Properties

Label 54.3.f.a.41.5
Level $54$
Weight $3$
Character 54.41
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 41.5
Character \(\chi\) \(=\) 54.41
Dual form 54.3.f.a.29.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39273 - 0.245576i) q^{2} +(-0.101242 + 2.99829i) q^{3} +(1.87939 - 0.684040i) q^{4} +(0.379008 - 0.451684i) q^{5} +(0.595305 + 4.20067i) q^{6} +(2.96297 + 1.07843i) q^{7} +(2.44949 - 1.41421i) q^{8} +(-8.97950 - 0.607104i) q^{9} +O(q^{10})\) \(q+(1.39273 - 0.245576i) q^{2} +(-0.101242 + 2.99829i) q^{3} +(1.87939 - 0.684040i) q^{4} +(0.379008 - 0.451684i) q^{5} +(0.595305 + 4.20067i) q^{6} +(2.96297 + 1.07843i) q^{7} +(2.44949 - 1.41421i) q^{8} +(-8.97950 - 0.607104i) q^{9} +(0.416932 - 0.722148i) q^{10} +(-6.03341 - 7.19034i) q^{11} +(1.86068 + 5.70420i) q^{12} +(2.11998 - 12.0230i) q^{13} +(4.39145 + 0.774332i) q^{14} +(1.31591 + 1.18210i) q^{15} +(3.06418 - 2.57115i) q^{16} +(-24.5140 - 14.1532i) q^{17} +(-12.6551 + 1.35961i) q^{18} +(11.2011 + 19.4008i) q^{19} +(0.403332 - 1.10814i) q^{20} +(-3.53344 + 8.77467i) q^{21} +(-10.1687 - 8.53254i) q^{22} +(3.44380 + 9.46175i) q^{23} +(3.99223 + 7.48746i) q^{24} +(4.28083 + 24.2778i) q^{25} -17.2654i q^{26} +(2.72938 - 26.8617i) q^{27} +6.30626 q^{28} +(-23.6767 + 4.17484i) q^{29} +(2.12300 + 1.32320i) q^{30} +(42.7251 - 15.5506i) q^{31} +(3.63616 - 4.33340i) q^{32} +(22.1696 - 17.3620i) q^{33} +(-37.6170 - 13.6915i) q^{34} +(1.61010 - 0.929592i) q^{35} +(-17.2912 + 5.00136i) q^{36} +(-15.7500 + 27.2799i) q^{37} +(20.3644 + 24.2694i) q^{38} +(35.8339 + 7.57355i) q^{39} +(0.289598 - 1.64239i) q^{40} +(69.7771 + 12.3036i) q^{41} +(-2.76627 + 13.0885i) q^{42} +(-11.1607 + 9.36490i) q^{43} +(-16.2576 - 9.38633i) q^{44} +(-3.67752 + 3.82580i) q^{45} +(7.11985 + 12.3319i) q^{46} +(-18.9216 + 51.9868i) q^{47} +(7.39884 + 9.44761i) q^{48} +(-29.9200 - 25.1059i) q^{49} +(11.9241 + 32.7611i) q^{50} +(44.9172 - 72.0672i) q^{51} +(-4.23996 - 24.0460i) q^{52} +25.4089i q^{53} +(-2.79530 - 38.0813i) q^{54} -5.53447 q^{55} +(8.78291 - 1.54866i) q^{56} +(-59.3034 + 31.6199i) q^{57} +(-31.9499 + 11.6288i) q^{58} +(18.4282 - 21.9619i) q^{59} +(3.28171 + 1.32150i) q^{60} +(-106.265 - 38.6772i) q^{61} +(55.6855 - 32.1501i) q^{62} +(-25.9513 - 11.4826i) q^{63} +(4.00000 - 6.92820i) q^{64} +(-4.62711 - 5.51438i) q^{65} +(26.6125 - 29.6248i) q^{66} +(8.68700 - 49.2664i) q^{67} +(-55.7526 - 9.83069i) q^{68} +(-28.7178 + 9.36758i) q^{69} +(2.01415 - 1.69007i) q^{70} +(-7.59817 - 4.38680i) q^{71} +(-22.8538 + 11.2118i) q^{72} +(-11.7358 - 20.3271i) q^{73} +(-15.2363 + 41.8613i) q^{74} +(-73.2253 + 10.3773i) q^{75} +(34.3221 + 28.7997i) q^{76} +(-10.1225 - 27.8114i) q^{77} +(51.7667 + 1.74798i) q^{78} +(23.0535 + 130.743i) q^{79} -2.35853i q^{80} +(80.2628 + 10.9030i) q^{81} +100.202 q^{82} +(-66.1377 + 11.6619i) q^{83} +(-0.638457 + 18.9080i) q^{84} +(-15.6838 + 5.70842i) q^{85} +(-13.2440 + 15.7835i) q^{86} +(-10.1203 - 71.4122i) q^{87} +(-24.9475 - 9.08013i) q^{88} +(62.9935 - 36.3693i) q^{89} +(-4.18226 + 6.23141i) q^{90} +(19.2475 - 33.3376i) q^{91} +(12.9444 + 15.4266i) q^{92} +(42.2998 + 129.677i) q^{93} +(-13.5860 + 77.0502i) q^{94} +(13.0083 + 2.29372i) q^{95} +(12.6247 + 11.3410i) q^{96} +(120.419 - 101.043i) q^{97} +(-47.8358 - 27.6180i) q^{98} +(49.8117 + 68.2286i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39273 0.245576i 0.696364 0.122788i
\(3\) −0.101242 + 2.99829i −0.0337472 + 0.999430i
\(4\) 1.87939 0.684040i 0.469846 0.171010i
\(5\) 0.379008 0.451684i 0.0758015 0.0903368i −0.726811 0.686838i \(-0.758998\pi\)
0.802612 + 0.596501i \(0.203443\pi\)
\(6\) 0.595305 + 4.20067i 0.0992175 + 0.700111i
\(7\) 2.96297 + 1.07843i 0.423282 + 0.154062i 0.544874 0.838518i \(-0.316578\pi\)
−0.121592 + 0.992580i \(0.538800\pi\)
\(8\) 2.44949 1.41421i 0.306186 0.176777i
\(9\) −8.97950 0.607104i −0.997722 0.0674561i
\(10\) 0.416932 0.722148i 0.0416932 0.0722148i
\(11\) −6.03341 7.19034i −0.548492 0.653667i 0.418577 0.908181i \(-0.362529\pi\)
−0.967069 + 0.254514i \(0.918085\pi\)
\(12\) 1.86068 + 5.70420i 0.155057 + 0.475350i
\(13\) 2.11998 12.0230i 0.163076 0.924847i −0.787951 0.615738i \(-0.788858\pi\)
0.951027 0.309109i \(-0.100031\pi\)
\(14\) 4.39145 + 0.774332i 0.313675 + 0.0553094i
\(15\) 1.31591 + 1.18210i 0.0877272 + 0.0788070i
\(16\) 3.06418 2.57115i 0.191511 0.160697i
\(17\) −24.5140 14.1532i −1.44200 0.832539i −0.444017 0.896018i \(-0.646447\pi\)
−0.997983 + 0.0634789i \(0.979780\pi\)
\(18\) −12.6551 + 1.35961i −0.703061 + 0.0755341i
\(19\) 11.2011 + 19.4008i 0.589530 + 1.02110i 0.994294 + 0.106675i \(0.0340205\pi\)
−0.404764 + 0.914421i \(0.632646\pi\)
\(20\) 0.403332 1.10814i 0.0201666 0.0554072i
\(21\) −3.53344 + 8.77467i −0.168259 + 0.417842i
\(22\) −10.1687 8.53254i −0.462213 0.387843i
\(23\) 3.44380 + 9.46175i 0.149730 + 0.411381i 0.991770 0.128036i \(-0.0408672\pi\)
−0.842039 + 0.539416i \(0.818645\pi\)
\(24\) 3.99223 + 7.48746i 0.166343 + 0.311978i
\(25\) 4.28083 + 24.2778i 0.171233 + 0.971112i
\(26\) 17.2654i 0.664054i
\(27\) 2.72938 26.8617i 0.101088 0.994877i
\(28\) 6.30626 0.225224
\(29\) −23.6767 + 4.17484i −0.816437 + 0.143960i −0.566246 0.824237i \(-0.691605\pi\)
−0.250191 + 0.968196i \(0.580494\pi\)
\(30\) 2.12300 + 1.32320i 0.0707666 + 0.0441065i
\(31\) 42.7251 15.5506i 1.37823 0.501634i 0.456587 0.889679i \(-0.349072\pi\)
0.921640 + 0.388045i \(0.126849\pi\)
\(32\) 3.63616 4.33340i 0.113630 0.135419i
\(33\) 22.1696 17.3620i 0.671805 0.526120i
\(34\) −37.6170 13.6915i −1.10638 0.402691i
\(35\) 1.61010 0.929592i 0.0460029 0.0265598i
\(36\) −17.2912 + 5.00136i −0.480312 + 0.138927i
\(37\) −15.7500 + 27.2799i −0.425677 + 0.737293i −0.996483 0.0837909i \(-0.973297\pi\)
0.570807 + 0.821084i \(0.306631\pi\)
\(38\) 20.3644 + 24.2694i 0.535906 + 0.638668i
\(39\) 35.8339 + 7.57355i 0.918817 + 0.194194i
\(40\) 0.289598 1.64239i 0.00723995 0.0410598i
\(41\) 69.7771 + 12.3036i 1.70188 + 0.300087i 0.938351 0.345685i \(-0.112354\pi\)
0.763530 + 0.645773i \(0.223465\pi\)
\(42\) −2.76627 + 13.0885i −0.0658636 + 0.311630i
\(43\) −11.1607 + 9.36490i −0.259550 + 0.217788i −0.763272 0.646078i \(-0.776408\pi\)
0.503722 + 0.863866i \(0.331964\pi\)
\(44\) −16.2576 9.38633i −0.369491 0.213326i
\(45\) −3.67752 + 3.82580i −0.0817226 + 0.0850177i
\(46\) 7.11985 + 12.3319i 0.154779 + 0.268086i
\(47\) −18.9216 + 51.9868i −0.402588 + 1.10610i 0.558414 + 0.829562i \(0.311410\pi\)
−0.961002 + 0.276540i \(0.910812\pi\)
\(48\) 7.39884 + 9.44761i 0.154142 + 0.196825i
\(49\) −29.9200 25.1059i −0.610612 0.512364i
\(50\) 11.9241 + 32.7611i 0.238482 + 0.655223i
\(51\) 44.9172 72.0672i 0.880729 1.41308i
\(52\) −4.23996 24.0460i −0.0815378 0.462424i
\(53\) 25.4089i 0.479412i 0.970845 + 0.239706i \(0.0770511\pi\)
−0.970845 + 0.239706i \(0.922949\pi\)
\(54\) −2.79530 38.0813i −0.0517647 0.705209i
\(55\) −5.53447 −0.100627
\(56\) 8.78291 1.54866i 0.156838 0.0276547i
\(57\) −59.3034 + 31.6199i −1.04041 + 0.554735i
\(58\) −31.9499 + 11.6288i −0.550861 + 0.200497i
\(59\) 18.4282 21.9619i 0.312343 0.372236i −0.586919 0.809645i \(-0.699659\pi\)
0.899263 + 0.437409i \(0.144104\pi\)
\(60\) 3.28171 + 1.32150i 0.0546951 + 0.0220249i
\(61\) −106.265 38.6772i −1.74205 0.634053i −0.742680 0.669646i \(-0.766446\pi\)
−0.999366 + 0.0355933i \(0.988668\pi\)
\(62\) 55.6855 32.1501i 0.898154 0.518549i
\(63\) −25.9513 11.4826i −0.411925 0.182264i
\(64\) 4.00000 6.92820i 0.0625000 0.108253i
\(65\) −4.62711 5.51438i −0.0711863 0.0848365i
\(66\) 26.6125 29.6248i 0.403220 0.448861i
\(67\) 8.68700 49.2664i 0.129657 0.735320i −0.848776 0.528753i \(-0.822660\pi\)
0.978432 0.206567i \(-0.0662291\pi\)
\(68\) −55.7526 9.83069i −0.819891 0.144569i
\(69\) −28.7178 + 9.36758i −0.416199 + 0.135762i
\(70\) 2.01415 1.69007i 0.0287735 0.0241439i
\(71\) −7.59817 4.38680i −0.107016 0.0617860i 0.445536 0.895264i \(-0.353013\pi\)
−0.552553 + 0.833478i \(0.686346\pi\)
\(72\) −22.8538 + 11.2118i −0.317413 + 0.155720i
\(73\) −11.7358 20.3271i −0.160765 0.278453i 0.774378 0.632723i \(-0.218063\pi\)
−0.935143 + 0.354270i \(0.884729\pi\)
\(74\) −15.2363 + 41.8613i −0.205895 + 0.565693i
\(75\) −73.2253 + 10.3773i −0.976338 + 0.138363i
\(76\) 34.3221 + 28.7997i 0.451606 + 0.378943i
\(77\) −10.1225 27.8114i −0.131461 0.361187i
\(78\) 51.7667 + 1.74798i 0.663676 + 0.0224100i
\(79\) 23.0535 + 130.743i 0.291816 + 1.65497i 0.679869 + 0.733334i \(0.262037\pi\)
−0.388053 + 0.921637i \(0.626852\pi\)
\(80\) 2.35853i 0.0294816i
\(81\) 80.2628 + 10.9030i 0.990899 + 0.134605i
\(82\) 100.202 1.22198
\(83\) −66.1377 + 11.6619i −0.796839 + 0.140504i −0.557223 0.830363i \(-0.688133\pi\)
−0.239617 + 0.970868i \(0.577022\pi\)
\(84\) −0.638457 + 18.9080i −0.00760068 + 0.225095i
\(85\) −15.6838 + 5.70842i −0.184515 + 0.0671579i
\(86\) −13.2440 + 15.7835i −0.154000 + 0.183530i
\(87\) −10.1203 71.4122i −0.116325 0.820830i
\(88\) −24.9475 9.08013i −0.283494 0.103183i
\(89\) 62.9935 36.3693i 0.707792 0.408644i −0.102451 0.994738i \(-0.532668\pi\)
0.810243 + 0.586094i \(0.199335\pi\)
\(90\) −4.18226 + 6.23141i −0.0464696 + 0.0692378i
\(91\) 19.2475 33.3376i 0.211511 0.366347i
\(92\) 12.9444 + 15.4266i 0.140700 + 0.167680i
\(93\) 42.2998 + 129.677i 0.454837 + 1.39437i
\(94\) −13.5860 + 77.0502i −0.144532 + 0.819683i
\(95\) 13.0083 + 2.29372i 0.136930 + 0.0241444i
\(96\) 12.6247 + 11.3410i 0.131507 + 0.118135i
\(97\) 120.419 101.043i 1.24143 1.04168i 0.244021 0.969770i \(-0.421534\pi\)
0.997411 0.0719147i \(-0.0229109\pi\)
\(98\) −47.8358 27.6180i −0.488120 0.281816i
\(99\) 49.8117 + 68.2286i 0.503149 + 0.689178i
\(100\) 24.6523 + 42.6991i 0.246523 + 0.426991i
\(101\) 42.9450 117.991i 0.425198 1.16822i −0.523496 0.852028i \(-0.675372\pi\)
0.948694 0.316195i \(-0.102405\pi\)
\(102\) 44.8595 111.401i 0.439799 1.09216i
\(103\) 72.1665 + 60.5548i 0.700645 + 0.587911i 0.921957 0.387292i \(-0.126589\pi\)
−0.221312 + 0.975203i \(0.571034\pi\)
\(104\) −11.8102 32.4484i −0.113560 0.312003i
\(105\) 2.62418 + 4.92166i 0.0249922 + 0.0468730i
\(106\) 6.23979 + 35.3876i 0.0588660 + 0.333846i
\(107\) 107.896i 1.00838i 0.863594 + 0.504188i \(0.168208\pi\)
−0.863594 + 0.504188i \(0.831792\pi\)
\(108\) −13.2449 52.3505i −0.122638 0.484727i
\(109\) −42.9667 −0.394190 −0.197095 0.980384i \(-0.563151\pi\)
−0.197095 + 0.980384i \(0.563151\pi\)
\(110\) −7.70802 + 1.35913i −0.0700729 + 0.0123557i
\(111\) −80.1984 49.9850i −0.722508 0.450316i
\(112\) 11.8519 4.31374i 0.105820 0.0385155i
\(113\) 6.89768 8.22034i 0.0610414 0.0727463i −0.734660 0.678436i \(-0.762658\pi\)
0.795701 + 0.605689i \(0.207103\pi\)
\(114\) −74.8284 + 58.6014i −0.656390 + 0.514048i
\(115\) 5.57895 + 2.03057i 0.0485126 + 0.0176571i
\(116\) −41.6418 + 24.0419i −0.358981 + 0.207258i
\(117\) −26.3356 + 106.674i −0.225091 + 0.911740i
\(118\) 20.2722 35.1125i 0.171799 0.297564i
\(119\) −57.3711 68.3722i −0.482110 0.574556i
\(120\) 4.89505 + 1.03458i 0.0407921 + 0.00862148i
\(121\) 5.71249 32.3971i 0.0472106 0.267745i
\(122\) −157.496 27.7708i −1.29095 0.227630i
\(123\) −43.9541 + 207.966i −0.357350 + 1.69078i
\(124\) 69.6596 58.4513i 0.561771 0.471382i
\(125\) 25.3543 + 14.6383i 0.202834 + 0.117106i
\(126\) −38.9630 9.61918i −0.309230 0.0763427i
\(127\) −49.1507 85.1315i −0.387013 0.670327i 0.605033 0.796200i \(-0.293160\pi\)
−0.992046 + 0.125874i \(0.959827\pi\)
\(128\) 3.86952 10.6314i 0.0302306 0.0830579i
\(129\) −26.9488 34.4110i −0.208905 0.266752i
\(130\) −7.79850 6.54372i −0.0599885 0.0503363i
\(131\) −46.8665 128.765i −0.357760 0.982937i −0.979805 0.199956i \(-0.935920\pi\)
0.622045 0.782981i \(-0.286302\pi\)
\(132\) 29.7889 47.7947i 0.225673 0.362081i
\(133\) 12.2660 + 69.5638i 0.0922253 + 0.523036i
\(134\) 70.7481i 0.527971i
\(135\) −11.0985 11.4136i −0.0822114 0.0845452i
\(136\) −80.0624 −0.588694
\(137\) 197.146 34.7622i 1.43902 0.253739i 0.600947 0.799289i \(-0.294790\pi\)
0.838078 + 0.545550i \(0.183679\pi\)
\(138\) −37.6956 + 20.0989i −0.273156 + 0.145644i
\(139\) −6.69802 + 2.43788i −0.0481872 + 0.0175387i −0.366001 0.930614i \(-0.619273\pi\)
0.317814 + 0.948153i \(0.397051\pi\)
\(140\) 2.39012 2.84844i 0.0170723 0.0203460i
\(141\) −153.956 61.9958i −1.09189 0.439687i
\(142\) −11.6595 4.24370i −0.0821090 0.0298852i
\(143\) −99.2403 + 57.2964i −0.693988 + 0.400674i
\(144\) −29.0757 + 21.2274i −0.201915 + 0.147412i
\(145\) −7.08794 + 12.2767i −0.0488823 + 0.0846666i
\(146\) −21.3367 25.4281i −0.146142 0.174165i
\(147\) 78.3038 87.1671i 0.532679 0.592973i
\(148\) −10.9399 + 62.0430i −0.0739180 + 0.419210i
\(149\) 92.3284 + 16.2800i 0.619654 + 0.109262i 0.474658 0.880171i \(-0.342572\pi\)
0.144996 + 0.989432i \(0.453683\pi\)
\(150\) −99.4346 + 32.4351i −0.662897 + 0.216234i
\(151\) 154.567 129.697i 1.02362 0.858921i 0.0335439 0.999437i \(-0.489321\pi\)
0.990078 + 0.140516i \(0.0448762\pi\)
\(152\) 54.8738 + 31.6814i 0.361012 + 0.208430i
\(153\) 211.531 + 141.971i 1.38256 + 0.927915i
\(154\) −20.9277 36.2479i −0.135894 0.235376i
\(155\) 9.16915 25.1920i 0.0591558 0.162529i
\(156\) 72.5263 10.2782i 0.464912 0.0658858i
\(157\) −56.2262 47.1794i −0.358128 0.300505i 0.445916 0.895075i \(-0.352878\pi\)
−0.804044 + 0.594569i \(0.797323\pi\)
\(158\) 64.2144 + 176.428i 0.406420 + 1.11663i
\(159\) −76.1831 2.57244i −0.479139 0.0161788i
\(160\) −0.579196 3.28479i −0.00361998 0.0205299i
\(161\) 31.7488i 0.197198i
\(162\) 114.462 4.52569i 0.706555 0.0279364i
\(163\) −217.128 −1.33208 −0.666038 0.745918i \(-0.732011\pi\)
−0.666038 + 0.745918i \(0.732011\pi\)
\(164\) 139.554 24.6072i 0.850940 0.150044i
\(165\) 0.560319 16.5940i 0.00339588 0.100569i
\(166\) −89.2480 + 32.4836i −0.537638 + 0.195684i
\(167\) −138.533 + 165.098i −0.829541 + 0.988609i 0.170454 + 0.985366i \(0.445477\pi\)
−0.999995 + 0.00324290i \(0.998968\pi\)
\(168\) 3.75415 + 26.4905i 0.0223461 + 0.157682i
\(169\) 18.7495 + 6.82427i 0.110944 + 0.0403803i
\(170\) −20.4414 + 11.8018i −0.120243 + 0.0694225i
\(171\) −88.8017 181.010i −0.519308 1.05854i
\(172\) −14.5692 + 25.2346i −0.0847046 + 0.146713i
\(173\) 40.5261 + 48.2971i 0.234255 + 0.279174i 0.870347 0.492439i \(-0.163895\pi\)
−0.636092 + 0.771613i \(0.719450\pi\)
\(174\) −31.6319 96.9725i −0.181793 0.557313i
\(175\) −13.4980 + 76.5511i −0.0771316 + 0.437435i
\(176\) −36.9749 6.51967i −0.210085 0.0370436i
\(177\) 63.9825 + 57.4767i 0.361483 + 0.324727i
\(178\) 78.8015 66.1223i 0.442705 0.371473i
\(179\) 172.225 + 99.4340i 0.962150 + 0.555497i 0.896834 0.442367i \(-0.145861\pi\)
0.0653157 + 0.997865i \(0.479195\pi\)
\(180\) −4.29448 + 9.70572i −0.0238582 + 0.0539207i
\(181\) −35.6490 61.7458i −0.196956 0.341137i 0.750584 0.660775i \(-0.229772\pi\)
−0.947540 + 0.319638i \(0.896439\pi\)
\(182\) 18.6196 51.1569i 0.102306 0.281082i
\(183\) 126.724 314.697i 0.692481 1.71966i
\(184\) 21.8165 + 18.3062i 0.118568 + 0.0994902i
\(185\) 6.35249 + 17.4533i 0.0343378 + 0.0943422i
\(186\) 90.7575 + 170.216i 0.487944 + 0.915142i
\(187\) 46.1370 + 261.656i 0.246722 + 1.39923i
\(188\) 110.646i 0.588545i
\(189\) 37.0556 76.6470i 0.196062 0.405540i
\(190\) 18.6804 0.0983177
\(191\) −98.1741 + 17.3107i −0.514000 + 0.0906322i −0.424631 0.905366i \(-0.639596\pi\)
−0.0893693 + 0.995999i \(0.528485\pi\)
\(192\) 20.3678 + 12.6946i 0.106082 + 0.0661176i
\(193\) −178.750 + 65.0595i −0.926164 + 0.337096i −0.760688 0.649118i \(-0.775138\pi\)
−0.165476 + 0.986214i \(0.552916\pi\)
\(194\) 142.897 170.298i 0.736582 0.877825i
\(195\) 17.0022 13.3151i 0.0871906 0.0682828i
\(196\) −73.4046 26.7171i −0.374513 0.136312i
\(197\) −159.929 + 92.3348i −0.811820 + 0.468705i −0.847588 0.530656i \(-0.821946\pi\)
0.0357675 + 0.999360i \(0.488612\pi\)
\(198\) 86.1295 + 82.7914i 0.434998 + 0.418138i
\(199\) −31.0944 + 53.8571i −0.156253 + 0.270639i −0.933515 0.358539i \(-0.883275\pi\)
0.777261 + 0.629178i \(0.216608\pi\)
\(200\) 44.8199 + 53.4142i 0.224099 + 0.267071i
\(201\) 146.836 + 31.0340i 0.730525 + 0.154398i
\(202\) 30.8352 174.875i 0.152649 0.865718i
\(203\) −74.6556 13.1638i −0.367762 0.0648463i
\(204\) 35.1198 166.167i 0.172156 0.814545i
\(205\) 32.0034 26.8540i 0.156114 0.130995i
\(206\) 115.379 + 66.6141i 0.560093 + 0.323370i
\(207\) −25.1793 87.0526i −0.121639 0.420544i
\(208\) −24.4170 42.2914i −0.117389 0.203324i
\(209\) 71.9179 197.593i 0.344105 0.945420i
\(210\) 4.86341 + 6.21011i 0.0231591 + 0.0295719i
\(211\) 5.60018 + 4.69911i 0.0265411 + 0.0222706i 0.655962 0.754794i \(-0.272263\pi\)
−0.629421 + 0.777065i \(0.716708\pi\)
\(212\) 17.3807 + 47.7530i 0.0819843 + 0.225250i
\(213\) 13.9222 22.3374i 0.0653623 0.104870i
\(214\) 26.4967 + 150.270i 0.123816 + 0.702197i
\(215\) 8.59045i 0.0399556i
\(216\) −31.3026 69.6574i −0.144919 0.322488i
\(217\) 143.364 0.660661
\(218\) −59.8410 + 10.5516i −0.274500 + 0.0484017i
\(219\) 62.1346 33.1295i 0.283720 0.151276i
\(220\) −10.4014 + 3.78580i −0.0472791 + 0.0172082i
\(221\) −222.133 + 264.728i −1.00513 + 1.19786i
\(222\) −123.970 49.9208i −0.558422 0.224869i
\(223\) −80.8775 29.4370i −0.362679 0.132004i 0.154252 0.988032i \(-0.450703\pi\)
−0.516931 + 0.856027i \(0.672926\pi\)
\(224\) 15.4471 8.91840i 0.0689604 0.0398143i
\(225\) −23.7006 220.602i −0.105336 0.980451i
\(226\) 7.58788 13.1426i 0.0335747 0.0581531i
\(227\) 42.0709 + 50.1382i 0.185335 + 0.220873i 0.850709 0.525636i \(-0.176173\pi\)
−0.665375 + 0.746509i \(0.731728\pi\)
\(228\) −89.8246 + 99.9919i −0.393967 + 0.438561i
\(229\) −57.3799 + 325.418i −0.250567 + 1.42104i 0.556632 + 0.830759i \(0.312093\pi\)
−0.807199 + 0.590279i \(0.799018\pi\)
\(230\) 8.26862 + 1.45798i 0.0359505 + 0.00633904i
\(231\) 84.4116 27.5346i 0.365418 0.119197i
\(232\) −52.0917 + 43.7101i −0.224533 + 0.188406i
\(233\) −123.820 71.4877i −0.531418 0.306814i 0.210176 0.977664i \(-0.432596\pi\)
−0.741594 + 0.670849i \(0.765930\pi\)
\(234\) −10.4819 + 155.035i −0.0447945 + 0.662542i
\(235\) 16.3101 + 28.2500i 0.0694049 + 0.120213i
\(236\) 19.6109 53.8806i 0.0830971 0.228308i
\(237\) −394.339 + 55.8844i −1.66388 + 0.235799i
\(238\) −96.6929 81.1350i −0.406273 0.340903i
\(239\) −103.746 285.040i −0.434084 1.19264i −0.943284 0.331988i \(-0.892281\pi\)
0.509200 0.860649i \(-0.329942\pi\)
\(240\) 7.07154 + 0.238781i 0.0294648 + 0.000994922i
\(241\) −54.3108 308.012i −0.225356 1.27806i −0.862003 0.506903i \(-0.830790\pi\)
0.636647 0.771155i \(-0.280321\pi\)
\(242\) 46.5232i 0.192245i
\(243\) −40.8163 + 239.548i −0.167968 + 0.985792i
\(244\) −226.169 −0.926924
\(245\) −22.6798 + 3.99906i −0.0925707 + 0.0163227i
\(246\) −10.1446 + 300.435i −0.0412383 + 1.22128i
\(247\) 257.003 93.5413i 1.04050 0.378710i
\(248\) 82.6626 98.5135i 0.333317 0.397232i
\(249\) −28.2697 199.481i −0.113533 0.801127i
\(250\) 38.9064 + 14.1608i 0.155626 + 0.0566431i
\(251\) 116.446 67.2298i 0.463926 0.267848i −0.249767 0.968306i \(-0.580354\pi\)
0.713694 + 0.700458i \(0.247021\pi\)
\(252\) −56.6271 3.82856i −0.224711 0.0151927i
\(253\) 47.2554 81.8488i 0.186780 0.323513i
\(254\) −89.3598 106.495i −0.351810 0.419271i
\(255\) −15.5277 47.6024i −0.0608928 0.186676i
\(256\) 2.77837 15.7569i 0.0108530 0.0615505i
\(257\) 46.8542 + 8.26166i 0.182312 + 0.0321465i 0.264059 0.964507i \(-0.414939\pi\)
−0.0817466 + 0.996653i \(0.526050\pi\)
\(258\) −45.9828 41.3072i −0.178228 0.160106i
\(259\) −76.0865 + 63.8441i −0.293770 + 0.246502i
\(260\) −12.4682 7.19851i −0.0479545 0.0276866i
\(261\) 215.139 23.1137i 0.824288 0.0885584i
\(262\) −96.8939 167.825i −0.369824 0.640554i
\(263\) −162.251 + 445.781i −0.616924 + 1.69498i 0.0974685 + 0.995239i \(0.468925\pi\)
−0.714392 + 0.699745i \(0.753297\pi\)
\(264\) 29.7506 73.8805i 0.112692 0.279850i
\(265\) 11.4768 + 9.63015i 0.0433085 + 0.0363402i
\(266\) 34.1663 + 93.8712i 0.128445 + 0.352899i
\(267\) 102.668 + 192.555i 0.384525 + 0.721180i
\(268\) −17.3740 98.5329i −0.0648284 0.367660i
\(269\) 455.081i 1.69175i −0.533380 0.845876i \(-0.679078\pi\)
0.533380 0.845876i \(-0.320922\pi\)
\(270\) −18.2601 13.1705i −0.0676302 0.0487797i
\(271\) 440.939 1.62708 0.813541 0.581508i \(-0.197537\pi\)
0.813541 + 0.581508i \(0.197537\pi\)
\(272\) −111.505 + 19.6614i −0.409946 + 0.0722845i
\(273\) 98.0072 + 61.0847i 0.359001 + 0.223753i
\(274\) 266.035 96.8287i 0.970929 0.353389i
\(275\) 148.738 177.259i 0.540864 0.644577i
\(276\) −47.5639 + 37.2494i −0.172333 + 0.134962i
\(277\) −70.8393 25.7834i −0.255738 0.0930808i 0.210970 0.977493i \(-0.432338\pi\)
−0.466708 + 0.884412i \(0.654560\pi\)
\(278\) −8.72984 + 5.04017i −0.0314023 + 0.0181301i
\(279\) −393.091 + 113.698i −1.40893 + 0.407521i
\(280\) 2.62928 4.55405i 0.00939030 0.0162645i
\(281\) 4.98848 + 5.94504i 0.0177526 + 0.0211567i 0.774848 0.632148i \(-0.217827\pi\)
−0.757095 + 0.653305i \(0.773382\pi\)
\(282\) −229.643 48.5356i −0.814339 0.172112i
\(283\) 28.3852 160.981i 0.100301 0.568836i −0.892692 0.450667i \(-0.851186\pi\)
0.992993 0.118169i \(-0.0377026\pi\)
\(284\) −17.2806 3.04704i −0.0608473 0.0107290i
\(285\) −8.19423 + 38.7706i −0.0287517 + 0.136037i
\(286\) −124.144 + 104.169i −0.434071 + 0.364229i
\(287\) 193.479 + 111.705i 0.674143 + 0.389217i
\(288\) −35.2817 + 36.7043i −0.122506 + 0.127445i
\(289\) 256.124 + 443.620i 0.886244 + 1.53502i
\(290\) −6.85672 + 18.8387i −0.0236439 + 0.0649610i
\(291\) 290.766 + 371.281i 0.999196 + 1.27588i
\(292\) −35.9607 30.1746i −0.123153 0.103338i
\(293\) 18.4986 + 50.8246i 0.0631353 + 0.173463i 0.967249 0.253829i \(-0.0816900\pi\)
−0.904114 + 0.427292i \(0.859468\pi\)
\(294\) 87.6498 140.630i 0.298129 0.478332i
\(295\) −2.93540 16.6475i −0.00995051 0.0564321i
\(296\) 89.0956i 0.300999i
\(297\) −209.612 + 142.443i −0.705765 + 0.479605i
\(298\) 132.586 0.444921
\(299\) 121.060 21.3461i 0.404882 0.0713915i
\(300\) −130.520 + 69.5919i −0.435067 + 0.231973i
\(301\) −43.1681 + 15.7119i −0.143416 + 0.0521991i
\(302\) 183.419 218.591i 0.607349 0.723810i
\(303\) 349.422 + 140.707i 1.15321 + 0.464381i
\(304\) 84.2046 + 30.6480i 0.276989 + 0.100816i
\(305\) −57.7451 + 33.3391i −0.189328 + 0.109309i
\(306\) 329.470 + 145.780i 1.07670 + 0.476406i
\(307\) 73.1993 126.785i 0.238434 0.412980i −0.721831 0.692069i \(-0.756699\pi\)
0.960265 + 0.279089i \(0.0900325\pi\)
\(308\) −38.0483 45.3442i −0.123533 0.147221i
\(309\) −188.867 + 210.245i −0.611221 + 0.680406i
\(310\) 6.58359 37.3374i 0.0212374 0.120443i
\(311\) 272.335 + 48.0200i 0.875676 + 0.154405i 0.593380 0.804922i \(-0.297793\pi\)
0.282295 + 0.959328i \(0.408904\pi\)
\(312\) 98.4853 32.1254i 0.315658 0.102966i
\(313\) −22.9780 + 19.2809i −0.0734123 + 0.0616002i −0.678755 0.734364i \(-0.737480\pi\)
0.605343 + 0.795965i \(0.293036\pi\)
\(314\) −89.8939 51.9003i −0.286286 0.165287i
\(315\) −15.0223 + 7.36977i −0.0476897 + 0.0233961i
\(316\) 132.760 + 229.946i 0.420125 + 0.727678i
\(317\) −91.5339 + 251.487i −0.288750 + 0.793335i 0.707492 + 0.706722i \(0.249827\pi\)
−0.996242 + 0.0866133i \(0.972396\pi\)
\(318\) −106.734 + 15.1260i −0.335642 + 0.0475661i
\(319\) 172.870 + 145.055i 0.541911 + 0.454717i
\(320\) −1.61333 4.43258i −0.00504164 0.0138518i
\(321\) −323.504 10.9236i −1.00780 0.0340299i
\(322\) 7.79674 + 44.2175i 0.0242135 + 0.137321i
\(323\) 634.123i 1.96323i
\(324\) 158.303 34.4121i 0.488589 0.106210i
\(325\) 300.968 0.926055
\(326\) −302.401 + 53.3214i −0.927610 + 0.163563i
\(327\) 4.35002 128.827i 0.0133028 0.393965i
\(328\) 188.318 68.5422i 0.574141 0.208970i
\(329\) −112.129 + 133.630i −0.340817 + 0.406169i
\(330\) −3.29470 23.2485i −0.00998393 0.0704499i
\(331\) −358.351 130.429i −1.08263 0.394045i −0.261744 0.965137i \(-0.584298\pi\)
−0.820886 + 0.571092i \(0.806520\pi\)
\(332\) −116.321 + 67.1580i −0.350364 + 0.202283i
\(333\) 157.989 235.398i 0.474442 0.706900i
\(334\) −152.395 + 263.957i −0.456274 + 0.790289i
\(335\) −18.9604 22.5961i −0.0565982 0.0674511i
\(336\) 11.7339 + 35.9722i 0.0349224 + 0.107060i
\(337\) 20.7953 117.936i 0.0617071 0.349958i −0.938285 0.345864i \(-0.887586\pi\)
0.999992 0.00409401i \(-0.00130317\pi\)
\(338\) 27.7889 + 4.89993i 0.0822156 + 0.0144968i
\(339\) 23.9486 + 21.5135i 0.0706449 + 0.0634616i
\(340\) −25.5710 + 21.4566i −0.0752089 + 0.0631078i
\(341\) −369.592 213.384i −1.08385 0.625760i
\(342\) −168.128 230.290i −0.491603 0.673363i
\(343\) −138.829 240.459i −0.404749 0.701045i
\(344\) −14.0939 + 38.7228i −0.0409707 + 0.112566i
\(345\) −6.65306 + 16.5217i −0.0192842 + 0.0478891i
\(346\) 68.3024 + 57.3125i 0.197406 + 0.165643i
\(347\) −85.0851 233.769i −0.245202 0.673687i −0.999846 0.0175526i \(-0.994413\pi\)
0.754644 0.656135i \(-0.227810\pi\)
\(348\) −67.8688 127.288i −0.195025 0.365771i
\(349\) −55.5583 315.087i −0.159193 0.902827i −0.954852 0.297082i \(-0.903986\pi\)
0.795659 0.605745i \(-0.207125\pi\)
\(350\) 109.930i 0.314085i
\(351\) −317.172 89.7616i −0.903625 0.255731i
\(352\) −53.0971 −0.150844
\(353\) −326.236 + 57.5243i −0.924182 + 0.162958i −0.615437 0.788186i \(-0.711020\pi\)
−0.308746 + 0.951145i \(0.599909\pi\)
\(354\) 103.225 + 64.3369i 0.291597 + 0.181743i
\(355\) −4.86121 + 1.76934i −0.0136936 + 0.00498405i
\(356\) 93.5110 111.442i 0.262671 0.313040i
\(357\) 210.808 165.093i 0.590499 0.462446i
\(358\) 264.281 + 96.1904i 0.738215 + 0.268688i
\(359\) 277.930 160.463i 0.774178 0.446972i −0.0601853 0.998187i \(-0.519169\pi\)
0.834363 + 0.551216i \(0.185836\pi\)
\(360\) −3.59755 + 14.5720i −0.00999319 + 0.0404779i
\(361\) −70.4283 + 121.985i −0.195092 + 0.337910i
\(362\) −64.8126 77.2407i −0.179040 0.213372i
\(363\) 96.5577 + 20.4076i 0.265999 + 0.0562194i
\(364\) 13.3692 75.8202i 0.0367284 0.208297i
\(365\) −13.6294 2.40323i −0.0373408 0.00658419i
\(366\) 99.2103 469.408i 0.271066 1.28254i
\(367\) −558.217 + 468.400i −1.52103 + 1.27629i −0.683410 + 0.730035i \(0.739504\pi\)
−0.837617 + 0.546258i \(0.816052\pi\)
\(368\) 34.8800 + 20.1380i 0.0947826 + 0.0547228i
\(369\) −619.094 152.842i −1.67776 0.414206i
\(370\) 13.1334 + 22.7477i 0.0354957 + 0.0614803i
\(371\) −27.4018 + 75.2857i −0.0738592 + 0.202927i
\(372\) 168.202 + 214.777i 0.452155 + 0.577359i
\(373\) −262.562 220.316i −0.703920 0.590659i 0.218966 0.975733i \(-0.429732\pi\)
−0.922886 + 0.385073i \(0.874176\pi\)
\(374\) 128.513 + 353.086i 0.343617 + 0.944079i
\(375\) −46.4567 + 74.5374i −0.123885 + 0.198766i
\(376\) 27.1721 + 154.100i 0.0722661 + 0.409841i
\(377\) 293.516i 0.778556i
\(378\) 32.7858 115.848i 0.0867349 0.306477i
\(379\) −607.166 −1.60202 −0.801011 0.598650i \(-0.795704\pi\)
−0.801011 + 0.598650i \(0.795704\pi\)
\(380\) 26.0167 4.58744i 0.0684649 0.0120722i
\(381\) 260.225 138.749i 0.683006 0.364171i
\(382\) −132.479 + 48.2183i −0.346803 + 0.126226i
\(383\) −97.3839 + 116.058i −0.254266 + 0.303023i −0.878045 0.478578i \(-0.841152\pi\)
0.623779 + 0.781601i \(0.285597\pi\)
\(384\) 31.4843 + 12.6783i 0.0819904 + 0.0330164i
\(385\) −16.3985 5.96856i −0.0425935 0.0155028i
\(386\) −232.973 + 134.507i −0.603556 + 0.348463i
\(387\) 105.903 77.3164i 0.273650 0.199784i
\(388\) 157.196 272.271i 0.405143 0.701729i
\(389\) 389.211 + 463.844i 1.00054 + 1.19240i 0.981280 + 0.192587i \(0.0616876\pi\)
0.0192633 + 0.999814i \(0.493868\pi\)
\(390\) 20.4095 22.7197i 0.0523321 0.0582556i
\(391\) 49.4925 280.686i 0.126579 0.717867i
\(392\) −108.794 19.1833i −0.277535 0.0489369i
\(393\) 390.819 127.483i 0.994451 0.324385i
\(394\) −200.062 + 167.872i −0.507771 + 0.426071i
\(395\) 67.7918 + 39.1396i 0.171625 + 0.0990876i
\(396\) 140.287 + 94.1546i 0.354259 + 0.237764i
\(397\) 301.433 + 522.097i 0.759277 + 1.31511i 0.943220 + 0.332170i \(0.107781\pi\)
−0.183942 + 0.982937i \(0.558886\pi\)
\(398\) −30.0801 + 82.6444i −0.0755782 + 0.207649i
\(399\) −209.814 + 29.7342i −0.525850 + 0.0745218i
\(400\) 75.5391 + 63.3849i 0.188848 + 0.158462i
\(401\) 151.840 + 417.177i 0.378653 + 1.04034i 0.971915 + 0.235332i \(0.0756177\pi\)
−0.593262 + 0.805010i \(0.702160\pi\)
\(402\) 212.123 + 7.16266i 0.527670 + 0.0178176i
\(403\) −96.3893 546.651i −0.239179 1.35645i
\(404\) 251.126i 0.621599i
\(405\) 35.3449 32.1211i 0.0872715 0.0793114i
\(406\) −107.208 −0.264058
\(407\) 291.178 51.3425i 0.715425 0.126149i
\(408\) 8.10566 240.050i 0.0198668 0.588359i
\(409\) −388.673 + 141.465i −0.950300 + 0.345881i −0.770225 0.637772i \(-0.779856\pi\)
−0.180075 + 0.983653i \(0.557634\pi\)
\(410\) 37.9773 45.2596i 0.0926276 0.110389i
\(411\) 84.2678 + 594.622i 0.205031 + 1.44677i
\(412\) 177.051 + 64.4411i 0.429734 + 0.156410i
\(413\) 78.2869 45.1989i 0.189557 0.109441i
\(414\) −56.4459 115.057i −0.136343 0.277916i
\(415\) −19.7992 + 34.2932i −0.0477090 + 0.0826343i
\(416\) −44.3920 52.9043i −0.106711 0.127174i
\(417\) −6.63135 20.3294i −0.0159025 0.0487516i
\(418\) 51.6381 292.854i 0.123536 0.700609i
\(419\) 606.886 + 107.010i 1.44842 + 0.255395i 0.841881 0.539662i \(-0.181448\pi\)
0.606534 + 0.795057i \(0.292559\pi\)
\(420\) 8.29846 + 7.45466i 0.0197582 + 0.0177492i
\(421\) 2.88941 2.42451i 0.00686322 0.00575892i −0.639350 0.768916i \(-0.720796\pi\)
0.646213 + 0.763157i \(0.276352\pi\)
\(422\) 8.95351 + 5.16931i 0.0212169 + 0.0122496i
\(423\) 201.468 455.328i 0.476285 1.07643i
\(424\) 35.9335 + 62.2387i 0.0847489 + 0.146789i
\(425\) 238.668 655.734i 0.561571 1.54290i
\(426\) 13.9043 34.5289i 0.0326392 0.0810537i
\(427\) −273.149 229.199i −0.639693 0.536766i
\(428\) 73.8054 + 202.779i 0.172442 + 0.473782i
\(429\) −161.744 303.352i −0.377026 0.707115i
\(430\) 2.10961 + 11.9642i 0.00490606 + 0.0278237i
\(431\) 658.872i 1.52871i 0.644798 + 0.764353i \(0.276941\pi\)
−0.644798 + 0.764353i \(0.723059\pi\)
\(432\) −60.7022 89.3266i −0.140514 0.206775i
\(433\) 170.484 0.393728 0.196864 0.980431i \(-0.436924\pi\)
0.196864 + 0.980431i \(0.436924\pi\)
\(434\) 199.666 35.2066i 0.460061 0.0811212i
\(435\) −36.0914 22.4946i −0.0829688 0.0517117i
\(436\) −80.7510 + 29.3910i −0.185209 + 0.0674105i
\(437\) −144.992 + 172.794i −0.331789 + 0.395410i
\(438\) 78.4009 61.3992i 0.178997 0.140181i
\(439\) 805.882 + 293.317i 1.83572 + 0.668148i 0.991157 + 0.132697i \(0.0423636\pi\)
0.844566 + 0.535452i \(0.179859\pi\)
\(440\) −13.5566 + 7.82692i −0.0308105 + 0.0177885i
\(441\) 253.425 + 243.603i 0.574659 + 0.552387i
\(442\) −244.360 + 423.244i −0.552851 + 0.957566i
\(443\) −160.598 191.394i −0.362524 0.432040i 0.553693 0.832721i \(-0.313218\pi\)
−0.916218 + 0.400681i \(0.868774\pi\)
\(444\) −184.915 39.0822i −0.416476 0.0880230i
\(445\) 7.44759 42.2374i 0.0167362 0.0949155i
\(446\) −119.869 21.1362i −0.268765 0.0473906i
\(447\) −58.1596 + 275.179i −0.130111 + 0.615614i
\(448\) 19.3235 16.2143i 0.0431328 0.0361927i
\(449\) −208.642 120.460i −0.464682 0.268284i 0.249329 0.968419i \(-0.419790\pi\)
−0.714011 + 0.700135i \(0.753123\pi\)
\(450\) −87.1828 301.418i −0.193740 0.669817i
\(451\) −332.527 575.954i −0.737311 1.27706i
\(452\) 7.34036 20.1675i 0.0162397 0.0446183i
\(453\) 373.221 + 476.568i 0.823887 + 1.05203i
\(454\) 70.9061 + 59.4973i 0.156181 + 0.131051i
\(455\) −7.76311 21.3290i −0.0170618 0.0468769i
\(456\) −100.546 + 161.320i −0.220495 + 0.353773i
\(457\) −33.0420 187.391i −0.0723020 0.410045i −0.999381 0.0351791i \(-0.988800\pi\)
0.927079 0.374866i \(-0.122311\pi\)
\(458\) 467.310i 1.02033i
\(459\) −447.086 + 619.858i −0.974044 + 1.35045i
\(460\) 11.8740 0.0258130
\(461\) 282.999 49.9003i 0.613880 0.108244i 0.141941 0.989875i \(-0.454666\pi\)
0.471938 + 0.881632i \(0.343554\pi\)
\(462\) 110.801 59.0777i 0.239828 0.127874i
\(463\) 15.8899 5.78346i 0.0343195 0.0124913i −0.324803 0.945782i \(-0.605298\pi\)
0.359123 + 0.933290i \(0.383076\pi\)
\(464\) −61.8154 + 73.6687i −0.133223 + 0.158769i
\(465\) 74.6047 + 30.0423i 0.160440 + 0.0646070i
\(466\) −190.004 69.1557i −0.407734 0.148403i
\(467\) 590.760 341.075i 1.26501 0.730354i 0.290971 0.956732i \(-0.406022\pi\)
0.974040 + 0.226378i \(0.0726883\pi\)
\(468\) 23.4743 + 218.495i 0.0501588 + 0.466871i
\(469\) 78.8699 136.607i 0.168166 0.291272i
\(470\) 29.6531 + 35.3392i 0.0630917 + 0.0751898i
\(471\) 147.150 163.806i 0.312420 0.347783i
\(472\) 14.0809 79.8570i 0.0298325 0.169189i
\(473\) 134.674 + 23.7466i 0.284722 + 0.0502042i
\(474\) −535.483 + 174.672i −1.12971 + 0.368506i
\(475\) −423.060 + 354.989i −0.890652 + 0.747346i
\(476\) −154.592 89.2536i −0.324772 0.187507i
\(477\) 15.4258 228.159i 0.0323393 0.478320i
\(478\) −214.489 371.506i −0.448722 0.777209i
\(479\) −191.036 + 524.867i −0.398822 + 1.09576i 0.564037 + 0.825750i \(0.309248\pi\)
−0.962859 + 0.270005i \(0.912975\pi\)
\(480\) 9.90738 1.40404i 0.0206404 0.00292509i
\(481\) 294.596 + 247.196i 0.612466 + 0.513920i
\(482\) −151.280 415.640i −0.313860 0.862323i
\(483\) −95.1922 3.21431i −0.197085 0.00665488i
\(484\) −11.4250 64.7942i −0.0236053 0.133872i
\(485\) 92.6875i 0.191108i
\(486\) 1.98103 + 343.648i 0.00407619 + 0.707095i
\(487\) −115.842 −0.237869 −0.118935 0.992902i \(-0.537948\pi\)
−0.118935 + 0.992902i \(0.537948\pi\)
\(488\) −314.992 + 55.5417i −0.645476 + 0.113815i
\(489\) 21.9825 651.014i 0.0449539 1.33132i
\(490\) −30.6047 + 11.1392i −0.0624587 + 0.0227331i
\(491\) 79.5701 94.8280i 0.162057 0.193132i −0.678905 0.734226i \(-0.737545\pi\)
0.840962 + 0.541094i \(0.181990\pi\)
\(492\) 59.6507 + 420.915i 0.121241 + 0.855519i
\(493\) 639.497 + 232.758i 1.29715 + 0.472126i
\(494\) 334.963 193.391i 0.678063 0.391480i
\(495\) 49.6968 + 3.36000i 0.100398 + 0.00678788i
\(496\) 90.9341 157.502i 0.183335 0.317545i
\(497\) −17.7823 21.1921i −0.0357793 0.0426401i
\(498\) −88.3597 270.880i −0.177429 0.543936i
\(499\) −65.4282 + 371.062i −0.131119 + 0.743610i 0.846366 + 0.532602i \(0.178786\pi\)
−0.977484 + 0.211008i \(0.932325\pi\)
\(500\) 57.6636 + 10.1676i 0.115327 + 0.0203353i
\(501\) −480.985 432.078i −0.960051 0.862431i
\(502\) 145.667 122.229i 0.290173 0.243484i
\(503\) −363.520 209.878i −0.722704 0.417253i 0.0930432 0.995662i \(-0.470341\pi\)
−0.815747 + 0.578409i \(0.803674\pi\)
\(504\) −79.8063 + 8.57408i −0.158346 + 0.0170121i
\(505\) −37.0179 64.1169i −0.0733028 0.126964i
\(506\) 45.7139 125.598i 0.0903436 0.248217i
\(507\) −22.3594 + 55.5256i −0.0441013 + 0.109518i
\(508\) −150.606 126.374i −0.296469 0.248767i
\(509\) −41.8155 114.887i −0.0821523 0.225712i 0.891815 0.452400i \(-0.149432\pi\)
−0.973967 + 0.226689i \(0.927210\pi\)
\(510\) −33.3158 62.4840i −0.0653251 0.122518i
\(511\) −12.8516 72.8849i −0.0251498 0.142632i
\(512\) 22.6274i 0.0441942i
\(513\) 551.711 247.928i 1.07546 0.483290i
\(514\) 67.2841 0.130903
\(515\) 54.7033 9.64566i 0.106220 0.0187294i
\(516\) −74.1856 46.2375i −0.143771 0.0896075i
\(517\) 487.965 177.605i 0.943840 0.343530i
\(518\) −90.2892 + 107.602i −0.174303 + 0.207727i
\(519\) −148.912 + 116.619i −0.286920 + 0.224700i
\(520\) −19.1326 6.96368i −0.0367934 0.0133917i
\(521\) −891.453 + 514.680i −1.71104 + 0.987870i −0.777880 + 0.628412i \(0.783705\pi\)
−0.933161 + 0.359458i \(0.882962\pi\)
\(522\) 293.954 85.0241i 0.563131 0.162881i
\(523\) −131.269 + 227.364i −0.250992 + 0.434731i −0.963799 0.266629i \(-0.914090\pi\)
0.712807 + 0.701360i \(0.247423\pi\)
\(524\) −176.161 209.940i −0.336184 0.400649i
\(525\) −228.156 48.2212i −0.434583 0.0918498i
\(526\) −116.499 + 660.697i −0.221480 + 1.25608i
\(527\) −1267.45 223.486i −2.40503 0.424072i
\(528\) 23.2913 110.201i 0.0441123 0.208715i
\(529\) 327.572 274.866i 0.619230 0.519595i
\(530\) 18.3489 + 10.5938i 0.0346207 + 0.0199882i
\(531\) −178.810 + 186.019i −0.336741 + 0.350319i
\(532\) 70.6369 + 122.347i 0.132776 + 0.229975i
\(533\) 295.852 812.848i 0.555070 1.52504i
\(534\) 190.276 + 242.964i 0.356322 + 0.454989i
\(535\) 48.7350 + 40.8935i 0.0910934 + 0.0764364i
\(536\) −48.3945 132.963i −0.0902883 0.248065i
\(537\) −315.569 + 506.313i −0.587651 + 0.942855i
\(538\) −111.757 633.804i −0.207726 1.17808i
\(539\) 366.609i 0.680165i
\(540\) −28.6658 13.8587i −0.0530848 0.0256643i
\(541\) 14.7044 0.0271800 0.0135900 0.999908i \(-0.495674\pi\)
0.0135900 + 0.999908i \(0.495674\pi\)
\(542\) 614.109 108.284i 1.13304 0.199786i
\(543\) 188.741 100.635i 0.347590 0.185331i
\(544\) −150.468 + 54.7659i −0.276596 + 0.100673i
\(545\) −16.2847 + 19.4074i −0.0298802 + 0.0356098i
\(546\) 151.498 + 61.0062i 0.277469 + 0.111733i
\(547\) 353.812 + 128.777i 0.646823 + 0.235424i 0.644537 0.764573i \(-0.277050\pi\)
0.00228579 + 0.999997i \(0.499272\pi\)
\(548\) 346.735 200.188i 0.632729 0.365306i
\(549\) 930.724 + 411.816i 1.69531 + 0.750120i
\(550\) 163.621 283.400i 0.297492 0.515272i
\(551\) −346.200 412.585i −0.628311 0.748792i
\(552\) −57.0961 + 63.5588i −0.103435 + 0.115143i
\(553\) −72.6906 + 412.249i −0.131448 + 0.745477i
\(554\) −104.992 18.5129i −0.189516 0.0334167i
\(555\) −52.9732 + 17.2796i −0.0954473 + 0.0311344i
\(556\) −10.9205 + 9.16343i −0.0196413 + 0.0164810i
\(557\) 339.531 + 196.028i 0.609571 + 0.351936i 0.772798 0.634653i \(-0.218857\pi\)
−0.163226 + 0.986589i \(0.552190\pi\)
\(558\) −519.547 + 254.885i −0.931087 + 0.456782i
\(559\) 88.9339 + 154.038i 0.159095 + 0.275560i
\(560\) 2.54351 6.98825i 0.00454199 0.0124790i
\(561\) −789.192 + 111.842i −1.40676 + 0.199361i
\(562\) 8.40755 + 7.05477i 0.0149601 + 0.0125530i
\(563\) −282.488 776.129i −0.501754 1.37856i −0.889560 0.456818i \(-0.848989\pi\)
0.387806 0.921741i \(-0.373233\pi\)
\(564\) −331.750 11.2020i −0.588209 0.0198618i
\(565\) −1.09872 6.23114i −0.00194463 0.0110286i
\(566\) 231.173i 0.408433i
\(567\) 226.058 + 118.863i 0.398692 + 0.209636i
\(568\) −24.8155 −0.0436893
\(569\) −820.292 + 144.640i −1.44164 + 0.254200i −0.839138 0.543919i \(-0.816940\pi\)
−0.602501 + 0.798118i \(0.705829\pi\)
\(570\) −1.89123 + 56.0092i −0.00331795 + 0.0982617i
\(571\) −171.024 + 62.2478i −0.299517 + 0.109015i −0.487407 0.873175i \(-0.662057\pi\)
0.187890 + 0.982190i \(0.439835\pi\)
\(572\) −147.318 + 175.566i −0.257548 + 0.306934i
\(573\) −41.9633 296.107i −0.0732344 0.516766i
\(574\) 296.896 + 108.061i 0.517240 + 0.188260i
\(575\) −214.968 + 124.112i −0.373858 + 0.215847i
\(576\) −40.1241 + 59.7834i −0.0696600 + 0.103791i
\(577\) −25.3860 + 43.9699i −0.0439966 + 0.0762043i −0.887185 0.461414i \(-0.847342\pi\)
0.843189 + 0.537618i \(0.180676\pi\)
\(578\) 465.654 + 554.945i 0.805630 + 0.960112i
\(579\) −176.971 542.530i −0.305649 0.937012i
\(580\) −4.92323 + 27.9210i −0.00848832 + 0.0481397i
\(581\) −208.541 36.7713i −0.358934 0.0632898i
\(582\) 496.136 + 445.688i 0.852467 + 0.765787i
\(583\) 182.698 153.302i 0.313376 0.262954i
\(584\) −57.4936 33.1940i −0.0984480 0.0568390i
\(585\) 38.2013 + 52.3255i 0.0653014 + 0.0894453i
\(586\) 38.2449 + 66.2421i 0.0652643 + 0.113041i
\(587\) 29.4058 80.7919i 0.0500951 0.137635i −0.912122 0.409919i \(-0.865557\pi\)
0.962217 + 0.272284i \(0.0877791\pi\)
\(588\) 87.5372 217.383i 0.148873 0.369700i
\(589\) 780.262 + 654.718i 1.32472 + 1.11158i
\(590\) −8.17643 22.4646i −0.0138584 0.0380755i
\(591\) −260.655 488.860i −0.441041 0.827175i
\(592\) 21.8797 + 124.086i 0.0369590 + 0.209605i
\(593\) 333.051i 0.561638i 0.959761 + 0.280819i \(0.0906060\pi\)
−0.959761 + 0.280819i \(0.909394\pi\)
\(594\) −256.952 + 249.859i −0.432580 + 0.420639i
\(595\) −52.6267 −0.0884482
\(596\) 184.657 32.5600i 0.309827 0.0546308i
\(597\) −158.331 98.6828i −0.265212 0.165298i
\(598\) 163.361 59.4586i 0.273179 0.0994290i
\(599\) 376.276 448.428i 0.628173 0.748628i −0.354279 0.935140i \(-0.615274\pi\)
0.982453 + 0.186512i \(0.0597182\pi\)
\(600\) −164.689 + 128.975i −0.274482 + 0.214959i
\(601\) 684.489 + 249.134i 1.13892 + 0.414532i 0.841522 0.540223i \(-0.181660\pi\)
0.297395 + 0.954755i \(0.403882\pi\)
\(602\) −56.2630 + 32.4835i −0.0934602 + 0.0539593i
\(603\) −107.915 + 437.114i −0.178963 + 0.724899i
\(604\) 201.773 349.481i 0.334061 0.578611i
\(605\) −12.4682 14.8590i −0.0206086 0.0245603i
\(606\) 521.205 + 110.158i 0.860073 + 0.181778i
\(607\) 50.2841 285.175i 0.0828404 0.469811i −0.914961 0.403541i \(-0.867779\pi\)
0.997802 0.0662697i \(-0.0211098\pi\)
\(608\) 124.800 + 22.0057i 0.205264 + 0.0361936i
\(609\) 47.0272 222.507i 0.0772203 0.365364i
\(610\) −72.2359 + 60.6131i −0.118420 + 0.0993658i
\(611\) 584.925 + 337.706i 0.957323 + 0.552711i
\(612\) 494.662 + 122.122i 0.808272 + 0.199546i
\(613\) −431.468 747.325i −0.703864 1.21913i −0.967100 0.254396i \(-0.918123\pi\)
0.263236 0.964731i \(-0.415210\pi\)
\(614\) 70.8115 194.553i 0.115328 0.316862i
\(615\) 77.2761 + 98.6742i 0.125652 + 0.160446i
\(616\) −64.1263 53.8084i −0.104101 0.0873513i
\(617\) −37.3588 102.642i −0.0605491 0.166357i 0.905729 0.423856i \(-0.139324\pi\)
−0.966279 + 0.257499i \(0.917102\pi\)
\(618\) −211.410 + 339.196i −0.342087 + 0.548861i
\(619\) 16.5748 + 94.0001i 0.0267767 + 0.151858i 0.995265 0.0972023i \(-0.0309894\pi\)
−0.968488 + 0.249060i \(0.919878\pi\)
\(620\) 53.6176i 0.0864800i
\(621\) 263.558 66.6815i 0.424409 0.107378i
\(622\) 391.081 0.628748
\(623\) 225.870 39.8270i 0.362552 0.0639277i
\(624\) 129.274 68.9275i 0.207170 0.110461i
\(625\) −562.919 + 204.886i −0.900671 + 0.327817i
\(626\) −27.2673 + 32.4959i −0.0435579 + 0.0519103i
\(627\) 585.160 + 235.635i 0.933269 + 0.375814i
\(628\) −137.943 50.2072i −0.219655 0.0799478i
\(629\) 772.193 445.826i 1.22765 0.708785i
\(630\) −19.1121 + 13.9532i −0.0303367 + 0.0221479i
\(631\) 264.888 458.800i 0.419791 0.727100i −0.576127 0.817360i \(-0.695437\pi\)
0.995918 + 0.0902603i \(0.0287699\pi\)
\(632\) 241.367 + 287.650i 0.381910 + 0.455143i
\(633\) −14.6563 + 16.3152i −0.0231537 + 0.0257744i
\(634\) −65.7227 + 372.732i −0.103664 + 0.587905i
\(635\) −57.0810 10.0649i −0.0898914 0.0158503i
\(636\) −144.937 + 47.2777i −0.227889 + 0.0743361i
\(637\) −365.278 + 306.504i −0.573435 + 0.481169i
\(638\) 276.382 + 159.569i 0.433201 + 0.250109i
\(639\) 65.5645 + 44.0042i 0.102605 + 0.0688642i
\(640\) −3.33546 5.77718i −0.00521165 0.00902685i
\(641\) −90.7979 + 249.465i −0.141650 + 0.389181i −0.990149 0.140016i \(-0.955285\pi\)
0.848499 + 0.529197i \(0.177507\pi\)
\(642\) −453.236 + 64.2311i −0.705975 + 0.100049i
\(643\) 111.106 + 93.2293i 0.172794 + 0.144991i 0.725083 0.688661i \(-0.241801\pi\)
−0.552290 + 0.833652i \(0.686246\pi\)
\(644\) 21.7175 + 59.6683i 0.0337228 + 0.0926526i
\(645\) −25.7567 0.869713i −0.0399328 0.00134839i
\(646\) −155.725 883.161i −0.241061 1.36712i
\(647\) 578.671i 0.894391i 0.894436 + 0.447196i \(0.147577\pi\)
−0.894436 + 0.447196i \(0.852423\pi\)
\(648\) 212.022 86.8020i 0.327195 0.133954i
\(649\) −269.099 −0.414636
\(650\) 419.166 73.9103i 0.644871 0.113708i
\(651\) −14.5144 + 429.846i −0.0222955 + 0.660285i
\(652\) −408.068 + 148.525i −0.625871 + 0.227798i
\(653\) −417.061 + 497.034i −0.638684 + 0.761154i −0.984162 0.177273i \(-0.943273\pi\)
0.345477 + 0.938427i \(0.387717\pi\)
\(654\) −25.5783 180.489i −0.0391105 0.275977i
\(655\) −75.9237 27.6340i −0.115914 0.0421893i
\(656\) 245.444 141.707i 0.374152 0.216017i
\(657\) 93.0413 + 189.652i 0.141615 + 0.288663i
\(658\) −123.349 + 213.646i −0.187460 + 0.324690i
\(659\) −346.075 412.436i −0.525151 0.625851i 0.436639 0.899637i \(-0.356169\pi\)
−0.961791 + 0.273785i \(0.911724\pi\)
\(660\) −10.2979 31.5697i −0.0156028 0.0478329i
\(661\) −66.4965 + 377.120i −0.100600 + 0.570530i 0.892287 + 0.451468i \(0.149100\pi\)
−0.992887 + 0.119061i \(0.962011\pi\)
\(662\) −531.115 93.6500i −0.802289 0.141465i
\(663\) −771.242 692.821i −1.16326 1.04498i
\(664\) −145.511 + 122.098i −0.219143 + 0.183883i
\(665\) 36.0697 + 20.8249i 0.0542402 + 0.0313156i
\(666\) 162.228 366.643i 0.243586 0.550515i
\(667\) −121.039 209.646i −0.181468 0.314311i
\(668\) −147.424 + 405.044i −0.220695 + 0.606354i
\(669\) 96.4488 239.514i 0.144169 0.358018i
\(670\) −31.9558 26.8141i −0.0476952 0.0400210i
\(671\) 363.037 + 997.436i 0.541039 + 1.48649i
\(672\) 25.1761 + 47.2179i 0.0374644 + 0.0702647i
\(673\) 28.0045 + 158.821i 0.0416114 + 0.235990i 0.998519 0.0544023i \(-0.0173253\pi\)
−0.956908 + 0.290392i \(0.906214\pi\)
\(674\) 169.360i 0.251275i
\(675\) 663.827 48.7271i 0.983448 0.0721884i
\(676\) 39.9056 0.0590320
\(677\) 126.078 22.2310i 0.186231 0.0328375i −0.0797548 0.996815i \(-0.525414\pi\)
0.265986 + 0.963977i \(0.414303\pi\)
\(678\) 38.6371 + 24.0813i 0.0569869 + 0.0355181i
\(679\) 465.766 169.525i 0.685959 0.249669i
\(680\) −30.3443 + 36.1629i −0.0446239 + 0.0531807i
\(681\) −154.588 + 121.065i −0.227002 + 0.177775i
\(682\) −567.144 206.423i −0.831589 0.302674i
\(683\) −410.786 + 237.168i −0.601444 + 0.347244i −0.769609 0.638515i \(-0.779549\pi\)
0.168165 + 0.985759i \(0.446216\pi\)
\(684\) −290.711 279.444i −0.425016 0.408543i
\(685\) 59.0185 102.223i 0.0861583 0.149231i
\(686\) −252.402 300.800i −0.367932 0.438485i
\(687\) −969.888 204.988i −1.41177 0.298381i
\(688\) −10.1197 + 57.3914i −0.0147088 + 0.0834178i
\(689\) 305.491 + 53.8663i 0.443383 + 0.0781804i
\(690\) −5.20858 + 24.6441i −0.00754866 + 0.0357161i
\(691\) −218.877 + 183.660i −0.316754 + 0.265788i −0.787277 0.616600i \(-0.788510\pi\)
0.470523 + 0.882388i \(0.344065\pi\)
\(692\) 109.201 + 63.0474i 0.157805 + 0.0911089i
\(693\) 74.0108 + 255.878i 0.106798 + 0.369233i
\(694\) −175.909 304.683i −0.253471 0.439024i
\(695\) −1.43745 + 3.94936i −0.00206827 + 0.00568253i
\(696\) −125.782 160.611i −0.180721 0.230763i
\(697\) −1536.38 1289.18i −2.20428 1.84961i
\(698\) −154.755 425.186i −0.221712 0.609149i
\(699\) 226.877 364.012i 0.324573 0.520761i
\(700\) 26.9960 + 153.102i 0.0385658 + 0.218717i
\(701\) 320.086i 0.456613i 0.973589 + 0.228307i \(0.0733189\pi\)
−0.973589 + 0.228307i \(0.926681\pi\)
\(702\) −463.778 47.1238i −0.660653 0.0671279i
\(703\) −705.669 −1.00380
\(704\) −73.9498 + 13.0393i −0.105042 + 0.0185218i
\(705\) −86.3530 + 46.0425i −0.122487 + 0.0653085i
\(706\) −440.232 + 160.231i −0.623558 + 0.226957i
\(707\) 254.490 303.289i 0.359958 0.428981i
\(708\) 159.564 + 64.2542i 0.225373 + 0.0907546i
\(709\) −796.794 290.009i −1.12383 0.409040i −0.287780 0.957697i \(-0.592917\pi\)
−0.836048 + 0.548657i \(0.815139\pi\)
\(710\) −6.33584 + 3.65800i −0.00892372 + 0.00515211i
\(711\) −127.634 1188.00i −0.179514 1.67089i
\(712\) 102.868 178.173i 0.144478 0.250242i
\(713\) 294.273 + 350.701i 0.412725 + 0.491866i
\(714\) 253.056 281.699i 0.354420 0.394537i
\(715\) −11.7330 + 66.5410i −0.0164098 + 0.0930644i
\(716\) 391.694 + 69.0662i 0.547058 + 0.0964611i
\(717\) 865.137 282.203i 1.20661 0.393589i
\(718\) 347.675 291.734i 0.484227 0.406315i
\(719\) 143.869 + 83.0628i 0.200096 + 0.115525i 0.596700 0.802464i \(-0.296478\pi\)
−0.396604 + 0.917990i \(0.629811\pi\)
\(720\) −1.43187 + 21.1784i −0.00198871 + 0.0294144i
\(721\) 148.523 + 257.249i 0.205996 + 0.356795i
\(722\) −68.1308 + 187.188i −0.0943640 + 0.259263i
\(723\) 929.008 131.656i 1.28494 0.182097i
\(724\) −109.235 91.6589i −0.150877 0.126601i
\(725\) −202.712 556.946i −0.279602 0.768201i
\(726\) 139.490 + 4.71009i 0.192135 + 0.00648773i
\(727\) 136.863 + 776.190i 0.188258 + 1.06766i 0.921698 + 0.387908i \(0.126802\pi\)
−0.733440 + 0.679754i \(0.762087\pi\)
\(728\) 108.880i 0.149561i
\(729\) −714.101 146.631i −0.979562 0.201140i
\(730\) −19.5722 −0.0268112
\(731\) 406.135 71.6126i 0.555589 0.0979653i
\(732\) 22.8978 678.122i 0.0312811 0.926396i
\(733\) 650.225 236.663i 0.887074 0.322869i 0.142013 0.989865i \(-0.454643\pi\)
0.745061 + 0.666996i \(0.232420\pi\)
\(734\) −662.417 + 789.438i −0.902475 + 1.07553i
\(735\) −9.69421 68.4055i −0.0131894 0.0930688i
\(736\) 53.5238 + 19.4811i 0.0727225 + 0.0264688i
\(737\) −406.655 + 234.782i −0.551770 + 0.318565i
\(738\) −899.764 60.8331i −1.21919 0.0824297i
\(739\) −117.695 + 203.854i −0.159262 + 0.275851i −0.934603 0.355693i \(-0.884245\pi\)
0.775340 + 0.631543i \(0.217578\pi\)
\(740\) 23.8775 + 28.4561i 0.0322669 + 0.0384542i
\(741\) 254.445 + 780.039i 0.343380 + 1.05268i
\(742\) −19.6749 + 111.582i −0.0265160 + 0.150380i
\(743\) 600.536 + 105.891i 0.808259 + 0.142518i 0.562483 0.826809i \(-0.309846\pi\)
0.245776 + 0.969327i \(0.420957\pi\)
\(744\) 287.003 + 257.820i 0.385757 + 0.346533i
\(745\) 42.3466 35.5330i 0.0568411 0.0476953i
\(746\) −419.782 242.361i −0.562711 0.324881i
\(747\) 600.963 64.5652i 0.804502 0.0864326i
\(748\) 265.692 + 460.193i 0.355204 + 0.615231i
\(749\) −116.359 + 319.694i −0.155352 + 0.426827i
\(750\) −46.3971 + 115.219i −0.0618628 + 0.153625i
\(751\) 163.414 + 137.121i 0.217596 + 0.182585i 0.745070 0.666987i \(-0.232416\pi\)
−0.527474 + 0.849571i \(0.676861\pi\)
\(752\) 75.6866 + 207.947i 0.100647 + 0.276526i
\(753\) 189.786 + 355.944i 0.252039 + 0.472701i
\(754\) 72.0803 + 408.787i 0.0955972 + 0.542158i
\(755\) 118.972i 0.157578i
\(756\) 17.2122 169.397i 0.0227674 0.224070i
\(757\) −212.260 −0.280397 −0.140198 0.990123i \(-0.544774\pi\)
−0.140198 + 0.990123i \(0.544774\pi\)
\(758\) −845.618 + 149.105i −1.11559 + 0.196709i
\(759\) 240.622 + 149.972i 0.317025 + 0.197592i
\(760\) 35.1076 12.7781i 0.0461942 0.0168133i
\(761\) 934.612 1113.83i 1.22814 1.46364i 0.387649 0.921807i \(-0.373287\pi\)
0.840488 0.541830i \(-0.182268\pi\)
\(762\) 328.350 257.145i 0.430905 0.337461i
\(763\) −127.309 46.3368i −0.166853 0.0607297i
\(764\) −172.666 + 99.6886i −0.226002 + 0.130482i
\(765\) 144.298 41.7371i 0.188625 0.0545583i
\(766\) −107.128 + 185.552i −0.139854