2674i 0.504398 0.236660i
\(412\) −26.7877 9.74992i −0.0650186 0.0236648i
\(413\) 671.782 387.854i 1.62659 0.939113i
\(414\) 408.127 + 233.062i 0.985813 + 0.562951i
\(415\) −80.7773 + 139.910i −0.194644 + 0.337134i
\(416\) 19.9686 + 23.7977i 0.0480015 + 0.0572060i
\(417\) −261.227 + 183.836i −0.626442 + 0.440854i
\(418\) 34.6870 196.720i 0.0829833 0.470622i
\(419\) −316.326 55.7768i −0.754955 0.133119i −0.217092 0.976151i \(-0.569657\pi\)
−0.537863 + 0.843032i \(0.680768\pi\)
\(420\) 152.500 329.070i 0.363095 0.783499i
\(421\) −101.935 + 85.5332i −0.242125 + 0.203167i −0.755772 0.654834i \(-0.772738\pi\)
0.513648 + 0.858001i \(0.328294\pi\)
\(422\) −172.289 99.4711i −0.408268 0.235714i
\(423\) −132.991 733.887i −0.314400 1.73496i
\(424\) 23.0413 + 39.9087i 0.0543427 + 0.0941244i
\(425\) 9.14105 25.1148i 0.0215084 0.0590937i
\(426\) −321.715 27.3789i −0.755200 0.0642696i
\(427\) 660.315 + 554.070i 1.54640 + 1.29759i
\(428\) 72.1576 + 198.251i 0.168592 + 0.463204i
\(429\) −47.8136 + 48.0406i −0.111454 + 0.111983i
\(430\) 69.5402 + 394.382i 0.161721 + 0.917168i
\(431\) 24.4994i 0.0568432i 0.999596 + 0.0284216i \(0.00904810\pi\)
−0.999596 + 0.0284216i \(0.990952\pi\)
\(432\) 8.64819 107.653i 0.0200190 0.249197i
\(433\) −25.7694 −0.0595137 −0.0297568 0.999557i \(-0.509473\pi\)
−0.0297568 + 0.999557i \(0.509473\pi\)
\(434\) −565.285 + 99.6750i −1.30250 + 0.229666i
\(435\) 22.4248 84.4903i 0.0515512 0.194231i
\(436\) 108.114 39.3501i 0.247967 0.0902526i
\(437\) 814.901 971.161i 1.86476 2.22234i
\(438\) 177.581 + 123.718i 0.405437 + 0.282461i
\(439\) 425.746 + 154.959i 0.969809 + 0.352981i 0.777870 0.628425i \(-0.216300\pi\)
0.191939 + 0.981407i \(0.438522\pi\)
\(440\) −55.7775 + 32.2032i −0.126767 + 0.0731890i
\(441\) 623.353 + 106.872i 1.41350 + 0.242340i
\(442\) −18.4159 + 31.8973i −0.0416650 + 0.0721659i
\(443\) −320.772 382.281i −0.724090 0.862937i 0.270931 0.962599i \(-0.412668\pi\)
−0.995021 + 0.0996616i \(0.968224\pi\)
\(444\) 13.1029 + 145.790i 0.0295111 + 0.328356i
\(445\) 76.8970 436.105i 0.172802 0.980010i
\(446\) −481.402 84.8842i −1.07938 0.190323i
\(447\) −254.904 + 22.9097i −0.570256 + 0.0512520i
\(448\) −66.9288 + 56.1600i −0.149395 + 0.125357i
\(449\) −172.434 99.5548i −0.384040 0.221726i 0.295534 0.955332i \(-0.404502\pi\)
−0.679575 + 0.733606i \(0.737836\pi\)
\(450\) −55.1659 45.8462i −0.122591 0.101880i
\(451\) −47.2456 81.8317i −0.104757 0.181445i
\(452\) −81.7478 + 224.600i −0.180858 + 0.496903i
\(453\) −95.1417 + 136.564i −0.210026 + 0.301465i
\(454\) −199.797 167.650i −0.440081 0.369272i
\(455\) 113.538 + 311.942i 0.249533 + 0.685587i
\(456\) −281.576 74.7338i −0.617491 0.163890i
\(457\) 1.65470 + 9.38428i 0.00362079 + 0.0205345i 0.986565 0.163371i \(-0.0522369\pi\)
−0.982944 + 0.183906i \(0.941126\pi\)
\(458\) 312.529i 0.682377i
\(459\) 123.445 34.0187i 0.268942 0.0741148i
\(460\) −408.761 −0.888610
\(461\) 746.412 131.612i 1.61911 0.285493i 0.710678 0.703517i \(-0.248388\pi\)
0.908436 + 0.418024i \(0.137277\pi\)
\(462\) −135.110 134.471i −0.292445 0.291064i
\(463\) −598.493 + 217.833i −1.29264 + 0.470483i −0.894593 0.446882i \(-0.852534\pi\)
−0.398048 + 0.917365i \(0.630312\pi\)
\(464\) −13.5357 + 16.1313i −0.0291718 + 0.0347656i
\(465\) −52.3290 + 614.892i −0.112536 + 1.32235i
\(466\) 559.130 + 203.507i 1.19985 + 0.436710i
\(467\) −632.615 + 365.241i −1.35464 + 0.782100i −0.988895 0.148617i \(-0.952518\pi\)
−0.365742 + 0.930716i \(0.619185\pi\)
\(468\) 63.8977 + 75.4219i 0.136534 + 0.161158i
\(469\) 381.010 659.929i 0.812388 1.40710i
\(470\) 416.964 + 496.919i 0.887158 + 1.05727i
\(471\) −46.1410 21.3830i −0.0979639 0.0453992i
\(472\) −34.8854 + 197.845i −0.0739098 + 0.419163i
\(473\) 207.281 + 36.5492i 0.438226 + 0.0772711i
\(474\) 77.5314 + 110.170i 0.163568 + 0.232426i
\(475\) −148.220 + 124.371i −0.312042 + 0.261834i
\(476\) −89.7083 51.7931i −0.188463 0.108809i
\(477\) 73.9177 + 126.640i 0.154964 + 0.265493i
\(478\) −56.3204 97.5497i −0.117825 0.204079i
\(479\) −119.189 + 327.468i −0.248828 + 0.683650i 0.750902 + 0.660414i \(0.229619\pi\)
−0.999730 + 0.0232359i \(0.992603\pi\)
\(480\) 39.8985 + 85.0363i 0.0831219 + 0.177159i
\(481\) −102.632 86.1184i −0.213372 0.179040i
\(482\) −26.0773 71.6469i −0.0541023 0.148645i
\(483\) −315.888 1167.84i −0.654012 2.41789i
\(484\) −36.1447 204.987i −0.0746791 0.423527i
\(485\) 262.816i 0.541889i
\(486\) 25.8956 342.677i 0.0532831 0.705096i
\(487\) −24.8144 −0.0509535 −0.0254768 0.999675i \(-0.508110\pi\)
−0.0254768 + 0.999675i \(0.508110\pi\)
\(488\) −219.849 + 38.7653i −0.450510 + 0.0794371i
\(489\) 668.301 180.768i 1.36667 0.369669i
\(490\) −516.888 + 188.132i −1.05487 + 0.383943i
\(491\) −357.910 + 426.541i −0.728941 + 0.868719i −0.995467 0.0951093i \(-0.969680\pi\)
0.266525 + 0.963828i \(0.414124\pi\)
\(492\) −124.757 + 58.5355i −0.253572 + 0.118975i
\(493\) −23.4608 8.53904i −0.0475879 0.0173206i
\(494\) 230.921 133.322i 0.467451 0.269883i
\(495\) −176.996 + 103.309i −0.357567 + 0.208706i
\(496\) 74.3296 128.743i 0.149858 0.259562i
\(497\) 534.243 + 636.686i 1.07494 + 1.28106i
\(498\) 101.271 71.2687i 0.203355 0.143110i
\(499\) −71.2311 + 403.972i −0.142748 + 0.809562i 0.826400 + 0.563083i \(0.190385\pi\)
−0.969148 + 0.246479i \(0.920726\pi\)
\(500\) −211.105 37.2235i −0.422210 0.0744470i
\(501\) 202.248 436.418i 0.403688 0.871093i
\(502\) −224.239 + 188.159i −0.446692 + 0.374819i
\(503\) −435.156 251.237i −0.865121 0.499478i 0.000603145 1.00000i \(-0.499808\pi\)
−0.865724 + 0.500522i \(0.833141\pi\)
\(504\) −212.117 + 179.707i −0.420868 + 0.356561i
\(505\) −126.276 218.717i −0.250052 0.433102i
\(506\) −73.4789 + 201.882i −0.145215 + 0.398976i
\(507\) 415.024 + 35.3197i 0.818588 + 0.0696641i
\(508\) −210.987 177.039i −0.415329 0.348503i
\(509\) 40.2964 + 110.713i 0.0791678 + 0.217512i 0.972962 0.230966i \(-0.0741886\pi\)
−0.893794 + 0.448478i \(0.851966\pi\)
\(510\) −78.5609 + 78.9339i −0.154041 + 0.154772i
\(511\) −96.7426 548.654i −0.189320 1.07369i
\(512\) 22.6274i 0.0441942i
\(513\) −897.086 233.555i −1.74871 0.455273i
\(514\) 288.861 0.561987
\(515\) 77.6934 13.6994i 0.150861 0.0266008i
\(516\) 78.7460 296.693i 0.152608 0.574986i
\(517\) 320.375 116.607i 0.619681 0.225546i
\(518\) 242.200 288.643i 0.467568 0.557226i
\(519\) 781.263 + 544.293i 1.50532 + 1.04873i
\(520\) −80.7885 29.4046i −0.155363 0.0565474i
\(521\) 0.627494 0.362284i 0.00120440 0.000695363i −0.499398 0.866373i \(-0.666445\pi\)
0.500602 + 0.865678i \(0.333112\pi\)
\(522\) −42.8268 + 51.5328i −0.0820437 + 0.0987218i
\(523\) 290.424 503.029i 0.555304 0.961814i −0.442576 0.896731i \(-0.645935\pi\)
0.997880 0.0650834i \(-0.0207313\pi\)
\(524\) −82.3881 98.1863i −0.157229 0.187379i
\(525\) 16.5282 + 183.901i 0.0314824 + 0.350288i
\(526\) 46.8225 265.544i 0.0890162 0.504836i
\(527\) 173.575 + 30.6059i 0.329363 + 0.0580757i
\(528\) 49.1705 4.41922i 0.0931259 0.00836974i
\(529\) −639.256 + 536.399i −1.20842 + 1.01399i
\(530\) −110.446 63.7662i −0.208389 0.120314i
\(531\) −108.022 + 630.058i −0.203431 + 1.18655i
\(532\) 374.956 + 649.443i 0.704805 + 1.22076i
\(533\) 43.1398 118.526i 0.0809377 0.222374i
\(534\) −194.035 + 278.513i −0.363362 + 0.521559i
\(535\) −447.268 375.302i −0.836014 0.701499i
\(536\) 67.4984 + 185.450i 0.125930 + 0.345990i
\(537\) −129.027 34.2454i −0.240274 0.0637716i
\(538\) 17.4150 + 98.7653i 0.0323699 + 0.183579i
\(539\) 289.103i 0.536369i
\(540\) 128.236 + 269.979i 0.237475 + 0.499962i
\(541\) 15.2361 0.0281629 0.0140815 0.999901i \(-0.495518\pi\)
0.0140815 + 0.999901i \(0.495518\pi\)
\(542\) −164.235 + 28.9590i −0.303016 + 0.0534300i
\(543\) 80.9232 + 80.5408i 0.149030 + 0.148326i
\(544\) 25.2095 9.17550i 0.0463409 0.0168667i
\(545\) −204.666 + 243.911i −0.375534 + 0.447543i
\(546\) 21.5768 253.539i 0.0395180 0.464356i
\(547\) −539.917 196.514i −0.987051 0.359257i −0.202473 0.979288i \(-0.564898\pi\)
−0.784578 + 0.620031i \(0.787120\pi\)
\(548\) 132.209 76.3307i 0.241257 0.139290i
\(549\) −698.963 + 126.662i −1.27316 + 0.230715i
\(550\) 16.3944 28.3960i 0.0298081 0.0516291i
\(551\) 116.180 + 138.458i 0.210854 + 0.251286i
\(552\) 284.280 + 131.743i 0.514999 + 0.238665i
\(553\) 60.2177 341.512i 0.108893 0.617562i
\(554\) 345.233 + 60.8739i 0.623164 + 0.109881i
\(555\) −233.139 331.284i −0.420069 0.596908i
\(556\) −163.131 + 136.883i −0.293402 + 0.246193i
\(557\) −276.094 159.403i −0.495680 0.286181i 0.231248 0.972895i \(-0.425719\pi\)
−0.726928 + 0.686714i \(0.759052\pi\)
\(558\) 234.572 410.772i 0.420380 0.736151i
\(559\) 140.480 + 243.318i 0.251305 + 0.435273i
\(560\) 82.6979 227.210i 0.147675 0.405733i
\(561\) 24.8623 + 52.9894i 0.0443179 + 0.0944553i
\(562\) 77.7668 + 65.2541i 0.138375 + 0.116111i
\(563\) 84.4286 + 231.966i 0.149962 + 0.412017i 0.991814 0.127691i \(-0.0407567\pi\)
−0.841852 + 0.539708i \(0.818534\pi\)
\(564\) −129.829 479.978i −0.230193 0.851024i
\(565\) −114.862 651.417i −0.203296 1.15295i
\(566\) 425.650i 0.752031i
\(567\) −672.237 + 575.013i −1.18560 + 1.01413i
\(568\) −215.252 −0.378965
\(569\) 165.837 29.2415i 0.291454 0.0513911i −0.0260097 0.999662i \(-0.508280\pi\)
0.317463 + 0.948271i \(0.397169\pi\)
\(570\) 778.266 210.512i 1.36538 0.369320i
\(571\) −605.483 + 220.378i −1.06039 + 0.385951i −0.812575 0.582856i \(-0.801935\pi\)
−0.247816 + 0.968807i \(0.579713\pi\)
\(572\) −29.0451 + 34.6146i −0.0507782 + 0.0605151i
\(573\) 555.383 260.583i 0.969256 0.454769i
\(574\) 333.343 + 121.327i 0.580736 + 0.211371i
\(575\) 180.218 104.049i 0.313422 0.180955i
\(576\) −0.341029 71.9992i −0.000592064 0.124999i
\(577\) 63.2482 109.549i 0.109616 0.189860i −0.805999 0.591917i \(-0.798371\pi\)
0.915615 + 0.402057i \(0.131705\pi\)
\(578\) −242.267 288.723i −0.419147 0.499520i
\(579\) 284.244 200.035i 0.490922 0.345483i
\(580\) 10.1197 57.3917i 0.0174478 0.0989512i
\(581\) −313.926 55.3536i −0.540320 0.0952730i
\(582\) 84.7053 182.780i 0.145542 0.314055i
\(583\) −51.3472 + 43.0854i −0.0880741 + 0.0739029i
\(584\) 124.955 + 72.1428i 0.213964 + 0.123532i
\(585\) −257.508 92.3463i −0.440184 0.157857i
\(586\) −70.9878 122.955i −0.121140 0.209820i
\(587\) −327.703 + 900.357i −0.558268 + 1.53383i 0.263881 + 0.964555i \(0.414997\pi\)
−0.822149 + 0.569273i \(0.807225\pi\)
\(588\) 420.113 + 35.7528i 0.714479 + 0.0608041i
\(589\) −977.455 820.182i −1.65952 1.39250i
\(590\) −190.155 522.448i −0.322297 0.885504i
\(591\) −187.450 + 188.340i −0.317174 + 0.318680i
\(592\) 16.9455 + 96.1025i 0.0286241 + 0.162335i
\(593\) 733.805i 1.23745i 0.785609 + 0.618723i \(0.212350\pi\)
−0.785609 + 0.618723i \(0.787650\pi\)
\(594\) 156.391 14.8028i 0.263285 0.0249205i
\(595\) 286.672 0.481802
\(596\) −168.029 + 29.6280i −0.281928 + 0.0497115i
\(597\) 207.441 781.580i 0.347473 1.30918i
\(598\) −269.484 + 98.0840i −0.450641 + 0.164020i
\(599\) 727.241 866.692i 1.21409 1.44690i 0.355162 0.934805i \(-0.384426\pi\)
0.858930 0.512094i \(-0.171130\pi\)
\(600\) −39.2365 27.3355i −0.0653942 0.0455591i
\(601\) 713.313 + 259.625i 1.18688 + 0.431988i 0.858626 0.512602i \(-0.171318\pi\)
0.328251 + 0.944590i \(0.393541\pi\)
\(602\) −684.309 + 395.086i −1.13673 + 0.656289i
\(603\) 217.571 + 589.076i 0.360815 + 0.976908i
\(604\) −55.4793 + 96.0929i −0.0918531 + 0.159094i
\(605\) 370.276 + 441.278i 0.612026 + 0.729384i
\(606\) 17.3288 + 192.809i 0.0285954 + 0.318166i
\(607\) 79.5776 451.307i 0.131100 0.743504i −0.846397 0.532553i \(-0.821233\pi\)
0.977497 0.210951i \(-0.0676561\pi\)
\(608\) −191.266 33.7254i −0.314582 0.0554693i
\(609\) 171.790 15.4397i 0.282085 0.0253526i
\(610\) 473.271 397.122i 0.775855 0.651019i
\(611\) 394.130 + 227.551i 0.645057 + 0.372424i
\(612\) 80.0769 29.5759i 0.130845 0.0483266i
\(613\) 44.6060 + 77.2599i 0.0727667 + 0.126036i 0.900113 0.435657i \(-0.143484\pi\)
−0.827346 + 0.561692i \(0.810150\pi\)
\(614\) −131.567 + 361.477i −0.214278 + 0.588725i
\(615\) 218.009 312.923i 0.354486 0.508819i
\(616\) −97.3506 81.6868i −0.158037 0.132608i
\(617\) 185.560 + 509.821i 0.300745 + 0.826290i 0.994371 + 0.105955i \(0.0337899\pi\)
−0.693626 + 0.720335i \(0.743988\pi\)
\(618\) −58.4485 15.5130i −0.0945769 0.0251019i
\(619\) 89.2899 + 506.388i 0.144249 + 0.818075i 0.967967 + 0.251076i \(0.0807844\pi\)
−0.823719 + 0.566999i \(0.808104\pi\)
\(620\) 411.410i 0.663565i
\(621\) 906.548 + 414.915i 1.45982 + 0.668140i
\(622\) 577.721 0.928812
\(623\) 860.491 151.728i 1.38121 0.243544i
\(624\) 46.7087 + 46.4880i 0.0748537 + 0.0745000i
\(625\) 689.857 251.087i 1.10377 0.401740i
\(626\) 221.281 263.713i 0.353485 0.421266i
\(627\) 35.9318 422.217i 0.0573076 0.673393i
\(628\) −31.8587 11.5956i −0.0507304 0.0184643i
\(629\) −100.197 + 57.8490i −0.159296 + 0.0919698i
\(630\) 259.716 724.218i 0.412247 1.14955i
\(631\) 317.732 550.327i 0.503537 0.872151i −0.496455 0.868062i \(-0.665365\pi\)
0.999992 0.00408856i \(-0.00130143\pi\)
\(632\) 57.7294 + 68.7993i 0.0913440 + 0.108860i
\(633\) −382.902 177.447i −0.604900 0.280327i
\(634\) −66.7342 + 378.469i −0.105259 + 0.596954i
\(635\) 750.649 + 132.360i 1.18212 + 0.208440i
\(636\) 56.2601 + 79.9441i 0.0884592 + 0.125698i
\(637\) −295.625 + 248.059i −0.464090 + 0.389418i
\(638\) −26.5259 15.3147i −0.0415766 0.0240043i
\(639\) −684.920 + 3.24417i −1.07186 + 0.00507695i
\(640\) 31.3104 + 54.2312i 0.0489225 + 0.0847362i
\(641\) 219.882 604.121i 0.343030 0.942466i −0.641481 0.767139i \(-0.721680\pi\)
0.984510 0.175327i \(-0.0560982\pi\)
\(642\) 190.101 + 405.164i 0.296107 + 0.631097i
\(643\) 499.083 + 418.781i 0.776179 + 0.651292i 0.942283 0.334816i \(-0.108674\pi\)
−0.166104 + 0.986108i \(0.553119\pi\)
\(644\) −275.852 757.898i −0.428342 1.17686i
\(645\) 221.814 + 820.048i 0.343898 + 1.27139i
\(646\) −39.9852 226.768i −0.0618966 0.351033i
\(647\) 736.107i 1.13772i −0.822433 0.568862i \(-0.807384\pi\)
0.822433 0.568862i \(-0.192616\pi\)
\(648\) −2.17027 229.092i −0.00334918 0.353538i
\(649\) −292.213 −0.450250
\(650\) 43.1036 7.60033i 0.0663132 0.0116928i
\(651\) −1175.41 + 317.935i −1.80554 + 0.488380i
\(652\) 433.710 157.858i 0.665199 0.242113i
\(653\) 102.032 121.597i 0.156251 0.186213i −0.682240 0.731129i \(-0.738994\pi\)
0.838491 + 0.544916i \(0.183438\pi\)
\(654\) 220.951 103.669i 0.337845 0.158515i
\(655\) 333.324 + 121.320i 0.508891 + 0.185221i
\(656\) −79.5630 + 45.9357i −0.121285 + 0.0700240i
\(657\) 398.687 + 227.671i 0.606830 + 0.346532i
\(658\) −639.966 + 1108.45i −0.972593 + 1.68458i
\(659\) −813.429 969.407i −1.23434 1.47103i −0.831281 0.555852i \(-0.812392\pi\)
−0.403057 0.915175i \(-0.632052\pi\)
\(660\) −111.732 + 78.6305i −0.169291 + 0.119137i
\(661\) −155.505 + 881.911i −0.235257 + 1.33421i 0.606816 + 0.794842i \(0.292447\pi\)
−0.842073 + 0.539364i \(0.818665\pi\)
\(662\) 617.486 + 108.879i 0.932758 + 0.164470i
\(663\) −32.8523 + 70.8898i −0.0495510 + 0.106923i
\(664\) 63.2419 53.0663i 0.0952439 0.0799191i
\(665\) −1797.32 1037.68i −2.70273 1.56042i
\(666\) 55.3679 + 305.537i 0.0831350 + 0.458765i
\(667\) −97.1964 168.349i −0.145722 0.252397i
\(668\) 109.675 301.330i 0.164185 0.451093i
\(669\) −1033.23 87.9305i −1.54444 0.131436i
\(670\) −418.388 351.069i −0.624460 0.523984i
\(671\) −111.058 305.129i −0.165511 0.454738i
\(672\) −130.743 + 131.364i −0.194559 + 0.195482i
\(673\) 198.279 + 1124.50i 0.294620 + 1.67087i 0.668742 + 0.743495i \(0.266833\pi\)
−0.374122 + 0.927380i \(0.622056\pi\)
\(674\) 218.862i 0.324721i
\(675\) −125.260 86.3886i −0.185571 0.127983i
\(676\) 277.683 0.410773
\(677\) −1228.42 + 216.603i −1.81450 + 0.319945i −0.974795 0.223101i \(-0.928382\pi\)
−0.839703 + 0.543046i \(0.817271\pi\)
\(678\) −130.068 + 490.059i −0.191840 + 0.722801i
\(679\) −487.297 + 177.362i −0.717668 + 0.261210i
\(680\) −47.7231 + 56.8742i −0.0701811 + 0.0836385i
\(681\) −453.967 316.271i −0.666618 0.464422i
\(682\) 203.190 + 73.9552i 0.297933 + 0.108439i
\(683\) −779.418 + 449.997i −1.14117 + 0.658854i −0.946720 0.322059i \(-0.895625\pi\)
−0.194449 + 0.980913i \(0.562292\pi\)
\(684\) −609.106 104.430i −0.890506 0.152675i
\(685\) −211.243 + 365.884i −0.308384 + 0.534137i
\(686\) −211.184 251.679i −0.307848 0.366879i
\(687\) −59.3459 660.312i −0.0863841 0.961152i
\(688\) 35.5359 201.534i 0.0516511 0.292928i
\(689\) −88.1149 15.5370i −0.127888 0.0225501i
\(690\) −863.631 + 77.6193i −1.25164 + 0.112492i
\(691\) −286.646 + 240.525i −0.414828 + 0.348082i −0.826192 0.563389i \(-0.809497\pi\)
0.411363 + 0.911471i \(0.365053\pi\)
\(692\) 549.735 + 317.390i 0.794415 + 0.458656i
\(693\) −310.995 258.456i −0.448767 0.372952i
\(694\) −148.788 257.709i −0.214392 0.371338i
\(695\) 201.567 553.800i 0.290024 0.796834i
\(696\) −25.5352 + 36.6525i −0.0366885 + 0.0526616i
\(697\) −83.4406 70.0150i −0.119714 0.100452i
\(698\) −208.528 572.925i −0.298750 0.820810i
\(699\) 1219.98 + 323.797i 1.74532 + 0.463229i
\(700\) 21.3752 + 121.225i 0.0305361 + 0.173179i
\(701\) 574.292i 0.819247i −0.912255 0.409624i \(-0.865660\pi\)
0.912255 0.409624i \(-0.134340\pi\)
\(702\) 149.325 + 147.218i 0.212714 + 0.209713i
\(703\) 837.596 1.19146
\(704\) 32.4124 5.71519i 0.0460404 0.00811816i
\(705\) 975.323 + 970.715i 1.38344 + 1.37690i
\(706\) −364.300 + 132.594i −0.516005 + 0.187811i
\(707\) 320.313 381.734i 0.453059 0.539935i
\(708\) −36.1374 + 424.632i −0.0510415 + 0.599763i
\(709\) −98.2153 35.7475i −0.138527 0.0504195i 0.271827 0.962346i \(-0.412372\pi\)
−0.410353 + 0.911927i \(0.634595\pi\)
\(710\) 515.895 297.852i 0.726613 0.419510i
\(711\) 184.729 + 218.045i 0.259815 + 0.306674i
\(712\) −113.146 + 195.975i −0.158914 + 0.275246i
\(713\) 882.114 + 1051.26i 1.23719 + 1.47442i
\(714\) −199.371 92.3941i −0.279231 0.129403i
\(715\) 21.7150 123.152i 0.0303706 0.172240i
\(716\) −87.6441 15.4540i −0.122408 0.0215838i
\(717\) −137.518 195.409i −0.191796 0.272537i
\(718\) −50.3091 + 42.2143i −0.0700683 + 0.0587943i
\(719\) 960.194 + 554.368i 1.33546 + 0.771027i 0.986130 0.165974i \(-0.0530766\pi\)
0.349328 + 0.937001i \(0.386410\pi\)
\(720\) 100.445 + 172.089i 0.139507 + 0.239012i
\(721\) 77.8320 + 134.809i 0.107950 + 0.186975i
\(722\) −395.539 + 1086.73i −0.547837 + 1.50517i
\(723\) −68.7013 146.424i −0.0950225 0.202523i
\(724\) 58.3075 + 48.9258i 0.0805353 + 0.0675771i
\(725\) 10.1472 + 27.8793i 0.0139962 + 0.0384542i
\(726\) −115.292 426.234i −0.158804 0.587099i
\(727\) −178.676 1013.32i −0.245772 1.39384i −0.818693 0.574232i \(-0.805301\pi\)
0.572921 0.819611i \(-0.305810\pi\)
\(728\) 169.637i 0.233017i
\(729\) −10.3584 728.926i −0.0142091 0.999899i
\(730\) −399.307 −0.546995
\(731\) 238.942 42.1319i 0.326870 0.0576359i
\(732\) −457.137 + 123.650i −0.624504 + 0.168921i
\(733\) 315.178 114.715i 0.429984 0.156501i −0.117956 0.993019i \(-0.537634\pi\)
0.547940 + 0.836517i \(0.315412\pi\)
\(734\) −582.081 + 693.697i −0.793026 + 0.945092i
\(735\) −1056.36 + 495.637i −1.43722 + 0.674337i
\(736\) 196.285 + 71.4418i 0.266691 + 0.0970677i
\(737\) −248.598 + 143.528i −0.337311 + 0.194747i
\(738\) −252.473 + 147.364i −0.342104 + 0.199680i
\(739\) 130.983 226.869i 0.177244 0.306995i −0.763692 0.645581i \(-0.776615\pi\)
0.940935 + 0.338586i \(0.109949\pi\)
\(740\) −173.594 206.881i −0.234586 0.279569i
\(741\) 462.574 325.533i 0.624256 0.439316i
\(742\) 43.6965 247.815i 0.0588902 0.333983i
\(743\) −477.341 84.1680i −0.642450 0.113281i −0.157074 0.987587i \(-0.550206\pi\)
−0.485376 + 0.874305i \(0.661317\pi\)
\(744\) 132.597 286.122i 0.178222 0.384573i
\(745\) 361.718 303.517i 0.485527 0.407406i
\(746\) −5.68555 3.28255i −0.00762138 0.00440021i
\(747\) 200.433 169.807i 0.268317 0.227319i
\(748\) 19.5107 + 33.7936i 0.0260838 + 0.0451785i
\(749\) 394.023 1082.57i 0.526065 1.44535i
\(750\) −453.092 38.5594i −0.604122 0.0514125i
\(751\) 668.630 + 561.047i 0.890320 + 0.747067i 0.968274 0.249890i \(-0.0803944\pi\)
−0.0779544 + 0.996957i \(0.524839\pi\)
\(752\) −113.374 311.493i −0.150764 0.414220i
\(753\) −438.045 + 440.124i −0.581733 + 0.584495i
\(754\) −7.09978 40.2649i −0.00941616 0.0534017i
\(755\) 307.075i 0.406722i
\(756\) −414.038 + 419.964i −0.547670 + 0.555508i
\(757\) 599.418 0.791834 0.395917 0.918286i \(-0.370427\pi\)
0.395917 + 0.918286i \(0.370427\pi\)
\(758\) 362.097 63.8474i 0.477700 0.0842314i
\(759\) −116.911 + 440.489i −0.154033 + 0.580355i
\(760\) 505.075 183.832i 0.664572 0.241884i
\(761\) −754.984 + 899.755i −0.992094 + 1.18233i −0.00886470 + 0.999961i \(0.502822\pi\)
−0.983230 + 0.182371i \(0.941623\pi\)
\(762\) −479.393 333.985i −0.629124 0.438301i
\(763\) −590.364 214.875i −0.773740 0.281618i
\(764\) 354.191 204.492i 0.463601 0.267660i
\(765\) −150.995 + 181.690i −0.197379 + 0.237503i
\(766\) −188.412 + 326.340i −0.245969 + 0.426031i