Properties

Label 54.3.f.a.41.3
Level $54$
Weight $3$
Character 54.41
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 41.3
Character \(\chi\) \(=\) 54.41
Dual form 54.3.f.a.29.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39273 + 0.245576i) q^{2} +(2.66538 + 1.37686i) q^{3} +(1.87939 - 0.684040i) q^{4} +(-1.49345 + 1.77982i) q^{5} +(-4.05028 - 1.26303i) q^{6} +(5.91054 + 2.15126i) q^{7} +(-2.44949 + 1.41421i) q^{8} +(5.20853 + 7.33970i) q^{9} +O(q^{10})\) \(q+(-1.39273 + 0.245576i) q^{2} +(2.66538 + 1.37686i) q^{3} +(1.87939 - 0.684040i) q^{4} +(-1.49345 + 1.77982i) q^{5} +(-4.05028 - 1.26303i) q^{6} +(5.91054 + 2.15126i) q^{7} +(-2.44949 + 1.41421i) q^{8} +(5.20853 + 7.33970i) q^{9} +(1.64289 - 2.84556i) q^{10} +(1.00782 + 1.20107i) q^{11} +(5.95111 + 0.764415i) q^{12} +(1.33408 - 7.56595i) q^{13} +(-8.76008 - 1.54464i) q^{14} +(-6.43117 + 2.68764i) q^{15} +(3.06418 - 2.57115i) q^{16} +(-20.1411 - 11.6285i) q^{17} +(-9.05652 - 8.94312i) q^{18} +(-15.0781 - 26.1161i) q^{19} +(-1.58929 + 4.36655i) q^{20} +(12.7919 + 13.8719i) q^{21} +(-1.69857 - 1.42527i) q^{22} +(-7.69793 - 21.1499i) q^{23} +(-8.47600 + 0.396823i) q^{24} +(3.40383 + 19.3041i) q^{25} +10.8649i q^{26} +(3.77701 + 26.7345i) q^{27} +12.5797 q^{28} +(49.0949 - 8.65675i) q^{29} +(8.29685 - 5.32249i) q^{30} +(-27.8049 + 10.1202i) q^{31} +(-3.63616 + 4.33340i) q^{32} +(1.03252 + 4.58892i) q^{33} +(30.9068 + 11.2492i) q^{34} +(-12.6559 + 7.30691i) q^{35} +(14.8095 + 10.2313i) q^{36} +(14.5999 - 25.2877i) q^{37} +(27.4132 + 32.6698i) q^{38} +(13.9731 - 18.3293i) q^{39} +(1.14114 - 6.47170i) q^{40} +(17.1669 + 3.02698i) q^{41} +(-21.2222 - 16.1784i) q^{42} +(-64.1027 + 53.7886i) q^{43} +(2.71565 + 1.56788i) q^{44} +(-20.8420 - 1.69120i) q^{45} +(15.9150 + 27.5656i) q^{46} +(11.3382 - 31.1513i) q^{47} +(11.7073 - 2.63417i) q^{48} +(-7.22958 - 6.06634i) q^{49} +(-9.48121 - 26.0494i) q^{50} +(-37.6730 - 58.7258i) q^{51} +(-2.66816 - 15.1319i) q^{52} +86.0360i q^{53} +(-11.8257 - 36.3064i) q^{54} -3.64280 q^{55} +(-17.5202 + 3.08928i) q^{56} +(-4.23087 - 90.3699i) q^{57} +(-66.2499 + 24.1130i) q^{58} +(29.2986 - 34.9167i) q^{59} +(-10.2482 + 9.45029i) q^{60} +(79.4407 + 28.9140i) q^{61} +(36.2395 - 20.9229i) q^{62} +(14.9956 + 54.5865i) q^{63} +(4.00000 - 6.92820i) q^{64} +(11.4736 + 13.6738i) q^{65} +(-2.56494 - 6.13756i) q^{66} +(-8.80100 + 49.9130i) q^{67} +(-45.8073 - 8.07706i) q^{68} +(8.60244 - 66.9715i) q^{69} +(15.8319 - 13.2845i) q^{70} +(-32.5457 - 18.7903i) q^{71} +(-23.1381 - 10.6125i) q^{72} +(-3.93896 - 6.82248i) q^{73} +(-14.1236 + 38.8043i) q^{74} +(-17.5064 + 56.1393i) q^{75} +(-46.2021 - 38.7682i) q^{76} +(3.37293 + 9.26704i) q^{77} +(-14.9594 + 28.9592i) q^{78} +(-12.5403 - 71.1198i) q^{79} +9.29356i q^{80} +(-26.7424 + 76.4581i) q^{81} -24.6521 q^{82} +(-25.4050 + 4.47959i) q^{83} +(33.5298 + 17.3205i) q^{84} +(50.7763 - 18.4811i) q^{85} +(76.0685 - 90.6549i) q^{86} +(142.776 + 44.5230i) q^{87} +(-4.16720 - 1.51674i) q^{88} +(-23.4923 + 13.5633i) q^{89} +(29.4426 - 2.76290i) q^{90} +(24.1615 - 41.8489i) q^{91} +(-28.9347 - 34.4831i) q^{92} +(-88.0448 - 11.3093i) q^{93} +(-8.14096 + 46.1697i) q^{94} +(69.0004 + 12.1666i) q^{95} +(-15.6582 + 6.54371i) q^{96} +(-27.0251 + 22.6768i) q^{97} +(11.5586 + 6.67336i) q^{98} +(-3.56624 + 13.6529i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39273 + 0.245576i −0.696364 + 0.122788i
\(3\) 2.66538 + 1.37686i 0.888461 + 0.458952i
\(4\) 1.87939 0.684040i 0.469846 0.171010i
\(5\) −1.49345 + 1.77982i −0.298689 + 0.355964i −0.894426 0.447216i \(-0.852416\pi\)
0.595737 + 0.803180i \(0.296860\pi\)
\(6\) −4.05028 1.26303i −0.675046 0.210506i
\(7\) 5.91054 + 2.15126i 0.844363 + 0.307323i 0.727740 0.685853i \(-0.240571\pi\)
0.116623 + 0.993176i \(0.462793\pi\)
\(8\) −2.44949 + 1.41421i −0.306186 + 0.176777i
\(9\) 5.20853 + 7.33970i 0.578726 + 0.815522i
\(10\) 1.64289 2.84556i 0.164289 0.284556i
\(11\) 1.00782 + 1.20107i 0.0916196 + 0.109188i 0.809906 0.586559i \(-0.199518\pi\)
−0.718287 + 0.695747i \(0.755073\pi\)
\(12\) 5.95111 + 0.764415i 0.495926 + 0.0637013i
\(13\) 1.33408 7.56595i 0.102622 0.581996i −0.889522 0.456892i \(-0.848963\pi\)
0.992144 0.125104i \(-0.0399264\pi\)
\(14\) −8.76008 1.54464i −0.625720 0.110331i
\(15\) −6.43117 + 2.68764i −0.428744 + 0.179176i
\(16\) 3.06418 2.57115i 0.191511 0.160697i
\(17\) −20.1411 11.6285i −1.18477 0.684028i −0.227658 0.973741i \(-0.573107\pi\)
−0.957114 + 0.289713i \(0.906440\pi\)
\(18\) −9.05652 8.94312i −0.503140 0.496840i
\(19\) −15.0781 26.1161i −0.793586 1.37453i −0.923733 0.383037i \(-0.874878\pi\)
0.130147 0.991495i \(-0.458455\pi\)
\(20\) −1.58929 + 4.36655i −0.0794646 + 0.218327i
\(21\) 12.7919 + 13.8719i 0.609137 + 0.660567i
\(22\) −1.69857 1.42527i −0.0772076 0.0647848i
\(23\) −7.69793 21.1499i −0.334693 0.919560i −0.986873 0.161497i \(-0.948368\pi\)
0.652181 0.758064i \(-0.273854\pi\)
\(24\) −8.47600 + 0.396823i −0.353167 + 0.0165343i
\(25\) 3.40383 + 19.3041i 0.136153 + 0.772162i
\(26\) 10.8649i 0.417882i
\(27\) 3.77701 + 26.7345i 0.139889 + 0.990167i
\(28\) 12.5797 0.449276
\(29\) 49.0949 8.65675i 1.69293 0.298509i 0.757711 0.652590i \(-0.226318\pi\)
0.935215 + 0.354081i \(0.115206\pi\)
\(30\) 8.29685 5.32249i 0.276562 0.177416i
\(31\) −27.8049 + 10.1202i −0.896933 + 0.326457i −0.749023 0.662544i \(-0.769477\pi\)
−0.147910 + 0.989001i \(0.547255\pi\)
\(32\) −3.63616 + 4.33340i −0.113630 + 0.135419i
\(33\) 1.03252 + 4.58892i 0.0312883 + 0.139058i
\(34\) 30.9068 + 11.2492i 0.909023 + 0.330857i
\(35\) −12.6559 + 7.30691i −0.361598 + 0.208769i
\(36\) 14.8095 + 10.2313i 0.411375 + 0.284202i
\(37\) 14.5999 25.2877i 0.394591 0.683452i −0.598458 0.801154i \(-0.704220\pi\)
0.993049 + 0.117702i \(0.0375529\pi\)
\(38\) 27.4132 + 32.6698i 0.721401 + 0.859732i
\(39\) 13.9731 18.3293i 0.358284 0.469982i
\(40\) 1.14114 6.47170i 0.0285284 0.161793i
\(41\) 17.1669 + 3.02698i 0.418704 + 0.0738288i 0.379031 0.925384i \(-0.376257\pi\)
0.0396727 + 0.999213i \(0.487368\pi\)
\(42\) −21.2222 16.1784i −0.505291 0.385201i
\(43\) −64.1027 + 53.7886i −1.49076 + 1.25090i −0.597089 + 0.802175i \(0.703676\pi\)
−0.893671 + 0.448722i \(0.851879\pi\)
\(44\) 2.71565 + 1.56788i 0.0617194 + 0.0356337i
\(45\) −20.8420 1.69120i −0.463156 0.0375823i
\(46\) 15.9150 + 27.5656i 0.345979 + 0.599253i
\(47\) 11.3382 31.1513i 0.241237 0.662794i −0.758698 0.651442i \(-0.774164\pi\)
0.999936 0.0113518i \(-0.00361348\pi\)
\(48\) 11.7073 2.63417i 0.243902 0.0548784i
\(49\) −7.22958 6.06634i −0.147543 0.123803i
\(50\) −9.48121 26.0494i −0.189624 0.520988i
\(51\) −37.6730 58.7258i −0.738687 1.15149i
\(52\) −2.66816 15.1319i −0.0513108 0.290998i
\(53\) 86.0360i 1.62332i 0.584130 + 0.811660i \(0.301436\pi\)
−0.584130 + 0.811660i \(0.698564\pi\)
\(54\) −11.8257 36.3064i −0.218994 0.672340i
\(55\) −3.64280 −0.0662328
\(56\) −17.5202 + 3.08928i −0.312860 + 0.0551657i
\(57\) −4.23087 90.3699i −0.0742259 1.58544i
\(58\) −66.2499 + 24.1130i −1.14224 + 0.415741i
\(59\) 29.2986 34.9167i 0.496586 0.591809i −0.458294 0.888801i \(-0.651539\pi\)
0.954880 + 0.296992i \(0.0959836\pi\)
\(60\) −10.2482 + 9.45029i −0.170803 + 0.157505i
\(61\) 79.4407 + 28.9140i 1.30231 + 0.474001i 0.897747 0.440511i \(-0.145203\pi\)
0.404559 + 0.914512i \(0.367425\pi\)
\(62\) 36.2395 20.9229i 0.584507 0.337465i
\(63\) 14.9956 + 54.5865i 0.238026 + 0.866453i
\(64\) 4.00000 6.92820i 0.0625000 0.108253i
\(65\) 11.4736 + 13.6738i 0.176518 + 0.210366i
\(66\) −2.56494 6.13756i −0.0388627 0.0929934i
\(67\) −8.80100 + 49.9130i −0.131358 + 0.744969i 0.845969 + 0.533233i \(0.179023\pi\)
−0.977327 + 0.211737i \(0.932088\pi\)
\(68\) −45.8073 8.07706i −0.673636 0.118780i
\(69\) 8.60244 66.9715i 0.124673 0.970601i
\(70\) 15.8319 13.2845i 0.226170 0.189779i
\(71\) −32.5457 18.7903i −0.458391 0.264652i 0.252977 0.967472i \(-0.418590\pi\)
−0.711367 + 0.702820i \(0.751924\pi\)
\(72\) −23.1381 10.6125i −0.321363 0.147397i
\(73\) −3.93896 6.82248i −0.0539584 0.0934587i 0.837785 0.546001i \(-0.183850\pi\)
−0.891743 + 0.452542i \(0.850517\pi\)
\(74\) −14.1236 + 38.8043i −0.190860 + 0.524383i
\(75\) −17.5064 + 56.1393i −0.233419 + 0.748524i
\(76\) −46.2021 38.7682i −0.607922 0.510107i
\(77\) 3.37293 + 9.26704i 0.0438042 + 0.120351i
\(78\) −14.9594 + 28.9592i −0.191788 + 0.371272i
\(79\) −12.5403 71.1198i −0.158738 0.900250i −0.955288 0.295677i \(-0.904455\pi\)
0.796550 0.604573i \(-0.206656\pi\)
\(80\) 9.29356i 0.116170i
\(81\) −26.7424 + 76.4581i −0.330153 + 0.943927i
\(82\) −24.6521 −0.300636
\(83\) −25.4050 + 4.47959i −0.306084 + 0.0539709i −0.324581 0.945858i \(-0.605223\pi\)
0.0184964 + 0.999829i \(0.494112\pi\)
\(84\) 33.5298 + 17.3205i 0.399164 + 0.206196i
\(85\) 50.7763 18.4811i 0.597368 0.217424i
\(86\) 76.0685 90.6549i 0.884518 1.05413i
\(87\) 142.776 + 44.5230i 1.64110 + 0.511759i
\(88\) −4.16720 1.51674i −0.0473545 0.0172356i
\(89\) −23.4923 + 13.5633i −0.263958 + 0.152396i −0.626139 0.779712i \(-0.715366\pi\)
0.362181 + 0.932108i \(0.382032\pi\)
\(90\) 29.4426 2.76290i 0.327140 0.0306989i
\(91\) 24.1615 41.8489i 0.265511 0.459878i
\(92\) −28.9347 34.4831i −0.314508 0.374816i
\(93\) −88.0448 11.3093i −0.946718 0.121605i
\(94\) −8.14096 + 46.1697i −0.0866060 + 0.491167i
\(95\) 69.0004 + 12.1666i 0.726320 + 0.128070i
\(96\) −15.6582 + 6.54371i −0.163106 + 0.0681636i
\(97\) −27.0251 + 22.6768i −0.278610 + 0.233781i −0.771375 0.636381i \(-0.780431\pi\)
0.492765 + 0.870162i \(0.335986\pi\)
\(98\) 11.5586 + 6.67336i 0.117945 + 0.0680955i
\(99\) −3.56624 + 13.6529i −0.0360226 + 0.137908i
\(100\) 19.6019 + 33.9514i 0.196019 + 0.339514i
\(101\) −1.81805 + 4.99504i −0.0180005 + 0.0494559i −0.948367 0.317174i \(-0.897266\pi\)
0.930367 + 0.366630i \(0.119488\pi\)
\(102\) 66.8899 + 72.5375i 0.655784 + 0.711152i
\(103\) 51.6309 + 43.3235i 0.501271 + 0.420616i 0.858045 0.513574i \(-0.171679\pi\)
−0.356774 + 0.934191i \(0.616123\pi\)
\(104\) 7.43205 + 20.4194i 0.0714620 + 0.196340i
\(105\) −43.7935 + 2.05029i −0.417081 + 0.0195266i
\(106\) −21.1283 119.825i −0.199324 1.13042i
\(107\) 0.744883i 0.00696152i −0.999994 0.00348076i \(-0.998892\pi\)
0.999994 0.00348076i \(-0.00110796\pi\)
\(108\) 25.3859 + 47.6608i 0.235055 + 0.441304i
\(109\) 56.8674 0.521719 0.260859 0.965377i \(-0.415994\pi\)
0.260859 + 0.965377i \(0.415994\pi\)
\(110\) 5.07344 0.894584i 0.0461221 0.00813258i
\(111\) 73.7318 47.2995i 0.664251 0.426122i
\(112\) 23.6422 8.60505i 0.211091 0.0768308i
\(113\) −137.389 + 163.733i −1.21583 + 1.44897i −0.359022 + 0.933329i \(0.616890\pi\)
−0.856806 + 0.515638i \(0.827555\pi\)
\(114\) 28.0851 + 124.822i 0.246360 + 1.09493i
\(115\) 49.1394 + 17.8853i 0.427300 + 0.155524i
\(116\) 86.3466 49.8522i 0.744367 0.429761i
\(117\) 62.4804 29.6157i 0.534020 0.253126i
\(118\) −32.2303 + 55.8245i −0.273138 + 0.473089i
\(119\) −94.0291 112.059i −0.790160 0.941676i
\(120\) 11.9522 15.6784i 0.0996015 0.130653i
\(121\) 20.5846 116.741i 0.170120 0.964800i
\(122\) −117.740 20.7607i −0.965081 0.170170i
\(123\) 41.5885 + 31.7044i 0.338118 + 0.257759i
\(124\) −45.3336 + 38.0394i −0.365593 + 0.306769i
\(125\) −89.7441 51.8138i −0.717953 0.414510i
\(126\) −34.2900 72.3417i −0.272142 0.574140i
\(127\) −24.6922 42.7682i −0.194427 0.336758i 0.752285 0.658837i \(-0.228951\pi\)
−0.946713 + 0.322080i \(0.895618\pi\)
\(128\) −3.86952 + 10.6314i −0.0302306 + 0.0830579i
\(129\) −244.917 + 55.1068i −1.89858 + 0.427185i
\(130\) −19.3376 16.2262i −0.148751 0.124817i
\(131\) 16.8555 + 46.3101i 0.128668 + 0.353513i 0.987253 0.159159i \(-0.0508782\pi\)
−0.858585 + 0.512671i \(0.828656\pi\)
\(132\) 5.07950 + 7.91807i 0.0384811 + 0.0599854i
\(133\) −32.9374 186.797i −0.247650 1.40449i
\(134\) 71.6765i 0.534899i
\(135\) −53.2234 33.2042i −0.394247 0.245957i
\(136\) 65.7806 0.483681
\(137\) −133.137 + 23.4756i −0.971801 + 0.171355i −0.636940 0.770913i \(-0.719800\pi\)
−0.334860 + 0.942268i \(0.608689\pi\)
\(138\) 4.46570 + 95.3856i 0.0323601 + 0.691200i
\(139\) 204.776 74.5324i 1.47321 0.536204i 0.524239 0.851571i \(-0.324350\pi\)
0.948970 + 0.315367i \(0.102128\pi\)
\(140\) −18.7872 + 22.3897i −0.134194 + 0.159926i
\(141\) 73.1114 67.4192i 0.518521 0.478150i
\(142\) 49.9418 + 18.1773i 0.351703 + 0.128009i
\(143\) 10.4317 6.02276i 0.0729491 0.0421172i
\(144\) 34.8313 + 9.09824i 0.241884 + 0.0631822i
\(145\) −57.9131 + 100.308i −0.399401 + 0.691782i
\(146\) 7.16134 + 8.53455i 0.0490503 + 0.0584558i
\(147\) −10.9171 26.1232i −0.0742662 0.177709i
\(148\) 10.1410 57.5123i 0.0685201 0.388597i
\(149\) 69.7907 + 12.3060i 0.468394 + 0.0825905i 0.402864 0.915260i \(-0.368015\pi\)
0.0655305 + 0.997851i \(0.479126\pi\)
\(150\) 10.5953 82.4859i 0.0706351 0.549906i
\(151\) −202.069 + 169.556i −1.33821 + 1.12289i −0.356123 + 0.934439i \(0.615902\pi\)
−0.982083 + 0.188449i \(0.939654\pi\)
\(152\) 73.8675 + 42.6474i 0.485970 + 0.280575i
\(153\) −19.5561 208.397i −0.127817 1.36207i
\(154\) −6.97333 12.0782i −0.0452814 0.0784296i
\(155\) 23.5131 64.6017i 0.151697 0.416785i
\(156\) 13.7228 44.0060i 0.0879665 0.282089i
\(157\) 74.3308 + 62.3709i 0.473444 + 0.397267i 0.848049 0.529918i \(-0.177777\pi\)
−0.374605 + 0.927185i \(0.622222\pi\)
\(158\) 34.9306 + 95.9709i 0.221079 + 0.607411i
\(159\) −118.459 + 229.319i −0.745027 + 1.44226i
\(160\) −2.28227 12.9434i −0.0142642 0.0808963i
\(161\) 141.568i 0.879302i
\(162\) 18.4687 113.053i 0.114004 0.697856i
\(163\) −166.799 −1.02331 −0.511654 0.859191i \(-0.670967\pi\)
−0.511654 + 0.859191i \(0.670967\pi\)
\(164\) 34.3337 6.05396i 0.209352 0.0369144i
\(165\) −9.70947 5.01562i −0.0588452 0.0303977i
\(166\) 34.2822 12.4777i 0.206519 0.0751668i
\(167\) −13.4784 + 16.0630i −0.0807092 + 0.0961855i −0.804888 0.593427i \(-0.797775\pi\)
0.724179 + 0.689612i \(0.242219\pi\)
\(168\) −50.9514 15.8886i −0.303282 0.0945753i
\(169\) 103.344 + 37.6142i 0.611505 + 0.222569i
\(170\) −66.1791 + 38.2085i −0.389289 + 0.224756i
\(171\) 113.149 246.696i 0.661693 1.44266i
\(172\) −83.6801 + 144.938i −0.486512 + 0.842664i
\(173\) 115.925 + 138.154i 0.670088 + 0.798580i 0.988796 0.149273i \(-0.0476934\pi\)
−0.318708 + 0.947853i \(0.603249\pi\)
\(174\) −209.782 26.9463i −1.20564 0.154864i
\(175\) −21.4096 + 121.420i −0.122341 + 0.693829i
\(176\) 6.17625 + 1.08904i 0.0350923 + 0.00618773i
\(177\) 126.167 52.7264i 0.712809 0.297889i
\(178\) 29.3876 24.6591i 0.165099 0.138534i
\(179\) 200.580 + 115.805i 1.12056 + 0.646955i 0.941544 0.336891i \(-0.109375\pi\)
0.179016 + 0.983846i \(0.442709\pi\)
\(180\) −40.3270 + 11.0784i −0.224039 + 0.0615464i
\(181\) 48.1236 + 83.3525i 0.265876 + 0.460511i 0.967793 0.251748i \(-0.0810054\pi\)
−0.701917 + 0.712259i \(0.747672\pi\)
\(182\) −23.3733 + 64.2176i −0.128425 + 0.352844i
\(183\) 171.929 + 186.445i 0.939505 + 1.01883i
\(184\) 48.7665 + 40.9199i 0.265035 + 0.222391i
\(185\) 23.2035 + 63.7510i 0.125424 + 0.344600i
\(186\) 125.400 5.87088i 0.674192 0.0315639i
\(187\) −6.33194 35.9102i −0.0338606 0.192033i
\(188\) 66.3011i 0.352665i
\(189\) −35.1888 + 166.141i −0.186184 + 0.879052i
\(190\) −99.0866 −0.521509
\(191\) 95.7785 16.8883i 0.501458 0.0884206i 0.0828031 0.996566i \(-0.473613\pi\)
0.418655 + 0.908145i \(0.362502\pi\)
\(192\) 20.2007 12.9589i 0.105212 0.0674942i
\(193\) −46.9759 + 17.0978i −0.243398 + 0.0885897i −0.460839 0.887484i \(-0.652451\pi\)
0.217441 + 0.976074i \(0.430229\pi\)
\(194\) 32.0698 38.2193i 0.165308 0.197007i
\(195\) 11.7549 + 52.2434i 0.0602813 + 0.267915i
\(196\) −17.7368 6.45567i −0.0904939 0.0329371i
\(197\) 229.122 132.284i 1.16306 0.671491i 0.211022 0.977481i \(-0.432321\pi\)
0.952035 + 0.305991i \(0.0989876\pi\)
\(198\) 1.61400 19.8905i 0.00815149 0.100457i
\(199\) −66.9711 + 115.997i −0.336538 + 0.582901i −0.983779 0.179384i \(-0.942589\pi\)
0.647241 + 0.762285i \(0.275923\pi\)
\(200\) −35.6377 42.4714i −0.178189 0.212357i
\(201\) −92.1810 + 120.919i −0.458612 + 0.601589i
\(202\) 1.30539 7.40321i 0.00646230 0.0366495i
\(203\) 308.800 + 54.4498i 1.52118 + 0.268226i
\(204\) −110.973 84.5985i −0.543985 0.414699i
\(205\) −31.0253 + 26.0333i −0.151343 + 0.126992i
\(206\) −82.5471 47.6586i −0.400714 0.231352i
\(207\) 115.139 166.660i 0.556227 0.805122i
\(208\) −15.3653 26.6135i −0.0738718 0.127950i
\(209\) 16.1712 44.4301i 0.0773743 0.212584i
\(210\) 60.4889 13.6101i 0.288043 0.0648101i
\(211\) −51.7595 43.4314i −0.245306 0.205836i 0.511842 0.859080i \(-0.328963\pi\)
−0.757148 + 0.653244i \(0.773408\pi\)
\(212\) 58.8521 + 161.695i 0.277604 + 0.762711i
\(213\) −60.8753 94.8941i −0.285800 0.445512i
\(214\) 0.182925 + 1.03742i 0.000854790 + 0.00484776i
\(215\) 194.422i 0.904287i
\(216\) −47.0601 60.1444i −0.217871 0.278446i
\(217\) −186.113 −0.857665
\(218\) −79.2008 + 13.9652i −0.363306 + 0.0640607i
\(219\) −1.10526 23.6079i −0.00504685 0.107799i
\(220\) −6.84623 + 2.49182i −0.0311192 + 0.0113265i
\(221\) −114.850 + 136.873i −0.519685 + 0.619336i
\(222\) −91.0728 + 83.9822i −0.410238 + 0.378298i
\(223\) −212.711 77.4206i −0.953863 0.347178i −0.182237 0.983255i \(-0.558334\pi\)
−0.771626 + 0.636077i \(0.780556\pi\)
\(224\) −30.8139 + 17.7904i −0.137562 + 0.0794216i
\(225\) −123.957 + 125.529i −0.550920 + 0.557906i
\(226\) 151.136 261.775i 0.668744 1.15830i
\(227\) −166.065 197.909i −0.731565 0.871845i 0.264135 0.964486i \(-0.414914\pi\)
−0.995700 + 0.0926409i \(0.970469\pi\)
\(228\) −69.7681 166.946i −0.306000 0.732218i
\(229\) 9.32712 52.8967i 0.0407298 0.230990i −0.957647 0.287945i \(-0.907028\pi\)
0.998377 + 0.0569548i \(0.0181391\pi\)
\(230\) −72.8301 12.8419i −0.316653 0.0558344i
\(231\) −3.76925 + 29.3442i −0.0163171 + 0.127031i
\(232\) −108.015 + 90.6352i −0.465581 + 0.390669i
\(233\) 93.1740 + 53.7940i 0.399888 + 0.230876i 0.686436 0.727190i \(-0.259174\pi\)
−0.286547 + 0.958066i \(0.592508\pi\)
\(234\) −79.7453 + 56.5903i −0.340792 + 0.241839i
\(235\) 38.5108 + 66.7027i 0.163876 + 0.283841i
\(236\) 31.1789 85.6634i 0.132114 0.362980i
\(237\) 64.4969 206.828i 0.272139 0.872690i
\(238\) 158.476 + 132.977i 0.665866 + 0.558728i
\(239\) −152.119 417.943i −0.636480 1.74872i −0.662509 0.749054i \(-0.730508\pi\)
0.0260287 0.999661i \(-0.491714\pi\)
\(240\) −12.7959 + 24.7709i −0.0533163 + 0.103212i
\(241\) −35.4521 201.059i −0.147104 0.834269i −0.965654 0.259833i \(-0.916333\pi\)
0.818549 0.574436i \(-0.194779\pi\)
\(242\) 167.643i 0.692741i
\(243\) −176.551 + 166.970i −0.726546 + 0.687118i
\(244\) 169.078 0.692943
\(245\) 21.5940 3.80760i 0.0881388 0.0155412i
\(246\) −65.7073 33.9424i −0.267103 0.137977i
\(247\) −217.709 + 79.2394i −0.881411 + 0.320807i
\(248\) 53.7958 64.1114i 0.216919 0.258514i
\(249\) −73.8818 23.0392i −0.296714 0.0925270i
\(250\) 137.713 + 50.1236i 0.550853 + 0.200494i
\(251\) −298.670 + 172.437i −1.18992 + 0.687000i −0.958288 0.285803i \(-0.907740\pi\)
−0.231631 + 0.972804i \(0.574406\pi\)
\(252\) 65.5219 + 92.3315i 0.260008 + 0.366395i
\(253\) 17.6444 30.5609i 0.0697405 0.120794i
\(254\) 44.8924 + 53.5007i 0.176742 + 0.210633i
\(255\) 160.784 + 20.6526i 0.630526 + 0.0809906i
\(256\) 2.77837 15.7569i 0.0108530 0.0615505i
\(257\) −179.971 31.7338i −0.700278 0.123478i −0.187837 0.982200i \(-0.560148\pi\)
−0.512441 + 0.858722i \(0.671259\pi\)
\(258\) 327.571 136.895i 1.26965 0.530599i
\(259\) 140.694 118.056i 0.543219 0.455815i
\(260\) 30.9168 + 17.8498i 0.118911 + 0.0686532i
\(261\) 319.250 + 315.253i 1.22318 + 1.20786i
\(262\) −34.8478 60.3582i −0.133007 0.230375i
\(263\) −88.5587 + 243.313i −0.336725 + 0.925144i 0.649592 + 0.760283i \(0.274940\pi\)
−0.986317 + 0.164861i \(0.947282\pi\)
\(264\) −9.01885 9.78032i −0.0341623 0.0370467i
\(265\) −153.129 128.490i −0.577844 0.484869i
\(266\) 91.7458 + 252.069i 0.344909 + 0.947629i
\(267\) −81.2906 + 3.80581i −0.304459 + 0.0142540i
\(268\) 17.6020 + 99.8259i 0.0656791 + 0.372485i
\(269\) 152.516i 0.566974i −0.958976 0.283487i \(-0.908509\pi\)
0.958976 0.283487i \(-0.0914913\pi\)
\(270\) 82.2799 + 33.1740i 0.304740 + 0.122867i
\(271\) 352.593 1.30108 0.650541 0.759471i \(-0.274542\pi\)
0.650541 + 0.759471i \(0.274542\pi\)
\(272\) −91.6146 + 16.1541i −0.336818 + 0.0593901i
\(273\) 122.020 78.2764i 0.446958 0.286727i
\(274\) 179.658 65.3903i 0.655687 0.238651i
\(275\) −19.7551 + 23.5432i −0.0718366 + 0.0856115i
\(276\) −29.6439 131.750i −0.107405 0.477354i
\(277\) 318.950 + 116.088i 1.15145 + 0.419092i 0.846034 0.533129i \(-0.178984\pi\)
0.305411 + 0.952221i \(0.401206\pi\)
\(278\) −266.894 + 154.091i −0.960051 + 0.554286i
\(279\) −219.102 151.369i −0.785311 0.542540i
\(280\) 20.6671 35.7964i 0.0738109 0.127844i
\(281\) 184.637 + 220.042i 0.657072 + 0.783067i 0.986962 0.160952i \(-0.0514563\pi\)
−0.329891 + 0.944019i \(0.607012\pi\)
\(282\) −85.2679 + 111.851i −0.302368 + 0.396635i
\(283\) 21.4854 121.850i 0.0759202 0.430565i −0.923029 0.384731i \(-0.874294\pi\)
0.998949 0.0458341i \(-0.0145946\pi\)
\(284\) −74.0193 13.0516i −0.260631 0.0459563i
\(285\) 167.161 + 127.432i 0.586529 + 0.447131i
\(286\) −13.0495 + 10.9498i −0.0456277 + 0.0382862i
\(287\) 94.9536 + 54.8215i 0.330849 + 0.191016i
\(288\) −50.7449 4.11764i −0.176198 0.0142974i
\(289\) 125.943 + 218.140i 0.435790 + 0.754810i
\(290\) 56.0239 153.924i 0.193186 0.530774i
\(291\) −103.255 + 23.2326i −0.354828 + 0.0798370i
\(292\) −12.0697 10.1277i −0.0413345 0.0346838i
\(293\) −172.243 473.234i −0.587861 1.61513i −0.774407 0.632688i \(-0.781952\pi\)
0.186547 0.982446i \(-0.440270\pi\)
\(294\) 21.6198 + 33.7016i 0.0735368 + 0.114631i
\(295\) 18.3896 + 104.292i 0.0623376 + 0.353534i
\(296\) 82.5894i 0.279018i
\(297\) −28.3034 + 31.4799i −0.0952978 + 0.105993i
\(298\) −100.222 −0.336314
\(299\) −170.289 + 30.0265i −0.569527 + 0.100423i
\(300\) 5.50021 + 117.482i 0.0183340 + 0.391608i
\(301\) −494.595 + 180.018i −1.64317 + 0.598066i
\(302\) 239.789 285.769i 0.794002 0.946255i
\(303\) −11.7233 + 10.8105i −0.0386906 + 0.0356783i
\(304\) −113.351 41.2562i −0.372864 0.135711i
\(305\) −170.102 + 98.2086i −0.557712 + 0.321995i
\(306\) 78.4135 + 285.438i 0.256253 + 0.932804i
\(307\) 303.015 524.837i 0.987018 1.70957i 0.354417 0.935087i \(-0.384679\pi\)
0.632601 0.774478i \(-0.281987\pi\)
\(308\) 12.6781 + 15.1091i 0.0411625 + 0.0490556i
\(309\) 77.9659 + 186.562i 0.252317 + 0.603761i
\(310\) −16.8828 + 95.7469i −0.0544605 + 0.308861i
\(311\) −112.127 19.7711i −0.360538 0.0635725i −0.00955468 0.999954i \(-0.503041\pi\)
−0.350983 + 0.936382i \(0.614153\pi\)
\(312\) −8.30532 + 64.6583i −0.0266196 + 0.207238i
\(313\) 391.591 328.584i 1.25109 1.04979i 0.254516 0.967069i \(-0.418084\pi\)
0.996573 0.0827197i \(-0.0263606\pi\)
\(314\) −118.839 68.6119i −0.378469 0.218509i
\(315\) −119.549 54.8326i −0.379522 0.174072i
\(316\) −72.2169 125.083i −0.228534 0.395833i
\(317\) −13.2129 + 36.3021i −0.0416810 + 0.114518i −0.958787 0.284126i \(-0.908297\pi\)
0.917106 + 0.398643i \(0.130519\pi\)
\(318\) 108.666 348.470i 0.341718 1.09582i
\(319\) 59.8759 + 50.2418i 0.187699 + 0.157498i
\(320\) 6.35717 + 17.4662i 0.0198662 + 0.0545818i
\(321\) 1.02560 1.98540i 0.00319501 0.00618504i
\(322\) 34.7655 + 197.165i 0.107968 + 0.612314i
\(323\) 701.344i 2.17134i
\(324\) 2.04110 + 161.987i 0.00629969 + 0.499960i
\(325\) 150.594 0.463368
\(326\) 232.306 40.9618i 0.712595 0.125650i
\(327\) 151.573 + 78.2982i 0.463527 + 0.239444i
\(328\) −46.3308 + 16.8630i −0.141253 + 0.0514117i
\(329\) 134.029 159.730i 0.407384 0.485501i
\(330\) 14.7544 + 4.60099i 0.0447102 + 0.0139424i
\(331\) −99.6998 36.2878i −0.301208 0.109631i 0.186995 0.982361i \(-0.440125\pi\)
−0.488203 + 0.872730i \(0.662347\pi\)
\(332\) −44.6815 + 25.7969i −0.134583 + 0.0777015i
\(333\) 261.648 24.5532i 0.785731 0.0737332i
\(334\) 14.8271 25.6814i 0.0443926 0.0768903i
\(335\) −75.6923 90.2065i −0.225947 0.269273i
\(336\) 74.8634 + 9.61615i 0.222808 + 0.0286195i
\(337\) −0.873000 + 4.95103i −0.00259051 + 0.0146915i −0.986076 0.166298i \(-0.946819\pi\)
0.983485 + 0.180989i \(0.0579299\pi\)
\(338\) −153.168 27.0076i −0.453159 0.0799041i
\(339\) −591.630 + 247.248i −1.74522 + 0.729344i
\(340\) 82.7864 69.4661i 0.243490 0.204312i
\(341\) −40.1772 23.1963i −0.117822 0.0680245i
\(342\) −97.0041 + 371.367i −0.283638 + 1.08587i
\(343\) −183.782 318.320i −0.535808 0.928047i
\(344\) 80.9504 222.409i 0.235321 0.646539i
\(345\) 106.350 + 115.329i 0.308261 + 0.334287i
\(346\) −195.380 163.943i −0.564681 0.473824i
\(347\) −77.4742 212.859i −0.223268 0.613425i 0.776594 0.630001i \(-0.216946\pi\)
−0.999863 + 0.0165761i \(0.994723\pi\)
\(348\) 298.786 13.9884i 0.858581 0.0401964i
\(349\) 85.4880 + 484.827i 0.244951 + 1.38919i 0.820606 + 0.571495i \(0.193636\pi\)
−0.575655 + 0.817693i \(0.695253\pi\)
\(350\) 174.363i 0.498179i
\(351\) 207.311 + 7.08936i 0.590629 + 0.0201976i
\(352\) −8.86928 −0.0251968
\(353\) 440.404 77.6551i 1.24760 0.219986i 0.489432 0.872042i \(-0.337204\pi\)
0.758171 + 0.652056i \(0.226093\pi\)
\(354\) −162.768 + 104.417i −0.459798 + 0.294964i
\(355\) 82.0487 29.8633i 0.231123 0.0841219i
\(356\) −34.8732 + 41.5603i −0.0979585 + 0.116742i
\(357\) −96.3336 428.146i −0.269842 1.19929i
\(358\) −307.793 112.027i −0.859756 0.312926i
\(359\) 62.2367 35.9324i 0.173361 0.100090i −0.410809 0.911722i \(-0.634754\pi\)
0.584170 + 0.811631i \(0.301420\pi\)
\(360\) 53.4440 25.3325i 0.148456 0.0703680i
\(361\) −274.201 + 474.930i −0.759559 + 1.31559i
\(362\) −87.4925 104.269i −0.241692 0.288037i
\(363\) 215.601 282.817i 0.593943 0.779110i
\(364\) 16.7824 95.1776i 0.0461054 0.261477i
\(365\) 18.0254 + 3.17837i 0.0493847 + 0.00870786i
\(366\) −285.237 217.446i −0.779337 0.594115i
\(367\) −106.401 + 89.2809i −0.289920 + 0.243272i −0.776134 0.630568i \(-0.782822\pi\)
0.486214 + 0.873840i \(0.338378\pi\)
\(368\) −77.9674 45.0145i −0.211868 0.122322i
\(369\) 67.1970 + 141.766i 0.182106 + 0.384189i
\(370\) −47.9718 83.0897i −0.129654 0.224567i
\(371\) −185.086 + 508.519i −0.498884 + 1.37067i
\(372\) −173.206 + 38.9717i −0.465608 + 0.104763i
\(373\) −498.940 418.661i −1.33764 1.12241i −0.982225 0.187706i \(-0.939895\pi\)
−0.355416 0.934708i \(-0.615661\pi\)
\(374\) 17.6373 + 48.4582i 0.0471587 + 0.129567i
\(375\) −167.862 261.668i −0.447632 0.697782i
\(376\) 16.2819 + 92.3394i 0.0433030 + 0.245584i
\(377\) 382.998i 1.01591i
\(378\) 8.20827 240.031i 0.0217150 0.635001i
\(379\) 379.153 1.00040 0.500202 0.865909i \(-0.333259\pi\)
0.500202 + 0.865909i \(0.333259\pi\)
\(380\) 138.001 24.3333i 0.363160 0.0640349i
\(381\) −6.92856 147.991i −0.0181852 0.388429i
\(382\) −129.246 + 47.0417i −0.338341 + 0.123146i
\(383\) 103.347 123.164i 0.269835 0.321577i −0.614062 0.789258i \(-0.710466\pi\)
0.883898 + 0.467680i \(0.154910\pi\)
\(384\) −24.9517 + 23.0090i −0.0649783 + 0.0599193i
\(385\) −21.5309 7.83662i −0.0559245 0.0203549i
\(386\) 61.2258 35.3487i 0.158616 0.0915771i
\(387\) −728.673 190.335i −1.88288 0.491823i
\(388\) −35.2788 + 61.1047i −0.0909248 + 0.157486i
\(389\) 255.119 + 304.040i 0.655834 + 0.781593i 0.986781 0.162057i \(-0.0518127\pi\)
−0.330947 + 0.943649i \(0.607368\pi\)
\(390\) −29.2010 69.8741i −0.0748744 0.179164i
\(391\) −90.8961 + 515.498i −0.232471 + 1.31841i
\(392\) 26.2879 + 4.63527i 0.0670610 + 0.0118247i
\(393\) −18.8360 + 146.642i −0.0479289 + 0.373135i
\(394\) −286.619 + 240.502i −0.727460 + 0.610411i
\(395\) 145.309 + 83.8940i 0.367870 + 0.212390i
\(396\) 2.63677 + 28.0984i 0.00665850 + 0.0709557i
\(397\) −19.8819 34.4365i −0.0500804 0.0867418i 0.839898 0.542744i \(-0.182614\pi\)
−0.889979 + 0.456002i \(0.849281\pi\)
\(398\) 64.7864 177.999i 0.162780 0.447234i
\(399\) 169.402 543.237i 0.424568 1.36150i
\(400\) 60.0636 + 50.3993i 0.150159 + 0.125998i
\(401\) 151.169 + 415.334i 0.376981 + 1.03575i 0.972601 + 0.232480i \(0.0746842\pi\)
−0.595620 + 0.803266i \(0.703094\pi\)
\(402\) 98.6883 191.045i 0.245493 0.475237i
\(403\) 39.4746 + 223.872i 0.0979519 + 0.555513i
\(404\) 10.6312i 0.0263149i
\(405\) −96.1433 161.783i −0.237391 0.399464i
\(406\) −443.446 −1.09223
\(407\) 45.0863 7.94992i 0.110777 0.0195330i
\(408\) 175.331 + 90.5705i 0.429732 + 0.221987i
\(409\) 130.597 47.5333i 0.319307 0.116218i −0.177394 0.984140i \(-0.556767\pi\)
0.496701 + 0.867922i \(0.334544\pi\)
\(410\) 36.8166 43.8764i 0.0897967 0.107015i
\(411\) −387.183 120.739i −0.942051 0.293768i
\(412\) 126.669 + 46.1039i 0.307450 + 0.111903i
\(413\) 248.286 143.348i 0.601176 0.347089i
\(414\) −119.430 + 260.388i −0.288477 + 0.628956i
\(415\) 29.9681 51.9063i 0.0722124 0.125076i
\(416\) 27.9354 + 33.2921i 0.0671523 + 0.0800290i
\(417\) 648.427 + 83.2900i 1.55498 + 0.199736i
\(418\) −11.6112 + 65.8503i −0.0277780 + 0.157537i
\(419\) 67.2764 + 11.8626i 0.160564 + 0.0283118i 0.253352 0.967374i \(-0.418467\pi\)
−0.0927881 + 0.995686i \(0.529578\pi\)
\(420\) −80.9024 + 33.8098i −0.192625 + 0.0804995i
\(421\) 266.680 223.771i 0.633444 0.531522i −0.268553 0.963265i \(-0.586546\pi\)
0.901997 + 0.431742i \(0.142101\pi\)
\(422\) 82.7527 + 47.7773i 0.196096 + 0.113216i
\(423\) 287.696 79.0339i 0.680134 0.186841i
\(424\) −121.673 210.744i −0.286965 0.497038i
\(425\) 155.920 428.387i 0.366871 1.00797i
\(426\) 108.086 + 117.212i 0.253724 + 0.275146i
\(427\) 407.336 + 341.795i 0.953948 + 0.800458i
\(428\) −0.509530 1.39992i −0.00119049 0.00327085i
\(429\) 36.0970 1.68996i 0.0841422 0.00393931i
\(430\) 47.7452 + 270.777i 0.111035 + 0.629713i
\(431\) 350.668i 0.813615i 0.913514 + 0.406807i \(0.133358\pi\)
−0.913514 + 0.406807i \(0.866642\pi\)
\(432\) 80.3119 + 72.2080i 0.185907 + 0.167148i
\(433\) −177.240 −0.409330 −0.204665 0.978832i \(-0.565610\pi\)
−0.204665 + 0.978832i \(0.565610\pi\)
\(434\) 259.205 45.7049i 0.597247 0.105311i
\(435\) −292.471 + 187.622i −0.672347 + 0.431316i
\(436\) 106.876 38.8996i 0.245128 0.0892192i
\(437\) −436.282 + 519.941i −0.998357 + 1.18980i
\(438\) 7.33685 + 32.6080i 0.0167508 + 0.0744475i
\(439\) 2.67961 + 0.975298i 0.00610389 + 0.00222163i 0.345070 0.938577i \(-0.387855\pi\)
−0.338966 + 0.940798i \(0.610077\pi\)
\(440\) 8.92301 5.15170i 0.0202796 0.0117084i
\(441\) 6.86963 84.6597i 0.0155774 0.191972i
\(442\) 126.343 218.832i 0.285843 0.495095i
\(443\) 343.331 + 409.166i 0.775014 + 0.923626i 0.998697 0.0510363i \(-0.0162524\pi\)
−0.223683 + 0.974662i \(0.571808\pi\)
\(444\) 106.216 139.330i 0.239225 0.313805i
\(445\) 10.9443 62.0681i 0.0245939 0.139479i
\(446\) 315.262 + 55.5892i 0.706865 + 0.124639i
\(447\) 169.075 + 128.892i 0.378245 + 0.288349i
\(448\) 38.5466 32.3444i 0.0860414 0.0721973i
\(449\) −573.148 330.907i −1.27650 0.736987i −0.300296 0.953846i \(-0.597085\pi\)
−0.976203 + 0.216859i \(0.930419\pi\)
\(450\) 141.812 205.268i 0.315137 0.456152i
\(451\) 13.6654 + 23.6692i 0.0303003 + 0.0524816i
\(452\) −146.206 + 401.697i −0.323464 + 0.888711i
\(453\) −772.046 + 173.712i −1.70430 + 0.383470i
\(454\) 279.885 + 234.852i 0.616487 + 0.517294i
\(455\) 38.3997 + 105.502i 0.0843948 + 0.231873i
\(456\) 138.166 + 215.377i 0.302995 + 0.472317i
\(457\) 106.695 + 605.098i 0.233468 + 1.32407i 0.845815 + 0.533476i \(0.179115\pi\)
−0.612347 + 0.790589i \(0.709774\pi\)
\(458\) 75.9613i 0.165854i
\(459\) 234.809 582.384i 0.511566 1.26881i
\(460\) 104.586 0.227361
\(461\) −397.986 + 70.1756i −0.863310 + 0.152225i −0.587734 0.809054i \(-0.699980\pi\)
−0.275576 + 0.961279i \(0.588869\pi\)
\(462\) −1.95669 41.7942i −0.00423526 0.0904636i
\(463\) 390.527 142.140i 0.843470 0.306998i 0.116095 0.993238i \(-0.462962\pi\)
0.727375 + 0.686240i \(0.240740\pi\)
\(464\) 128.178 152.756i 0.276245 0.329216i
\(465\) 151.619 139.814i 0.326062 0.300676i
\(466\) −142.977 52.0392i −0.306817 0.111672i
\(467\) 161.324 93.1404i 0.345448 0.199444i −0.317231 0.948348i \(-0.602753\pi\)
0.662678 + 0.748904i \(0.269420\pi\)
\(468\) 97.1664 98.3984i 0.207620 0.210253i
\(469\) −159.395 + 276.079i −0.339860 + 0.588655i
\(470\) −70.0157 83.4414i −0.148970 0.177535i
\(471\) 112.244 + 268.585i 0.238310 + 0.570245i
\(472\) −22.3869 + 126.963i −0.0474299 + 0.268989i
\(473\) −129.207 22.7828i −0.273166 0.0481665i
\(474\) −39.0349 + 303.894i −0.0823521 + 0.641126i
\(475\) 452.824 379.964i 0.953313 0.799924i
\(476\) −253.370 146.283i −0.532290 0.307318i
\(477\) −631.478 + 448.121i −1.32385 + 0.939457i
\(478\) 314.497 + 544.724i 0.657943 + 1.13959i
\(479\) 117.100 321.729i 0.244467 0.671668i −0.755398 0.655266i \(-0.772557\pi\)
0.999865 0.0164023i \(-0.00522124\pi\)
\(480\) 11.7381 37.6415i 0.0244544 0.0784198i
\(481\) −171.848 144.198i −0.357273 0.299787i
\(482\) 98.7503 + 271.314i 0.204876 + 0.562892i
\(483\) 194.918 377.332i 0.403558 0.781225i
\(484\) −41.1691 233.482i −0.0850602 0.482400i
\(485\) 81.9665i 0.169003i
\(486\) 204.884 275.900i 0.421571 0.567695i
\(487\) −483.112 −0.992016 −0.496008 0.868318i \(-0.665201\pi\)
−0.496008 + 0.868318i \(0.665201\pi\)
\(488\) −235.480 + 41.5214i −0.482541 + 0.0850849i
\(489\) −444.584 229.659i −0.909169 0.469650i
\(490\) −29.1395 + 10.6059i −0.0594684 + 0.0216447i
\(491\) −160.343 + 191.089i −0.326564 + 0.389184i −0.904199 0.427111i \(-0.859531\pi\)
0.577635 + 0.816295i \(0.303976\pi\)
\(492\) 99.8479 + 31.1365i 0.202943 + 0.0632855i
\(493\) −1089.49 396.542i −2.20992 0.804345i
\(494\) 283.750 163.823i 0.574392 0.331625i
\(495\) −18.9737 26.7371i −0.0383306 0.0540143i
\(496\) −59.1788 + 102.501i −0.119312 + 0.206655i
\(497\) −151.940 181.075i −0.305715 0.364336i
\(498\) 108.555 + 13.9438i 0.217982 + 0.0279997i
\(499\) 57.5888 326.602i 0.115408 0.654513i −0.871139 0.491037i \(-0.836618\pi\)
0.986547 0.163476i \(-0.0522708\pi\)
\(500\) −204.106 35.9895i −0.408213 0.0719789i
\(501\) −58.0416 + 24.2561i −0.115852 + 0.0484154i
\(502\) 373.620 313.504i 0.744262 0.624510i
\(503\) −212.097 122.454i −0.421664 0.243448i 0.274125 0.961694i \(-0.411612\pi\)
−0.695789 + 0.718246i \(0.744945\pi\)
\(504\) −113.929 112.502i −0.226049 0.223219i
\(505\) −6.17512 10.6956i −0.0122280 0.0211795i
\(506\) −17.0688 + 46.8961i −0.0337328 + 0.0926800i
\(507\) 223.663 + 242.547i 0.441149 + 0.478396i
\(508\) −75.6614 63.4875i −0.148940 0.124975i
\(509\) −302.898 832.205i −0.595084 1.63498i −0.760934 0.648829i \(-0.775259\pi\)
0.165850 0.986151i \(-0.446963\pi\)
\(510\) −229.000 + 10.7212i −0.449020 + 0.0210219i
\(511\) −8.60446 48.7983i −0.0168385 0.0954957i
\(512\) 22.6274i 0.0441942i
\(513\) 641.251 501.747i 1.25000 0.978065i
\(514\) 258.444 0.502810
\(515\) −154.216 + 27.1925i −0.299449 + 0.0528009i
\(516\) −422.599 + 271.100i −0.818990 + 0.525388i
\(517\) 48.8416 17.7769i 0.0944712 0.0343847i
\(518\) −166.956 + 198.971i −0.322310 + 0.384114i
\(519\) 118.766 + 527.846i 0.228837 + 1.01705i
\(520\) −47.4422 17.2675i −0.0912350 0.0332068i
\(521\) 285.381 164.765i 0.547756 0.316247i −0.200461 0.979702i \(-0.564244\pi\)
0.748216 + 0.663455i \(0.230911\pi\)
\(522\) −522.047 360.661i −1.00009 0.690922i
\(523\) 145.262 251.600i 0.277747 0.481071i −0.693078 0.720863i \(-0.743746\pi\)
0.970824 + 0.239791i \(0.0770791\pi\)
\(524\) 63.3560 + 75.5048i 0.120908 + 0.144093i
\(525\) −224.243 + 294.153i −0.427129 + 0.560291i
\(526\) 63.5865 360.617i 0.120887 0.685583i
\(527\) 677.705 + 119.498i 1.28597 + 0.226751i
\(528\) 14.9626 + 11.4065i 0.0283383 + 0.0216033i
\(529\) 17.1780 14.4140i 0.0324726 0.0272477i
\(530\) 244.821 + 141.347i 0.461926 + 0.266693i
\(531\) 408.881 + 33.1782i 0.770020 + 0.0624825i
\(532\) −189.679 328.534i −0.356540 0.617545i
\(533\) 45.8039 125.845i 0.0859361 0.236107i
\(534\) 112.281 25.2634i 0.210264 0.0473098i
\(535\) 1.32576 + 1.11244i 0.00247805 + 0.00207933i
\(536\) −49.0296 134.708i −0.0914732 0.251320i
\(537\) 375.176 + 584.835i 0.698652 + 1.08908i
\(538\) 37.4542 + 212.413i 0.0696175 + 0.394820i
\(539\) 14.7970i 0.0274526i
\(540\) −122.740 25.9965i −0.227297 0.0481417i
\(541\) −385.680 −0.712901 −0.356451 0.934314i \(-0.616013\pi\)
−0.356451 + 0.934314i \(0.616013\pi\)
\(542\) −491.067 + 86.5883i −0.906027 + 0.159757i
\(543\) 13.5033 + 288.426i 0.0248680 + 0.531171i
\(544\) 123.627 44.9966i 0.227256 0.0827143i
\(545\) −84.9284 + 101.214i −0.155832 + 0.185713i
\(546\) −150.717 + 138.983i −0.276039 + 0.254547i
\(547\) −621.520 226.215i −1.13623 0.413556i −0.295683 0.955286i \(-0.595547\pi\)
−0.840552 + 0.541731i \(0.817769\pi\)
\(548\) −234.157 + 135.191i −0.427294 + 0.246698i
\(549\) 201.549 + 733.671i 0.367120 + 1.33638i
\(550\) 21.7318 37.6406i 0.0395124 0.0684374i
\(551\) −966.340 1151.64i −1.75379 2.09009i
\(552\) 73.6404 + 176.212i 0.133407 + 0.319224i
\(553\) 78.8770 447.334i 0.142635 0.808922i
\(554\) −472.720 83.3532i −0.853285 0.150457i
\(555\) −25.9299 + 201.869i −0.0467205 + 0.363728i
\(556\) 333.870 280.150i 0.600485 0.503867i
\(557\) 352.046 + 203.254i 0.632040 + 0.364909i 0.781542 0.623853i \(-0.214434\pi\)
−0.149502 + 0.988761i \(0.547767\pi\)
\(558\) 342.322 + 157.009i 0.613480 + 0.281379i
\(559\) 321.443 + 556.756i 0.575033 + 0.995986i
\(560\) −19.9929 + 54.9300i −0.0357016 + 0.0980893i
\(561\) 32.5662 104.433i 0.0580502 0.186154i
\(562\) −311.186 261.116i −0.553712 0.464620i
\(563\) 338.582 + 930.245i 0.601388 + 1.65230i 0.748464 + 0.663175i \(0.230792\pi\)
−0.147076 + 0.989125i \(0.546986\pi\)
\(564\) 91.2871 176.718i 0.161857 0.313329i
\(565\) −86.2334 489.054i −0.152626 0.865582i
\(566\) 174.980i 0.309152i
\(567\) −322.544 + 394.379i −0.568860 + 0.695554i
\(568\) 106.294 0.187137
\(569\) −115.486 + 20.3632i −0.202963 + 0.0357878i −0.274205 0.961671i \(-0.588415\pi\)
0.0712425 + 0.997459i \(0.477304\pi\)
\(570\) −264.104 136.428i −0.463340 0.239348i
\(571\) 399.543 145.422i 0.699725 0.254679i 0.0324316 0.999474i \(-0.489675\pi\)
0.667294 + 0.744795i \(0.267453\pi\)
\(572\) 15.4854 18.4548i 0.0270724 0.0322636i
\(573\) 278.539 + 86.8594i 0.486107 + 0.151587i
\(574\) −145.707 53.0332i −0.253846 0.0923923i
\(575\) 382.076 220.592i 0.664480 0.383638i
\(576\) 71.6851 6.72695i 0.124453 0.0116787i
\(577\) −3.24056 + 5.61282i −0.00561623 + 0.00972759i −0.868820 0.495128i \(-0.835121\pi\)
0.863204 + 0.504856i \(0.168454\pi\)
\(578\) −228.975 272.881i −0.396150 0.472113i
\(579\) −148.750 19.1068i −0.256908 0.0329997i
\(580\) −40.2260 + 228.133i −0.0693552 + 0.393333i
\(581\) −159.794 28.1760i −0.275033 0.0484957i
\(582\) 138.101 57.7136i 0.237287 0.0991642i
\(583\) −103.335 + 86.7084i −0.177247 + 0.148728i
\(584\) 19.2969 + 11.1411i 0.0330426 + 0.0190772i
\(585\) −40.6005 + 155.433i −0.0694025 + 0.265698i
\(586\) 356.103 + 616.788i 0.607684 + 1.05254i
\(587\) −149.791 + 411.548i −0.255181 + 0.701105i 0.744267 + 0.667882i \(0.232799\pi\)
−0.999448 + 0.0332222i \(0.989423\pi\)
\(588\) −38.3868 41.6279i −0.0652837 0.0707957i
\(589\) 683.546 + 573.563i 1.16052 + 0.973792i
\(590\) −51.2234 140.735i −0.0868193 0.238534i
\(591\) 792.834 37.1184i 1.34151 0.0628060i
\(592\) −20.2819 115.025i −0.0342600 0.194298i
\(593\) 328.720i 0.554334i −0.960822 0.277167i \(-0.910604\pi\)
0.960822 0.277167i \(-0.0893956\pi\)
\(594\) 31.6883 50.7936i 0.0533473 0.0855111i
\(595\) 339.873 0.571215
\(596\) 139.581 24.6120i 0.234197 0.0412953i
\(597\) −338.215 + 216.968i −0.566525 + 0.363430i
\(598\) 229.792 83.6374i 0.384267 0.139862i
\(599\) 348.296 415.083i 0.581463 0.692960i −0.392479 0.919761i \(-0.628382\pi\)
0.973941 + 0.226801i \(0.0728267\pi\)
\(600\) −36.5111 162.270i −0.0608519 0.270451i
\(601\) 148.519 + 54.0563i 0.247119 + 0.0899440i 0.462610 0.886562i \(-0.346913\pi\)
−0.215491 + 0.976506i \(0.569135\pi\)
\(602\) 644.629 372.177i 1.07081 0.618233i
\(603\) −412.186 + 195.376i −0.683560 + 0.324007i
\(604\) −263.783 + 456.885i −0.436726 + 0.756432i
\(605\) 177.036 + 210.983i 0.292621 + 0.348732i
\(606\) 13.6725 17.9351i 0.0225619 0.0295958i
\(607\) 16.1881 91.8071i 0.0266690 0.151247i −0.968565 0.248759i \(-0.919977\pi\)
0.995234 + 0.0975118i \(0.0310884\pi\)
\(608\) 167.998 + 29.6226i 0.276313 + 0.0487214i
\(609\) 748.101 + 570.303i 1.22841 + 0.936458i
\(610\) 212.789 178.551i 0.348834 0.292706i
\(611\) −220.563 127.342i −0.360987 0.208416i
\(612\) −179.305 378.281i −0.292983 0.618107i
\(613\) −17.1815 29.7593i −0.0280286 0.0485469i 0.851671 0.524077i \(-0.175590\pi\)
−0.879699 + 0.475530i \(0.842256\pi\)
\(614\) −293.130 + 805.368i −0.477410 + 1.31167i
\(615\) −118.538 + 26.6713i −0.192745 + 0.0433680i
\(616\) −21.3675 17.9295i −0.0346875 0.0291063i
\(617\) 239.022 + 656.706i 0.387393 + 1.06435i 0.968171 + 0.250291i \(0.0805264\pi\)
−0.580777 + 0.814062i \(0.697251\pi\)
\(618\) −154.400 240.684i −0.249839 0.389456i
\(619\) −17.1006 96.9823i −0.0276262 0.156676i 0.967874 0.251436i \(-0.0809027\pi\)
−0.995500 + 0.0947600i \(0.969792\pi\)
\(620\) 137.495i 0.221767i
\(621\) 536.357 285.684i 0.863698 0.460038i
\(622\) 161.018 0.258871
\(623\) −168.030 + 29.6283i −0.269711 + 0.0475574i
\(624\) −4.31146 92.0911i −0.00690939 0.147582i
\(625\) −234.246 + 85.2585i −0.374793 + 0.136414i
\(626\) −464.688 + 553.793i −0.742312 + 0.884653i
\(627\) 104.276 96.1577i 0.166310 0.153362i
\(628\) 182.360 + 66.3737i 0.290383 + 0.105691i
\(629\) −588.116 + 339.549i −0.935001 + 0.539823i
\(630\) 179.965 + 47.0085i 0.285659 + 0.0746166i
\(631\) −167.835 + 290.699i −0.265983 + 0.460696i −0.967821 0.251641i \(-0.919030\pi\)
0.701838 + 0.712337i \(0.252363\pi\)
\(632\) 131.296 + 156.472i 0.207747 + 0.247583i
\(633\) −78.1601 187.027i −0.123476 0.295461i
\(634\) 9.48705 53.8037i 0.0149638 0.0848639i
\(635\) 112.996 + 19.9243i 0.177947 + 0.0313768i
\(636\) −65.7672 + 512.009i −0.103408 + 0.805046i
\(637\) −55.5425 + 46.6057i −0.0871938 + 0.0731643i
\(638\) −95.7290 55.2692i −0.150045 0.0866288i
\(639\) −31.6003 336.746i −0.0494528 0.526989i
\(640\) −13.1431 22.7645i −0.0205361 0.0355695i
\(641\) 341.193 937.419i 0.532282 1.46243i −0.324067 0.946034i \(-0.605050\pi\)
0.856349 0.516398i \(-0.172727\pi\)
\(642\) −0.940813 + 3.01698i −0.00146544 + 0.00469935i
\(643\) 478.514 + 401.521i 0.744189 + 0.624449i 0.933959 0.357380i \(-0.116330\pi\)
−0.189770 + 0.981829i \(0.560774\pi\)
\(644\) −96.8379 266.060i −0.150369 0.413137i
\(645\) 267.691 518.208i 0.415025 0.803423i
\(646\) −172.233 976.781i −0.266614 1.51205i
\(647\) 550.714i 0.851181i 0.904916 + 0.425591i \(0.139934\pi\)
−0.904916 + 0.425591i \(0.860066\pi\)
\(648\) −42.6228 225.103i −0.0657759 0.347381i
\(649\) 71.4649 0.110115
\(650\) −209.737 + 36.9823i −0.322673 + 0.0568959i
\(651\) −496.063 256.251i −0.762002 0.393627i
\(652\) −313.480 + 114.097i −0.480798 + 0.174996i
\(653\) 435.250 518.711i 0.666539 0.794350i −0.321770 0.946818i \(-0.604278\pi\)
0.988308 + 0.152468i \(0.0487221\pi\)
\(654\) −230.329 71.8255i −0.352184 0.109825i
\(655\) −107.597 39.1619i −0.164270 0.0597892i
\(656\) 60.3851 34.8634i 0.0920505 0.0531454i
\(657\) 29.5588 64.4459i 0.0449905 0.0980912i
\(658\) −147.441 + 255.375i −0.224074 + 0.388107i
\(659\) −307.922 366.967i −0.467257 0.556855i 0.480026 0.877254i \(-0.340627\pi\)
−0.947283 + 0.320399i \(0.896183\pi\)
\(660\) −21.6787 2.78462i −0.0328465 0.00421911i
\(661\) −166.498 + 944.257i −0.251888 + 1.42853i 0.552048 + 0.833812i \(0.313846\pi\)
−0.803936 + 0.594716i \(0.797265\pi\)
\(662\) 147.766 + 26.0552i 0.223212 + 0.0393583i
\(663\) −494.575 + 206.687i −0.745966 + 0.311746i
\(664\) 55.8942 46.9008i 0.0841780 0.0706337i
\(665\) 381.656 + 220.349i 0.573919 + 0.331352i
\(666\) −358.375 + 98.4503i −0.538101 + 0.147823i
\(667\) −561.018 971.711i −0.841106 1.45684i
\(668\) −14.3435 + 39.4083i −0.0214722 + 0.0589945i
\(669\) −460.360 499.229i −0.688132 0.746231i
\(670\) 127.571 + 107.045i 0.190405 + 0.159769i
\(671\) 45.3338 + 124.554i 0.0675616 + 0.185624i
\(672\) −106.626 + 4.99194i −0.158669 + 0.00742847i
\(673\) 34.1556 + 193.706i 0.0507513 + 0.287825i 0.999612 0.0278717i \(-0.00887300\pi\)
−0.948860 + 0.315696i \(0.897762\pi\)
\(674\) 7.10983i 0.0105487i
\(675\) −503.228 + 163.911i −0.745524 + 0.242831i
\(676\) 219.953 0.325375
\(677\) −705.776 + 124.447i −1.04250 + 0.183822i −0.668582 0.743638i \(-0.733098\pi\)
−0.373922 + 0.927460i \(0.621987\pi\)
\(678\) 763.263 489.639i 1.12576 0.722181i
\(679\) −208.517 + 75.8940i −0.307094 + 0.111773i
\(680\) −98.2399 + 117.078i −0.144470 + 0.172173i
\(681\) −170.135 756.151i −0.249831 1.11035i
\(682\) 61.6524 + 22.4397i 0.0903995 + 0.0329027i
\(683\) 223.152 128.837i 0.326723 0.188633i −0.327662 0.944795i \(-0.606261\pi\)
0.654385 + 0.756161i \(0.272928\pi\)
\(684\) 43.9017 541.035i 0.0641838 0.790987i
\(685\) 157.050 272.019i 0.229270 0.397108i
\(686\) 334.130 + 398.201i 0.487071 + 0.580468i
\(687\) 97.6916 128.148i 0.142200 0.186533i
\(688\) −58.1236 + 329.635i −0.0844820 + 0.479121i
\(689\) 650.944 + 114.779i 0.944766 + 0.166588i
\(690\) −176.439 134.505i −0.255708 0.194935i
\(691\) −224.575 + 188.440i −0.324999 + 0.272707i −0.790659 0.612257i \(-0.790262\pi\)
0.465659 + 0.884964i \(0.345817\pi\)
\(692\) 312.371 + 180.348i 0.451403 + 0.260618i
\(693\) −50.4493 + 73.0239i −0.0727984 + 0.105374i
\(694\) 160.173 + 277.428i 0.230797 + 0.399753i
\(695\) −173.168 + 475.775i −0.249162 + 0.684568i
\(696\) −412.693 + 92.8566i −0.592949 + 0.133415i
\(697\) −310.561 260.591i −0.445568 0.373876i
\(698\) −238.123 654.238i −0.341151 0.937304i
\(699\) 174.278 + 271.669i 0.249324 + 0.388654i
\(700\) 42.8192 + 242.840i 0.0611703 + 0.346914i
\(701\) 414.603i 0.591445i −0.955274 0.295722i \(-0.904440\pi\)
0.955274 0.295722i \(-0.0955603\pi\)
\(702\) −290.469 + 41.0369i −0.413773 + 0.0584571i
\(703\) −880.556 −1.25257
\(704\) 12.3525 2.17808i 0.0175462 0.00309386i
\(705\) 10.8060 + 230.812i 0.0153277 + 0.327393i
\(706\) −594.293 + 216.305i −0.841774 + 0.306381i
\(707\) −21.4913 + 25.6123i −0.0303979 + 0.0362268i
\(708\) 201.050 185.397i 0.283969 0.261860i
\(709\) −502.572 182.921i −0.708846 0.257999i −0.0376632 0.999290i \(-0.511991\pi\)
−0.671183 + 0.741291i \(0.734214\pi\)
\(710\) −106.938 + 61.7406i −0.150617 + 0.0869586i
\(711\) 456.681 462.472i 0.642308 0.650452i
\(712\) 38.3627 66.4462i 0.0538802 0.0933233i
\(713\) 428.081 + 510.167i 0.600394 + 0.715521i
\(714\) 239.309 + 572.634i 0.335166 + 0.802008i
\(715\) −4.85979 + 27.5613i −0.00679691 + 0.0385472i
\(716\) 456.183 + 80.4373i 0.637127 + 0.112343i
\(717\) 169.993 1323.42i 0.237089 1.84578i
\(718\) −77.8547 + 65.3279i −0.108433 + 0.0909859i
\(719\) −829.644 478.995i −1.15389 0.666196i −0.204055 0.978959i \(-0.565412\pi\)
−0.949831 + 0.312763i \(0.898745\pi\)
\(720\) −68.2120 + 48.4058i −0.0947389 + 0.0672303i
\(721\) 211.967 + 367.137i 0.293990 + 0.509205i
\(722\) 265.256 728.785i 0.367391 1.00940i
\(723\) 182.336 584.711i 0.252193 0.808729i
\(724\) 147.459 + 123.733i 0.203673 + 0.170902i
\(725\) 334.221 + 918.264i 0.460994 + 1.26657i
\(726\) −230.821 + 446.834i −0.317935 + 0.615473i
\(727\) 132.512 + 751.513i 0.182272 + 1.03372i 0.929410 + 0.369048i \(0.120316\pi\)
−0.747138 + 0.664669i \(0.768573\pi\)
\(728\) 136.678i 0.187744i
\(729\) −700.468 + 201.953i −0.960862 + 0.277027i
\(730\) −25.8851 −0.0354590
\(731\) 1916.58 337.945i 2.62186 0.462305i
\(732\) 450.658 + 232.796i 0.615653 + 0.318028i
\(733\) 386.707 140.750i 0.527568 0.192019i −0.0644843 0.997919i \(-0.520540\pi\)
0.592052 + 0.805900i \(0.298318\pi\)
\(734\) 126.262 150.473i 0.172019 0.205005i
\(735\) 62.7988 + 19.5831i 0.0854405 + 0.0266437i
\(736\) 119.642 + 43.5461i 0.162557 + 0.0591658i
\(737\) −68.8186 + 39.7324i −0.0933767 + 0.0539111i
\(738\) −128.401 180.939i −0.173986 0.245175i
\(739\) −310.367 + 537.571i −0.419982 + 0.727431i −0.995937 0.0900509i \(-0.971297\pi\)
0.575955 + 0.817481i \(0.304630\pi\)
\(740\) 87.2166 + 103.941i 0.117860 + 0.140460i
\(741\) −689.378 88.5501i −0.930334 0.119501i
\(742\) 132.894 753.682i 0.179103 1.01574i
\(743\) −892.676 157.403i −1.20145 0.211848i −0.463124 0.886293i \(-0.653272\pi\)
−0.738325 + 0.674446i \(0.764383\pi\)
\(744\) 231.659 96.8122i 0.311369 0.130124i
\(745\) −126.131 + 105.837i −0.169304 + 0.142063i
\(746\) 797.701 + 460.553i 1.06930 + 0.617363i
\(747\) −165.201 163.133i −0.221153 0.218384i
\(748\) −36.4642 63.1578i −0.0487489 0.0844356i
\(749\) 1.60244 4.40266i 0.00213944 0.00587805i
\(750\) 298.046 + 323.210i 0.397394 + 0.430947i
\(751\) −262.258 220.060i −0.349211 0.293023i 0.451262 0.892391i \(-0.350974\pi\)
−0.800473 + 0.599369i \(0.795418\pi\)
\(752\) −45.3526 124.605i −0.0603093 0.165699i
\(753\) −1033.49 + 48.3853i −1.37250 + 0.0642566i
\(754\) 94.0549 + 533.412i 0.124741 + 0.707443i
\(755\) 612.870i 0.811748i
\(756\) 47.5138 + 336.313i 0.0628489 + 0.444859i
\(757\) 546.517 0.721951 0.360975 0.932575i \(-0.382444\pi\)
0.360975 + 0.932575i \(0.382444\pi\)
\(758\) −528.057 + 93.1108i −0.696646 + 0.122837i
\(759\) 89.1070 57.1628i 0.117400 0.0753133i
\(760\) −186.222 + 67.7792i −0.245029 + 0.0891832i
\(761\) −48.9259 + 58.3077i −0.0642916 + 0.0766198i −0.797232 0.603673i \(-0.793703\pi\)
0.732940 + 0.680293i \(0.238148\pi\)
\(762\) 45.9927 + 204.410i 0.0603578 + 0.268255i
\(763\) 336.117 + 122.337i 0.440520 + 0.160336i
\(764\) 168.452 97.2561i 0.220487 0.127299i
\(765\) 400.115 + 276.424i 0.523027 + 0.361338i
\(766\) −113.688 + 196.914i −0.148418 +