Properties

Label 54.3.f.a.41.2
Level $54$
Weight $3$
Character 54.41
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 41.2
Character \(\chi\) \(=\) 54.41
Dual form 54.3.f.a.29.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39273 + 0.245576i) q^{2} +(-2.10518 - 2.13733i) q^{3} +(1.87939 - 0.684040i) q^{4} +(-5.37469 + 6.40531i) q^{5} +(3.45683 + 2.45974i) q^{6} +(-8.61655 - 3.13617i) q^{7} +(-2.44949 + 1.41421i) q^{8} +(-0.136395 + 8.99897i) q^{9} +O(q^{10})\) \(q+(-1.39273 + 0.245576i) q^{2} +(-2.10518 - 2.13733i) q^{3} +(1.87939 - 0.684040i) q^{4} +(-5.37469 + 6.40531i) q^{5} +(3.45683 + 2.45974i) q^{6} +(-8.61655 - 3.13617i) q^{7} +(-2.44949 + 1.41421i) q^{8} +(-0.136395 + 8.99897i) q^{9} +(5.91250 - 10.2407i) q^{10} +(-4.22940 - 5.04040i) q^{11} +(-5.41848 - 2.57684i) q^{12} +(1.04310 - 5.91570i) q^{13} +(12.7707 + 2.25182i) q^{14} +(25.0050 - 1.99684i) q^{15} +(3.06418 - 2.57115i) q^{16} +(-0.880022 - 0.508081i) q^{17} +(-2.01997 - 12.5666i) q^{18} +(10.5593 + 18.2893i) q^{19} +(-5.71963 + 15.7145i) q^{20} +(11.4364 + 25.0187i) q^{21} +(7.12821 + 5.98128i) q^{22} +(-7.33348 - 20.1486i) q^{23} +(8.17928 + 2.25820i) q^{24} +(-7.79945 - 44.2329i) q^{25} +8.49512i q^{26} +(19.5209 - 18.6530i) q^{27} -18.3391 q^{28} +(-47.7181 + 8.41399i) q^{29} +(-34.3348 + 8.92168i) q^{30} +(-6.20863 + 2.25976i) q^{31} +(-3.63616 + 4.33340i) q^{32} +(-1.86936 + 19.6506i) q^{33} +(1.35040 + 0.491507i) q^{34} +(66.3994 - 38.3357i) q^{35} +(5.89932 + 17.0058i) q^{36} +(-33.2994 + 57.6763i) q^{37} +(-19.1977 - 22.8789i) q^{38} +(-14.8397 + 10.2242i) q^{39} +(4.10678 - 23.2907i) q^{40} +(52.2291 + 9.20941i) q^{41} +(-22.0718 - 32.0357i) q^{42} +(-36.3861 + 30.5315i) q^{43} +(-11.3965 - 6.57978i) q^{44} +(-56.9081 - 49.2403i) q^{45} +(15.1616 + 26.2606i) q^{46} +(-2.23172 + 6.13159i) q^{47} +(-11.9461 - 1.13643i) q^{48} +(26.8732 + 22.5493i) q^{49} +(21.7250 + 59.6890i) q^{50} +(0.766670 + 2.95050i) q^{51} +(-2.08619 - 11.8314i) q^{52} -39.7705i q^{53} +(-22.6067 + 30.7724i) q^{54} +55.0170 q^{55} +(25.5414 - 4.50363i) q^{56} +(16.8610 - 61.0711i) q^{57} +(64.3921 - 23.4368i) q^{58} +(-18.0238 + 21.4799i) q^{59} +(45.6281 - 20.8573i) q^{60} +(38.6125 + 14.0538i) q^{61} +(8.09199 - 4.67191i) q^{62} +(29.3975 - 77.1123i) q^{63} +(4.00000 - 6.92820i) q^{64} +(32.2855 + 38.4764i) q^{65} +(-2.22221 - 27.8271i) q^{66} +(-2.57695 + 14.6146i) q^{67} +(-2.00145 - 0.352909i) q^{68} +(-27.6259 + 58.0906i) q^{69} +(-83.0620 + 69.6973i) q^{70} +(-65.6502 - 37.9031i) q^{71} +(-12.3924 - 22.2358i) q^{72} +(-26.5140 - 45.9236i) q^{73} +(32.2131 - 88.5049i) q^{74} +(-78.1212 + 109.788i) q^{75} +(32.3556 + 27.1496i) q^{76} +(20.6353 + 56.6950i) q^{77} +(18.1569 - 17.8838i) q^{78} +(-14.2149 - 80.6166i) q^{79} +33.4461i q^{80} +(-80.9628 - 2.45483i) q^{81} -75.0026 q^{82} +(46.2126 - 8.14852i) q^{83} +(38.6072 + 39.1968i) q^{84} +(7.98426 - 2.90603i) q^{85} +(43.1781 - 51.4577i) q^{86} +(118.439 + 84.2766i) q^{87} +(17.4881 + 6.36514i) q^{88} +(20.2996 - 11.7200i) q^{89} +(91.3497 + 54.6032i) q^{90} +(-27.5405 + 47.7016i) q^{91} +(-27.5649 - 32.8505i) q^{92} +(17.9002 + 8.51271i) q^{93} +(1.60241 - 9.08769i) q^{94} +(-173.902 - 30.6635i) q^{95} +(16.9167 - 1.35093i) q^{96} +(26.8130 - 22.4988i) q^{97} +(-42.9647 - 24.8057i) q^{98} +(45.9353 - 37.3727i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39273 + 0.245576i −0.696364 + 0.122788i
\(3\) −2.10518 2.13733i −0.701728 0.712445i
\(4\) 1.87939 0.684040i 0.469846 0.171010i
\(5\) −5.37469 + 6.40531i −1.07494 + 1.28106i −0.117297 + 0.993097i \(0.537423\pi\)
−0.957641 + 0.287964i \(0.907022\pi\)
\(6\) 3.45683 + 2.45974i 0.576138 + 0.409957i
\(7\) −8.61655 3.13617i −1.23094 0.448024i −0.357018 0.934098i \(-0.616206\pi\)
−0.873918 + 0.486074i \(0.838429\pi\)
\(8\) −2.44949 + 1.41421i −0.306186 + 0.176777i
\(9\) −0.136395 + 8.99897i −0.0151550 + 0.999885i
\(10\) 5.91250 10.2407i 0.591250 1.02407i
\(11\) −4.22940 5.04040i −0.384491 0.458218i 0.538735 0.842475i \(-0.318902\pi\)
−0.923226 + 0.384257i \(0.874458\pi\)
\(12\) −5.41848 2.57684i −0.451540 0.214737i
\(13\) 1.04310 5.91570i 0.0802382 0.455053i −0.918045 0.396477i \(-0.870233\pi\)
0.998283 0.0585766i \(-0.0186562\pi\)
\(14\) 12.7707 + 2.25182i 0.912192 + 0.160844i
\(15\) 25.0050 1.99684i 1.66700 0.133123i
\(16\) 3.06418 2.57115i 0.191511 0.160697i
\(17\) −0.880022 0.508081i −0.0517660 0.0298871i 0.473894 0.880582i \(-0.342848\pi\)
−0.525660 + 0.850695i \(0.676181\pi\)
\(18\) −2.01997 12.5666i −0.112220 0.698145i
\(19\) 10.5593 + 18.2893i 0.555754 + 0.962594i 0.997844 + 0.0656235i \(0.0209036\pi\)
−0.442091 + 0.896970i \(0.645763\pi\)
\(20\) −5.71963 + 15.7145i −0.285981 + 0.785727i
\(21\) 11.4364 + 25.0187i 0.544590 + 1.19136i
\(22\) 7.12821 + 5.98128i 0.324009 + 0.271876i
\(23\) −7.33348 20.1486i −0.318847 0.876025i −0.990788 0.135421i \(-0.956761\pi\)
0.671941 0.740605i \(-0.265461\pi\)
\(24\) 8.17928 + 2.25820i 0.340803 + 0.0940916i
\(25\) −7.79945 44.2329i −0.311978 1.76932i
\(26\) 8.49512i 0.326735i
\(27\) 19.5209 18.6530i 0.722998 0.690851i
\(28\) −18.3391 −0.654967
\(29\) −47.7181 + 8.41399i −1.64545 + 0.290138i −0.918166 0.396196i \(-0.870330\pi\)
−0.727287 + 0.686334i \(0.759219\pi\)
\(30\) −34.3348 + 8.92168i −1.14449 + 0.297389i
\(31\) −6.20863 + 2.25976i −0.200278 + 0.0728954i −0.440212 0.897894i \(-0.645097\pi\)
0.239933 + 0.970789i \(0.422874\pi\)
\(32\) −3.63616 + 4.33340i −0.113630 + 0.135419i
\(33\) −1.86936 + 19.6506i −0.0566472 + 0.595473i
\(34\) 1.35040 + 0.491507i 0.0397177 + 0.0144561i
\(35\) 66.3994 38.3357i 1.89713 1.09531i
\(36\) 5.89932 + 17.0058i 0.163870 + 0.472384i
\(37\) −33.2994 + 57.6763i −0.899984 + 1.55882i −0.0724711 + 0.997371i \(0.523089\pi\)
−0.827513 + 0.561447i \(0.810245\pi\)
\(38\) −19.1977 22.8789i −0.505202 0.602076i
\(39\) −14.8397 + 10.2242i −0.380506 + 0.262159i
\(40\) 4.10678 23.2907i 0.102669 0.582267i
\(41\) 52.2291 + 9.20941i 1.27388 + 0.224620i 0.769380 0.638791i \(-0.220565\pi\)
0.504501 + 0.863411i \(0.331676\pi\)
\(42\) −22.0718 32.0357i −0.525518 0.762755i
\(43\) −36.3861 + 30.5315i −0.846188 + 0.710036i −0.958947 0.283587i \(-0.908476\pi\)
0.112759 + 0.993622i \(0.464031\pi\)
\(44\) −11.3965 6.57978i −0.259012 0.149540i
\(45\) −56.9081 49.2403i −1.26462 1.09423i
\(46\) 15.1616 + 26.2606i 0.329599 + 0.570882i
\(47\) −2.23172 + 6.13159i −0.0474833 + 0.130459i −0.961168 0.275965i \(-0.911002\pi\)
0.913684 + 0.406425i \(0.133225\pi\)
\(48\) −11.9461 1.13643i −0.248876 0.0236755i
\(49\) 26.8732 + 22.5493i 0.548433 + 0.460190i
\(50\) 21.7250 + 59.6890i 0.434501 + 1.19378i
\(51\) 0.766670 + 2.95050i 0.0150327 + 0.0578530i
\(52\) −2.08619 11.8314i −0.0401191 0.227527i
\(53\) 39.7705i 0.750386i −0.926947 0.375193i \(-0.877576\pi\)
0.926947 0.375193i \(-0.122424\pi\)
\(54\) −22.6067 + 30.7724i −0.418642 + 0.569859i
\(55\) 55.0170 1.00031
\(56\) 25.5414 4.50363i 0.456096 0.0804220i
\(57\) 16.8610 61.0711i 0.295807 1.07142i
\(58\) 64.3921 23.4368i 1.11021 0.404083i
\(59\) −18.0238 + 21.4799i −0.305488 + 0.364067i −0.896846 0.442342i \(-0.854148\pi\)
0.591358 + 0.806409i \(0.298592\pi\)
\(60\) 45.6281 20.8573i 0.760468 0.347621i
\(61\) 38.6125 + 14.0538i 0.632992 + 0.230390i 0.638533 0.769594i \(-0.279542\pi\)
−0.00554114 + 0.999985i \(0.501764\pi\)
\(62\) 8.09199 4.67191i 0.130516 0.0753535i
\(63\) 29.3975 77.1123i 0.466627 1.22400i
\(64\) 4.00000 6.92820i 0.0625000 0.108253i
\(65\) 32.2855 + 38.4764i 0.496700 + 0.591944i
\(66\) −2.22221 27.8271i −0.0336698 0.421622i
\(67\) −2.57695 + 14.6146i −0.0384619 + 0.218128i −0.997981 0.0635158i \(-0.979769\pi\)
0.959519 + 0.281644i \(0.0908798\pi\)
\(68\) −2.00145 0.352909i −0.0294331 0.00518984i
\(69\) −27.6259 + 58.0906i −0.400376 + 0.841893i
\(70\) −83.0620 + 69.6973i −1.18660 + 0.995676i
\(71\) −65.6502 37.9031i −0.924650 0.533847i −0.0395346 0.999218i \(-0.512588\pi\)
−0.885116 + 0.465371i \(0.845921\pi\)
\(72\) −12.3924 22.2358i −0.172116 0.308830i
\(73\) −26.5140 45.9236i −0.363205 0.629090i 0.625281 0.780400i \(-0.284984\pi\)
−0.988486 + 0.151310i \(0.951651\pi\)
\(74\) 32.2131 88.5049i 0.435313 1.19601i
\(75\) −78.1212 + 109.788i −1.04162 + 1.46385i
\(76\) 32.3556 + 27.1496i 0.425732 + 0.357232i
\(77\) 20.6353 + 56.6950i 0.267991 + 0.736299i
\(78\) 18.1569 17.8838i 0.232781 0.229279i
\(79\) −14.2149 80.6166i −0.179935 1.02046i −0.932292 0.361708i \(-0.882194\pi\)
0.752356 0.658756i \(-0.228917\pi\)
\(80\) 33.4461i 0.418077i
\(81\) −80.9628 2.45483i −0.999541 0.0303066i
\(82\) −75.0026 −0.914666
\(83\) 46.2126 8.14852i 0.556778 0.0981749i 0.111823 0.993728i \(-0.464331\pi\)
0.444955 + 0.895553i \(0.353220\pi\)
\(84\) 38.6072 + 39.1968i 0.459609 + 0.466628i
\(85\) 7.98426 2.90603i 0.0939324 0.0341886i
\(86\) 43.1781 51.4577i 0.502071 0.598345i
\(87\) 118.439 + 84.2766i 1.36137 + 0.968696i
\(88\) 17.4881 + 6.36514i 0.198728 + 0.0723311i
\(89\) 20.2996 11.7200i 0.228085 0.131685i −0.381603 0.924326i \(-0.624628\pi\)
0.609689 + 0.792641i \(0.291295\pi\)
\(90\) 91.3497 + 54.6032i 1.01500 + 0.606702i
\(91\) −27.5405 + 47.7016i −0.302643 + 0.524193i
\(92\) −27.5649 32.8505i −0.299618 0.357071i
\(93\) 17.9002 + 8.51271i 0.192475 + 0.0915345i
\(94\) 1.60241 9.08769i 0.0170469 0.0966776i
\(95\) −173.902 30.6635i −1.83054 0.322774i
\(96\) 16.9167 1.35093i 0.176216 0.0140722i
\(97\) 26.8130 22.4988i 0.276423 0.231946i −0.494028 0.869446i \(-0.664476\pi\)
0.770450 + 0.637500i \(0.220031\pi\)
\(98\) −42.9647 24.8057i −0.438415 0.253119i
\(99\) 45.9353 37.3727i 0.463993 0.377502i
\(100\) −44.9152 77.7955i −0.449152 0.777955i
\(101\) −41.4761 + 113.955i −0.410655 + 1.12826i 0.546189 + 0.837662i \(0.316078\pi\)
−0.956844 + 0.290603i \(0.906144\pi\)
\(102\) −1.79233 3.92098i −0.0175719 0.0384409i
\(103\) −144.726 121.440i −1.40511 1.17903i −0.958776 0.284161i \(-0.908285\pi\)
−0.446334 0.894866i \(-0.647271\pi\)
\(104\) 5.81100 + 15.9656i 0.0558750 + 0.153515i
\(105\) −221.719 61.2140i −2.11161 0.582990i
\(106\) 9.76666 + 55.3895i 0.0921383 + 0.522542i
\(107\) 76.4765i 0.714733i 0.933964 + 0.357367i \(0.116325\pi\)
−0.933964 + 0.357367i \(0.883675\pi\)
\(108\) 23.9280 48.4092i 0.221555 0.448233i
\(109\) 43.7808 0.401659 0.200829 0.979626i \(-0.435636\pi\)
0.200829 + 0.979626i \(0.435636\pi\)
\(110\) −76.6238 + 13.5108i −0.696580 + 0.122826i
\(111\) 193.375 50.2472i 1.74212 0.452678i
\(112\) −34.4662 + 12.5447i −0.307734 + 0.112006i
\(113\) −0.133455 + 0.159046i −0.00118102 + 0.00140749i −0.766635 0.642084i \(-0.778070\pi\)
0.765454 + 0.643491i \(0.222515\pi\)
\(114\) −8.48520 + 89.1961i −0.0744316 + 0.782422i
\(115\) 168.473 + 61.3192i 1.46498 + 0.533210i
\(116\) −83.9252 + 48.4543i −0.723493 + 0.417709i
\(117\) 53.0929 + 10.1937i 0.453785 + 0.0871253i
\(118\) 19.8273 34.3419i 0.168028 0.291033i
\(119\) 5.98932 + 7.13780i 0.0503305 + 0.0599815i
\(120\) −58.4255 + 40.2537i −0.486879 + 0.335447i
\(121\) 13.4936 76.5260i 0.111517 0.632446i
\(122\) −57.2280 10.0908i −0.469082 0.0827118i
\(123\) −90.2684 131.019i −0.733890 1.06519i
\(124\) −10.1226 + 8.49390i −0.0816342 + 0.0684992i
\(125\) 144.212 + 83.2610i 1.15370 + 0.666088i
\(126\) −22.0059 + 114.616i −0.174650 + 0.909649i
\(127\) 77.5448 + 134.312i 0.610589 + 1.05757i 0.991141 + 0.132812i \(0.0424006\pi\)
−0.380552 + 0.924759i \(0.624266\pi\)
\(128\) −3.86952 + 10.6314i −0.0302306 + 0.0830579i
\(129\) 141.855 + 13.4947i 1.09965 + 0.104610i
\(130\) −54.4138 45.6586i −0.418568 0.351220i
\(131\) −46.3122 127.242i −0.353529 0.971312i −0.981227 0.192855i \(-0.938225\pi\)
0.627699 0.778456i \(-0.283997\pi\)
\(132\) 9.92857 + 38.2098i 0.0752165 + 0.289468i
\(133\) −33.6267 190.706i −0.252832 1.43388i
\(134\) 20.9870i 0.156619i
\(135\) 14.5590 + 225.291i 0.107844 + 1.66883i
\(136\) 2.87414 0.0211334
\(137\) 46.2957 8.16317i 0.337924 0.0595852i −0.00211111 0.999998i \(-0.500672\pi\)
0.340036 + 0.940413i \(0.389561\pi\)
\(138\) 24.2098 87.6887i 0.175433 0.635425i
\(139\) −45.5216 + 16.5685i −0.327494 + 0.119198i −0.500534 0.865717i \(-0.666863\pi\)
0.173040 + 0.984915i \(0.444641\pi\)
\(140\) 98.5669 117.467i 0.704049 0.839053i
\(141\) 17.8034 8.13820i 0.126265 0.0577177i
\(142\) 100.741 + 36.6667i 0.709443 + 0.258216i
\(143\) −34.2292 + 19.7622i −0.239365 + 0.138197i
\(144\) 22.7198 + 27.9251i 0.157776 + 0.193924i
\(145\) 202.576 350.872i 1.39708 2.41981i
\(146\) 48.2045 + 57.4479i 0.330168 + 0.393479i
\(147\) −8.37768 104.908i −0.0569910 0.713657i
\(148\) −23.1295 + 131.174i −0.156281 + 0.886311i
\(149\) 82.6444 + 14.5724i 0.554660 + 0.0978015i 0.443951 0.896051i \(-0.353577\pi\)
0.110710 + 0.993853i \(0.464688\pi\)
\(150\) 81.8402 172.090i 0.545601 1.14727i
\(151\) −98.8811 + 82.9711i −0.654842 + 0.549477i −0.908536 0.417807i \(-0.862799\pi\)
0.253694 + 0.967284i \(0.418354\pi\)
\(152\) −51.7299 29.8663i −0.340328 0.196489i
\(153\) 4.69223 7.84999i 0.0306682 0.0513071i
\(154\) −42.6623 73.8932i −0.277028 0.479826i
\(155\) 18.8950 51.9137i 0.121903 0.334927i
\(156\) −20.8958 + 29.3662i −0.133948 + 0.188245i
\(157\) 159.054 + 133.462i 1.01308 + 0.850079i 0.988743 0.149625i \(-0.0478066\pi\)
0.0243416 + 0.999704i \(0.492251\pi\)
\(158\) 39.5950 + 108.786i 0.250601 + 0.688521i
\(159\) −85.0028 + 83.7242i −0.534609 + 0.526567i
\(160\) −8.21355 46.5814i −0.0513347 0.291134i
\(161\) 196.610i 1.22118i
\(162\) 113.362 16.4636i 0.699766 0.101627i
\(163\) −171.033 −1.04928 −0.524641 0.851324i \(-0.675800\pi\)
−0.524641 + 0.851324i \(0.675800\pi\)
\(164\) 104.458 18.4188i 0.636941 0.112310i
\(165\) −115.821 117.590i −0.701946 0.712666i
\(166\) −62.3605 + 22.6974i −0.375665 + 0.136731i
\(167\) −101.372 + 120.810i −0.607015 + 0.723413i −0.978780 0.204914i \(-0.934308\pi\)
0.371765 + 0.928327i \(0.378753\pi\)
\(168\) −63.3951 45.1095i −0.377352 0.268509i
\(169\) 124.901 + 45.4601i 0.739057 + 0.268995i
\(170\) −10.4063 + 6.00805i −0.0612132 + 0.0353415i
\(171\) −166.025 + 92.5284i −0.970906 + 0.541102i
\(172\) −47.4986 + 82.2700i −0.276155 + 0.478314i
\(173\) −10.7700 12.8352i −0.0622543 0.0741918i 0.734019 0.679129i \(-0.237642\pi\)
−0.796273 + 0.604938i \(0.793198\pi\)
\(174\) −185.650 88.2887i −1.06695 0.507406i
\(175\) −71.5174 + 405.595i −0.408671 + 2.31769i
\(176\) −25.9193 4.57027i −0.147269 0.0259674i
\(177\) 83.8532 6.69633i 0.473747 0.0378324i
\(178\) −25.3937 + 21.3078i −0.142661 + 0.119707i
\(179\) −94.2561 54.4188i −0.526570 0.304016i 0.213048 0.977042i \(-0.431661\pi\)
−0.739619 + 0.673026i \(0.764994\pi\)
\(180\) −140.635 53.6141i −0.781303 0.297856i
\(181\) −18.5784 32.1787i −0.102643 0.177783i 0.810130 0.586251i \(-0.199397\pi\)
−0.912773 + 0.408468i \(0.866063\pi\)
\(182\) 26.6421 73.1986i 0.146385 0.402190i
\(183\) −51.2488 112.114i −0.280048 0.612643i
\(184\) 46.4577 + 38.9826i 0.252487 + 0.211862i
\(185\) −190.460 523.285i −1.02951 2.82857i
\(186\) −27.0206 7.46005i −0.145272 0.0401078i
\(187\) 1.16103 + 6.58454i 0.00620873 + 0.0352115i
\(188\) 13.0502i 0.0694160i
\(189\) −226.702 + 99.5033i −1.19948 + 0.526472i
\(190\) 249.728 1.31436
\(191\) 211.469 37.2877i 1.10717 0.195223i 0.409967 0.912100i \(-0.365540\pi\)
0.697200 + 0.716877i \(0.254429\pi\)
\(192\) −23.2286 + 6.03581i −0.120982 + 0.0314365i
\(193\) −266.703 + 97.0720i −1.38188 + 0.502964i −0.922748 0.385403i \(-0.874062\pi\)
−0.459134 + 0.888367i \(0.651840\pi\)
\(194\) −31.8181 + 37.9193i −0.164011 + 0.195460i
\(195\) 14.2699 150.005i 0.0731790 0.769256i
\(196\) 65.9298 + 23.9965i 0.336376 + 0.122431i
\(197\) −154.203 + 89.0292i −0.782756 + 0.451925i −0.837406 0.546581i \(-0.815929\pi\)
0.0546498 + 0.998506i \(0.482596\pi\)
\(198\) −54.7976 + 63.3307i −0.276755 + 0.319852i
\(199\) −72.8436 + 126.169i −0.366048 + 0.634014i −0.988944 0.148291i \(-0.952623\pi\)
0.622896 + 0.782305i \(0.285956\pi\)
\(200\) 81.6594 + 97.3179i 0.408297 + 0.486590i
\(201\) 36.6612 25.2586i 0.182394 0.125665i
\(202\) 29.7805 168.894i 0.147428 0.836107i
\(203\) 437.553 + 77.1525i 2.15544 + 0.380061i
\(204\) 3.45913 + 5.02070i 0.0169565 + 0.0246113i
\(205\) −339.705 + 285.046i −1.65710 + 1.39047i
\(206\) 231.387 + 133.591i 1.12324 + 0.648502i
\(207\) 182.317 63.2456i 0.880757 0.305534i
\(208\) −12.0139 20.8087i −0.0577592 0.100042i
\(209\) 47.5258 130.576i 0.227396 0.624765i
\(210\) 323.827 + 30.8056i 1.54204 + 0.146693i
\(211\) −227.718 191.078i −1.07923 0.905584i −0.0833757 0.996518i \(-0.526570\pi\)
−0.995857 + 0.0909345i \(0.971015\pi\)
\(212\) −27.2046 74.7440i −0.128324 0.352566i
\(213\) 57.1940 + 220.109i 0.268517 + 1.03338i
\(214\) −18.7808 106.511i −0.0877605 0.497715i
\(215\) 397.161i 1.84726i
\(216\) −21.4371 + 73.2970i −0.0992456 + 0.339338i
\(217\) 60.5839 0.279189
\(218\) −60.9748 + 10.7515i −0.279701 + 0.0493188i
\(219\) −42.3372 + 153.347i −0.193320 + 0.700214i
\(220\) 103.398 37.6339i 0.469992 0.171063i
\(221\) −3.92360 + 4.67596i −0.0177538 + 0.0211582i
\(222\) −256.979 + 117.469i −1.15756 + 0.529139i
\(223\) 198.549 + 72.2658i 0.890352 + 0.324062i 0.746380 0.665520i \(-0.231790\pi\)
0.143972 + 0.989582i \(0.454012\pi\)
\(224\) 44.9214 25.9354i 0.200542 0.115783i
\(225\) 399.114 64.1538i 1.77384 0.285128i
\(226\) 0.146809 0.254281i 0.000649599 0.00112514i
\(227\) 10.3430 + 12.3263i 0.0455638 + 0.0543008i 0.788345 0.615233i \(-0.210938\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(228\) −10.0868 126.310i −0.0442404 0.553990i
\(229\) 45.3854 257.394i 0.198190 1.12399i −0.709613 0.704592i \(-0.751130\pi\)
0.907803 0.419398i \(-0.137759\pi\)
\(230\) −249.696 44.0281i −1.08563 0.191426i
\(231\) 77.7351 163.458i 0.336515 0.707610i
\(232\) 104.986 88.0936i 0.452525 0.379714i
\(233\) 278.614 + 160.858i 1.19577 + 0.690377i 0.959609 0.281338i \(-0.0907782\pi\)
0.236159 + 0.971715i \(0.424111\pi\)
\(234\) −76.4473 1.15869i −0.326698 0.00495168i
\(235\) −27.2799 47.2502i −0.116085 0.201065i
\(236\) −19.1805 + 52.6981i −0.0812735 + 0.223297i
\(237\) −142.380 + 200.095i −0.600758 + 0.844282i
\(238\) −10.0944 8.47018i −0.0424133 0.0355890i
\(239\) 26.9782 + 74.1219i 0.112879 + 0.310133i 0.983250 0.182265i \(-0.0583427\pi\)
−0.870370 + 0.492398i \(0.836121\pi\)
\(240\) 71.4856 70.4103i 0.297857 0.293376i
\(241\) 52.6081 + 298.355i 0.218291 + 1.23799i 0.875104 + 0.483935i \(0.160793\pi\)
−0.656813 + 0.754053i \(0.728096\pi\)
\(242\) 109.894i 0.454106i
\(243\) 165.195 + 178.212i 0.679814 + 0.733384i
\(244\) 82.1811 0.336808
\(245\) −288.870 + 50.9357i −1.17906 + 0.207901i
\(246\) 157.894 + 160.306i 0.641847 + 0.651649i
\(247\) 119.208 43.3882i 0.482624 0.175661i
\(248\) 12.0122 14.3156i 0.0484363 0.0577241i
\(249\) −114.702 81.6175i −0.460651 0.327781i
\(250\) −221.295 80.5449i −0.885182 0.322180i
\(251\) −71.3813 + 41.2120i −0.284387 + 0.164191i −0.635408 0.772177i \(-0.719168\pi\)
0.351021 + 0.936368i \(0.385835\pi\)
\(252\) 2.50136 165.033i 0.00992605 0.654892i
\(253\) −70.5407 + 122.180i −0.278817 + 0.482925i
\(254\) −140.982 168.016i −0.555049 0.661482i
\(255\) −23.0195 10.9473i −0.0902725 0.0429306i
\(256\) 2.77837 15.7569i 0.0108530 0.0615505i
\(257\) −21.2643 3.74948i −0.0827406 0.0145894i 0.132125 0.991233i \(-0.457820\pi\)
−0.214865 + 0.976644i \(0.568931\pi\)
\(258\) −200.880 + 16.0418i −0.778605 + 0.0621777i
\(259\) 467.808 392.538i 1.80621 1.51559i
\(260\) 86.9963 + 50.2274i 0.334601 + 0.193182i
\(261\) −69.2087 430.561i −0.265167 1.64966i
\(262\) 95.7479 + 165.840i 0.365450 + 0.632978i
\(263\) −17.1583 + 47.1420i −0.0652407 + 0.179247i −0.968029 0.250837i \(-0.919294\pi\)
0.902789 + 0.430085i \(0.141516\pi\)
\(264\) −23.2112 50.7777i −0.0879212 0.192340i
\(265\) 254.742 + 213.754i 0.961291 + 0.806619i
\(266\) 93.6657 + 257.344i 0.352127 + 0.967460i
\(267\) −67.7839 18.7143i −0.253872 0.0700911i
\(268\) 5.15390 + 29.2292i 0.0192310 + 0.109064i
\(269\) 119.776i 0.445263i −0.974903 0.222632i \(-0.928535\pi\)
0.974903 0.222632i \(-0.0714648\pi\)
\(270\) −75.6028 310.195i −0.280010 1.14887i
\(271\) −146.752 −0.541522 −0.270761 0.962647i \(-0.587275\pi\)
−0.270761 + 0.962647i \(0.587275\pi\)
\(272\) −4.00289 + 0.705818i −0.0147165 + 0.00259492i
\(273\) 159.932 41.5573i 0.585832 0.152225i
\(274\) −62.4726 + 22.7382i −0.228002 + 0.0829860i
\(275\) −189.965 + 226.391i −0.690780 + 0.823240i
\(276\) −12.1834 + 128.072i −0.0441429 + 0.464028i
\(277\) −306.464 111.544i −1.10637 0.402685i −0.276707 0.960954i \(-0.589243\pi\)
−0.829659 + 0.558270i \(0.811465\pi\)
\(278\) 59.3305 34.2545i 0.213419 0.123217i
\(279\) −19.4886 56.1795i −0.0698518 0.201360i
\(280\) −108.430 + 187.806i −0.387249 + 0.670735i
\(281\) −8.78420 10.4686i −0.0312605 0.0372548i 0.750188 0.661225i \(-0.229963\pi\)
−0.781448 + 0.623970i \(0.785519\pi\)
\(282\) −22.7968 + 15.7064i −0.0808397 + 0.0556964i
\(283\) 79.1142 448.679i 0.279555 1.58544i −0.444554 0.895752i \(-0.646638\pi\)
0.724109 0.689685i \(-0.242251\pi\)
\(284\) −149.309 26.3272i −0.525737 0.0927016i
\(285\) 300.557 + 436.238i 1.05458 + 1.53066i
\(286\) 42.8188 35.9293i 0.149716 0.125627i
\(287\) −421.153 243.153i −1.46743 0.847222i
\(288\) −38.5002 33.3127i −0.133681 0.115669i
\(289\) −143.984 249.387i −0.498214 0.862931i
\(290\) −195.968 + 538.417i −0.675751 + 1.85661i
\(291\) −104.534 9.94426i −0.359222 0.0341727i
\(292\) −81.2436 68.1715i −0.278231 0.233464i
\(293\) 166.845 + 458.404i 0.569438 + 1.56452i 0.805384 + 0.592753i \(0.201959\pi\)
−0.235946 + 0.971766i \(0.575819\pi\)
\(294\) 37.4306 + 144.050i 0.127315 + 0.489967i
\(295\) −40.7132 230.896i −0.138011 0.782698i
\(296\) 188.370i 0.636385i
\(297\) −176.580 19.5025i −0.594547 0.0656651i
\(298\) −118.680 −0.398254
\(299\) −126.842 + 22.3657i −0.424222 + 0.0748018i
\(300\) −71.7201 + 259.773i −0.239067 + 0.865909i
\(301\) 409.274 148.964i 1.35972 0.494896i
\(302\) 117.339 139.839i 0.388539 0.463043i
\(303\) 330.874 151.247i 1.09199 0.499166i
\(304\) 79.3801 + 28.8920i 0.261119 + 0.0950395i
\(305\) −297.549 + 171.790i −0.975571 + 0.563246i
\(306\) −4.60724 + 12.0852i −0.0150563 + 0.0394941i
\(307\) 4.37352 7.57515i 0.0142460 0.0246748i −0.858815 0.512287i \(-0.828799\pi\)
0.873061 + 0.487612i \(0.162132\pi\)
\(308\) 77.5633 + 92.4364i 0.251829 + 0.300118i
\(309\) 45.1182 + 564.982i 0.146014 + 1.82842i
\(310\) −13.5669 + 76.9418i −0.0437642 + 0.248199i
\(311\) 51.0927 + 9.00901i 0.164285 + 0.0289679i 0.255186 0.966892i \(-0.417863\pi\)
−0.0909005 + 0.995860i \(0.528975\pi\)
\(312\) 21.8906 46.0306i 0.0701621 0.147534i
\(313\) −279.972 + 234.925i −0.894481 + 0.750558i −0.969104 0.246653i \(-0.920669\pi\)
0.0746231 + 0.997212i \(0.476225\pi\)
\(314\) −254.294 146.817i −0.809855 0.467570i
\(315\) 335.925 + 602.755i 1.06643 + 1.91351i
\(316\) −81.8603 141.786i −0.259052 0.448690i
\(317\) 156.797 430.796i 0.494627 1.35898i −0.401776 0.915738i \(-0.631607\pi\)
0.896403 0.443239i \(-0.146171\pi\)
\(318\) 97.8252 137.480i 0.307626 0.432326i
\(319\) 244.229 + 204.932i 0.765608 + 0.642421i
\(320\) 22.8785 + 62.8582i 0.0714953 + 0.196432i
\(321\) 163.456 160.997i 0.509208 0.501548i
\(322\) −48.2827 273.825i −0.149946 0.850387i
\(323\) 21.4600i 0.0664395i
\(324\) −153.839 + 50.7682i −0.474813 + 0.156692i
\(325\) −269.804 −0.830166
\(326\) 238.202 42.0015i 0.730682 0.128839i
\(327\) −92.1667 93.5742i −0.281855 0.286160i
\(328\) −140.959 + 51.3048i −0.429753 + 0.156417i
\(329\) 38.4594 45.8341i 0.116898 0.139313i
\(330\) 190.184 + 135.328i 0.576317 + 0.410084i
\(331\) −417.551 151.976i −1.26148 0.459143i −0.377218 0.926125i \(-0.623119\pi\)
−0.884267 + 0.466982i \(0.845341\pi\)
\(332\) 81.2773 46.9255i 0.244811 0.141342i
\(333\) −514.485 307.527i −1.54500 0.923504i
\(334\) 111.515 193.150i 0.333877 0.578293i
\(335\) −79.7607 95.0551i −0.238092 0.283747i
\(336\) 99.3699 + 47.2569i 0.295744 + 0.140646i
\(337\) −15.6199 + 88.5848i −0.0463498 + 0.262863i −0.999173 0.0406634i \(-0.987053\pi\)
0.952823 + 0.303526i \(0.0981640\pi\)
\(338\) −185.117 32.6410i −0.547682 0.0965712i
\(339\) 0.620883 0.0495823i 0.00183151 0.000146261i
\(340\) 13.0177 10.9231i 0.0382872 0.0321268i
\(341\) 37.6489 + 21.7366i 0.110407 + 0.0637436i
\(342\) 208.505 169.639i 0.609663 0.496019i
\(343\) 63.8177 + 110.536i 0.186058 + 0.322261i
\(344\) 45.9492 126.244i 0.133573 0.366989i
\(345\) −223.607 489.171i −0.648137 1.41789i
\(346\) 18.1517 + 15.2311i 0.0524615 + 0.0440204i
\(347\) 169.850 + 466.660i 0.489483 + 1.34484i 0.901150 + 0.433508i \(0.142724\pi\)
−0.411667 + 0.911334i \(0.635053\pi\)
\(348\) 280.241 + 77.3711i 0.805290 + 0.222331i
\(349\) 58.8946 + 334.008i 0.168752 + 0.957042i 0.945111 + 0.326750i \(0.105954\pi\)
−0.776358 + 0.630292i \(0.782935\pi\)
\(350\) 582.447i 1.66413i
\(351\) −89.9830 134.937i −0.256362 0.384435i
\(352\) 37.2209 0.105741
\(353\) −217.451 + 38.3425i −0.616008 + 0.108619i −0.472941 0.881094i \(-0.656808\pi\)
−0.143067 + 0.989713i \(0.545696\pi\)
\(354\) −115.140 + 29.9185i −0.325255 + 0.0845155i
\(355\) 595.631 216.792i 1.67783 0.610681i
\(356\) 30.1338 35.9121i 0.0846456 0.100877i
\(357\) 2.64723 27.8276i 0.00741521 0.0779484i
\(358\) 144.637 + 52.6436i 0.404014 + 0.147049i
\(359\) 494.204 285.329i 1.37661 0.794788i 0.384864 0.922973i \(-0.374249\pi\)
0.991750 + 0.128185i \(0.0409152\pi\)
\(360\) 209.032 + 40.1335i 0.580644 + 0.111482i
\(361\) −42.4986 + 73.6098i −0.117725 + 0.203905i
\(362\) 33.7770 + 40.2539i 0.0933066 + 0.111198i
\(363\) −191.968 + 132.261i −0.528838 + 0.364355i
\(364\) −19.1294 + 108.488i −0.0525534 + 0.298045i
\(365\) 436.659 + 76.9948i 1.19633 + 0.210945i
\(366\) 98.9080 + 143.558i 0.270240 + 0.392236i
\(367\) −161.979 + 135.917i −0.441360 + 0.370345i −0.836218 0.548397i \(-0.815238\pi\)
0.394858 + 0.918742i \(0.370794\pi\)
\(368\) −74.2761 42.8833i −0.201837 0.116531i
\(369\) −89.9990 + 468.752i −0.243900 + 1.27033i
\(370\) 393.765 + 682.021i 1.06423 + 1.84330i
\(371\) −124.727 + 342.684i −0.336191 + 0.923677i
\(372\) 39.4643 + 3.75423i 0.106087 + 0.0100920i
\(373\) −53.2124 44.6505i −0.142661 0.119706i 0.568665 0.822569i \(-0.307460\pi\)
−0.711325 + 0.702863i \(0.751905\pi\)
\(374\) −3.23401 8.88536i −0.00864707 0.0237576i
\(375\) −125.637 483.510i −0.335032 1.28936i
\(376\) −3.20481 18.1754i −0.00852343 0.0483388i
\(377\) 291.063i 0.772049i
\(378\) 291.299 194.254i 0.770632 0.513898i
\(379\) 390.211 1.02958 0.514791 0.857316i \(-0.327870\pi\)
0.514791 + 0.857316i \(0.327870\pi\)
\(380\) −347.803 + 61.3271i −0.915271 + 0.161387i
\(381\) 123.823 448.490i 0.324994 1.17714i
\(382\) −285.362 + 103.863i −0.747020 + 0.271893i
\(383\) −116.563 + 138.915i −0.304342 + 0.362701i −0.896440 0.443165i \(-0.853856\pi\)
0.592098 + 0.805866i \(0.298300\pi\)
\(384\) 30.8689 14.1106i 0.0803878 0.0367464i
\(385\) −474.057 172.543i −1.23132 0.448163i
\(386\) 347.607 200.691i 0.900535 0.519924i
\(387\) −269.789 331.601i −0.697130 0.856851i
\(388\) 35.0019 60.6250i 0.0902110 0.156250i
\(389\) −432.550 515.493i −1.11195 1.32518i −0.940427 0.339996i \(-0.889574\pi\)
−0.171527 0.985179i \(-0.554870\pi\)
\(390\) 16.9634 + 212.420i 0.0434959 + 0.544668i
\(391\) −3.78348 + 21.4572i −0.00967642 + 0.0548777i
\(392\) −97.7152 17.2298i −0.249274 0.0439536i
\(393\) −174.463 + 366.852i −0.443925 + 0.933467i
\(394\) 192.900 161.862i 0.489593 0.410817i
\(395\) 592.775 + 342.239i 1.50070 + 0.866427i
\(396\) 60.7656 101.659i 0.153449 0.256716i
\(397\) 226.822 + 392.867i 0.571340 + 0.989590i 0.996429 + 0.0844384i \(0.0269096\pi\)
−0.425089 + 0.905152i \(0.639757\pi\)
\(398\) 70.4674 193.608i 0.177054 0.486451i
\(399\) −336.813 + 473.344i −0.844143 + 1.18632i
\(400\) −137.628 115.484i −0.344071 0.288710i
\(401\) −107.387 295.043i −0.267798 0.735769i −0.998586 0.0531643i \(-0.983069\pi\)
0.730788 0.682605i \(-0.239153\pi\)
\(402\) −44.8563 + 44.1815i −0.111583 + 0.109904i
\(403\) 6.89183 + 39.0855i 0.0171013 + 0.0969864i
\(404\) 242.536i 0.600337i
\(405\) 450.874 505.398i 1.11327 1.24790i
\(406\) −628.340 −1.54763
\(407\) 431.548 76.0936i 1.06031 0.186962i
\(408\) −6.05059 6.14300i −0.0148299 0.0150564i
\(409\) −1.59923 + 0.582072i −0.00391009 + 0.00142316i −0.343974 0.938979i \(-0.611773\pi\)
0.340064 + 0.940402i \(0.389551\pi\)
\(410\) 403.116 480.415i 0.983209 1.17174i
\(411\) −114.908 81.7643i −0.279582 0.198940i
\(412\) −355.066 129.234i −0.861812 0.313674i
\(413\) 222.668 128.557i 0.539147 0.311277i
\(414\) −238.386 + 132.856i −0.575812 + 0.320909i
\(415\) −196.184 + 339.801i −0.472733 + 0.818798i
\(416\) 21.8422 + 26.0305i 0.0525053 + 0.0625734i
\(417\) 131.244 + 62.4152i 0.314734 + 0.149677i
\(418\) −34.1242 + 193.528i −0.0816369 + 0.462986i
\(419\) −98.5462 17.3764i −0.235194 0.0414710i 0.0548088 0.998497i \(-0.482545\pi\)
−0.290003 + 0.957026i \(0.593656\pi\)
\(420\) −458.569 + 36.6203i −1.09183 + 0.0871911i
\(421\) 486.614 408.318i 1.15585 0.969876i 0.156012 0.987755i \(-0.450136\pi\)
0.999840 + 0.0178796i \(0.00569155\pi\)
\(422\) 364.074 + 210.198i 0.862734 + 0.498099i
\(423\) −54.8736 20.9195i −0.129725 0.0494550i
\(424\) 56.2439 + 97.4173i 0.132651 + 0.229758i
\(425\) −15.6102 + 42.8886i −0.0367299 + 0.100914i
\(426\) −133.709 292.507i −0.313872 0.686637i
\(427\) −288.632 242.191i −0.675952 0.567191i
\(428\) 52.3130 + 143.729i 0.122227 + 0.335815i
\(429\) 114.297 + 31.5560i 0.266427 + 0.0735572i
\(430\) 97.5332 + 553.138i 0.226821 + 1.28637i
\(431\) 180.242i 0.418195i 0.977895 + 0.209098i \(0.0670526\pi\)
−0.977895 + 0.209098i \(0.932947\pi\)
\(432\) 11.8560 107.347i 0.0274445 0.248489i
\(433\) 161.992 0.374115 0.187058 0.982349i \(-0.440105\pi\)
0.187058 + 0.982349i \(0.440105\pi\)
\(434\) −84.3770 + 14.8779i −0.194417 + 0.0342810i
\(435\) −1176.39 + 305.677i −2.70435 + 0.702707i
\(436\) 82.2810 29.9478i 0.188718 0.0686877i
\(437\) 291.066 346.880i 0.666056 0.793775i
\(438\) 21.3060 223.968i 0.0486437 0.511341i
\(439\) 302.339 + 110.043i 0.688700 + 0.250666i 0.662579 0.748992i \(-0.269462\pi\)
0.0261216 + 0.999659i \(0.491684\pi\)
\(440\) −134.764 + 77.8059i −0.306281 + 0.176831i
\(441\) −206.586 + 238.756i −0.468449 + 0.541396i
\(442\) 4.31621 7.47589i 0.00976517 0.0169138i
\(443\) 325.041 + 387.368i 0.733726 + 0.874421i 0.995887 0.0906036i \(-0.0288796\pi\)
−0.262161 + 0.965024i \(0.584435\pi\)
\(444\) 329.055 226.710i 0.741114 0.510608i
\(445\) −34.0340 + 193.016i −0.0764809 + 0.433745i
\(446\) −294.271 51.8879i −0.659800 0.116341i
\(447\) −142.835 207.316i −0.319542 0.463795i
\(448\) −56.1942 + 47.1525i −0.125434 + 0.105251i
\(449\) −621.494 358.820i −1.38417 0.799153i −0.391524 0.920168i \(-0.628052\pi\)
−0.992651 + 0.121015i \(0.961385\pi\)
\(450\) −540.103 + 187.362i −1.20023 + 0.416359i
\(451\) −174.479 302.206i −0.386871 0.670080i
\(452\) −0.142020 + 0.390198i −0.000314204 + 0.000863269i
\(453\) 385.500 + 36.6725i 0.850993 + 0.0809547i
\(454\) −17.4320 14.6272i −0.0383965 0.0322185i
\(455\) −157.521 432.787i −0.346201 0.951179i
\(456\) 45.0668 + 173.438i 0.0988307 + 0.380347i
\(457\) 72.4920 + 411.123i 0.158626 + 0.899612i 0.955396 + 0.295329i \(0.0954292\pi\)
−0.796770 + 0.604283i \(0.793460\pi\)
\(458\) 369.625i 0.807041i
\(459\) −26.6561 + 6.49680i −0.0580742 + 0.0141542i
\(460\) 358.570 0.779501
\(461\) −807.492 + 142.383i −1.75161 + 0.308856i −0.955213 0.295918i \(-0.904374\pi\)
−0.796397 + 0.604774i \(0.793263\pi\)
\(462\) −68.1226 + 246.742i −0.147451 + 0.534074i
\(463\) −800.359 + 291.307i −1.72864 + 0.629173i −0.998532 0.0541620i \(-0.982751\pi\)
−0.730105 + 0.683335i \(0.760529\pi\)
\(464\) −124.583 + 148.472i −0.268498 + 0.319984i
\(465\) −150.734 + 68.9029i −0.324160 + 0.148178i
\(466\) −427.536 155.610i −0.917460 0.333928i
\(467\) −557.001 + 321.585i −1.19272 + 0.688619i −0.958923 0.283666i \(-0.908449\pi\)
−0.233800 + 0.972285i \(0.575116\pi\)
\(468\) 106.755 17.1598i 0.228109 0.0366663i
\(469\) 68.0383 117.846i 0.145071 0.251270i
\(470\) 49.5970 + 59.1074i 0.105526 + 0.125760i
\(471\) −49.5849 620.915i −0.105276 1.31829i
\(472\) 13.7719 78.1044i 0.0291778 0.165475i
\(473\) 307.782 + 54.2704i 0.650703 + 0.114736i
\(474\) 149.158 313.643i 0.314679 0.661694i
\(475\) 726.631 609.716i 1.52975 1.28361i
\(476\) 16.1388 + 9.31774i 0.0339050 + 0.0195751i
\(477\) 357.893 + 5.42450i 0.750300 + 0.0113721i
\(478\) −55.7758 96.6065i −0.116686 0.202106i
\(479\) −103.396 + 284.077i −0.215857 + 0.593062i −0.999608 0.0280135i \(-0.991082\pi\)
0.783751 + 0.621076i \(0.213304\pi\)
\(480\) −82.2689 + 115.618i −0.171394 + 0.240870i
\(481\) 306.461 + 257.151i 0.637132 + 0.534617i
\(482\) −146.538 402.609i −0.304020 0.835288i
\(483\) 420.222 413.901i 0.870025 0.856938i
\(484\) −26.9872 153.052i −0.0557586 0.316223i
\(485\) 292.669i 0.603442i
\(486\) −273.836 207.634i −0.563449 0.427230i
\(487\) 584.450 1.20010 0.600052 0.799961i \(-0.295147\pi\)
0.600052 + 0.799961i \(0.295147\pi\)
\(488\) −114.456 + 20.1817i −0.234541 + 0.0413559i
\(489\) 360.056 + 365.555i 0.736311 + 0.747555i
\(490\) 389.810 141.879i 0.795530 0.289549i
\(491\) −177.012 + 210.954i −0.360513 + 0.429643i −0.915563 0.402174i \(-0.868255\pi\)
0.555050 + 0.831817i \(0.312699\pi\)
\(492\) −259.271 184.487i −0.526974 0.374974i
\(493\) 46.2680 + 16.8402i 0.0938498 + 0.0341586i
\(494\) −155.370 + 89.7027i −0.314513 + 0.181584i
\(495\) −7.50406 + 495.097i −0.0151597 + 1.00020i
\(496\) −13.2142 + 22.8876i −0.0266415 + 0.0461444i
\(497\) 446.807 + 532.484i 0.899009 + 1.07140i
\(498\) 179.792 + 85.5030i 0.361028 + 0.171693i
\(499\) −29.6099 + 167.926i −0.0593384 + 0.336525i −0.999996 0.00283231i \(-0.999098\pi\)
0.940658 + 0.339357i \(0.110210\pi\)
\(500\) 327.984 + 57.8325i 0.655969 + 0.115665i
\(501\) 471.617 37.6623i 0.941351 0.0751742i
\(502\) 89.2941 74.9266i 0.177877 0.149256i
\(503\) −13.2176 7.63121i −0.0262776 0.0151714i 0.486804 0.873511i \(-0.338163\pi\)
−0.513081 + 0.858340i \(0.671496\pi\)
\(504\) 37.0443 + 230.460i 0.0735006 + 0.457262i
\(505\) −506.994 878.139i −1.00395 1.73889i
\(506\) 68.2396 187.487i 0.134861 0.370527i
\(507\) −165.775 362.656i −0.326973 0.715299i
\(508\) 237.611 + 199.379i 0.467738 + 0.392479i
\(509\) −177.011 486.334i −0.347762 0.955470i −0.983073 0.183213i \(-0.941350\pi\)
0.635311 0.772257i \(-0.280872\pi\)
\(510\) 34.7483 + 9.59358i 0.0681339 + 0.0188109i
\(511\) 84.4351 + 478.855i 0.165235 + 0.937094i
\(512\) 22.6274i 0.0441942i
\(513\) 547.277 + 160.061i 1.06682 + 0.312010i
\(514\) 30.5362 0.0594090
\(515\) 1555.72 274.315i 3.02081 0.532651i
\(516\) 275.832 71.6732i 0.534558 0.138902i
\(517\) 40.3445 14.6842i 0.0780358 0.0284027i
\(518\) −555.132 + 661.581i −1.07168 + 1.27718i
\(519\) −4.76024 + 50.0395i −0.00917195 + 0.0964152i
\(520\) −133.497 48.5889i −0.256725 0.0934402i
\(521\) 843.550 487.024i 1.61910 0.934786i 0.631943 0.775015i \(-0.282258\pi\)
0.987154 0.159771i \(-0.0510757\pi\)
\(522\) 202.124 + 582.659i 0.387211 + 1.11621i
\(523\) 159.545 276.340i 0.305058 0.528375i −0.672217 0.740355i \(-0.734658\pi\)
0.977274 + 0.211979i \(0.0679909\pi\)
\(524\) −174.077 207.457i −0.332208 0.395910i
\(525\) 1017.45 700.996i 1.93800 1.33523i
\(526\) 12.3199 69.8697i 0.0234219 0.132832i
\(527\) 6.61187 + 1.16585i 0.0125462 + 0.00221224i
\(528\) 44.7967 + 65.0194i 0.0848422 + 0.123143i
\(529\) 53.0522 44.5161i 0.100288 0.0841514i
\(530\) −407.279 235.143i −0.768451 0.443666i
\(531\) −190.839 165.125i −0.359395 0.310971i
\(532\) −193.648 335.409i −0.364001 0.630468i
\(533\) 108.960 299.365i 0.204428 0.561661i
\(534\) 99.0004 + 9.41788i 0.185394 + 0.0176365i
\(535\) −489.855 411.037i −0.915617 0.768294i
\(536\) −14.3560 39.4427i −0.0267835 0.0735871i
\(537\) 82.1153 + 316.018i 0.152915 + 0.588489i
\(538\) 29.4140 + 166.815i 0.0546729 + 0.310066i
\(539\) 230.822i 0.428241i
\(540\) 181.470 + 413.451i 0.336056 + 0.765649i
\(541\) −604.682 −1.11771 −0.558856 0.829265i \(-0.688759\pi\)
−0.558856 + 0.829265i \(0.688759\pi\)
\(542\) 204.386 36.0388i 0.377096 0.0664922i
\(543\) −29.6658 + 107.450i −0.0546331 + 0.197883i
\(544\) 5.40161 1.96603i 0.00992944 0.00361402i
\(545\) −235.308 + 280.430i −0.431758 + 0.514550i
\(546\) −212.536 + 97.1535i −0.389261 + 0.177937i
\(547\) −789.301 287.282i −1.44296 0.525196i −0.502347 0.864666i \(-0.667530\pi\)
−0.940617 + 0.339470i \(0.889752\pi\)
\(548\) 81.4234 47.0098i 0.148583 0.0857844i
\(549\) −131.736 + 345.556i −0.239957 + 0.629428i
\(550\) 208.973 361.952i 0.379951 0.658094i
\(551\) −657.757 783.884i −1.19375 1.42266i
\(552\) −14.4831 181.361i −0.0262375 0.328553i
\(553\) −130.344 + 739.218i −0.235703 + 1.33674i
\(554\) 454.213 + 80.0900i 0.819879 + 0.144567i
\(555\) −717.481 + 1508.69i −1.29276 + 2.71836i
\(556\) −74.2192 + 62.2773i −0.133488 + 0.112009i
\(557\) −785.853 453.713i −1.41087 0.814565i −0.415398 0.909640i \(-0.636358\pi\)
−0.995470 + 0.0950749i \(0.969691\pi\)
\(558\) 40.9387 + 73.4568i 0.0733668 + 0.131643i
\(559\) 142.661 + 247.096i 0.255208 + 0.442033i
\(560\) 104.893 288.190i 0.187308 0.514626i
\(561\) 11.6292 16.3432i 0.0207294 0.0291322i
\(562\) 14.8048 + 12.4227i 0.0263431 + 0.0221045i
\(563\) 23.4667 + 64.4741i 0.0416815 + 0.114519i 0.958787 0.284125i \(-0.0917031\pi\)
−0.917106 + 0.398644i \(0.869481\pi\)
\(564\) 27.8926 27.4731i 0.0494550 0.0487111i
\(565\) −0.301457 1.70965i −0.000533552 0.00302592i
\(566\) 644.316i 1.13837i
\(567\) 689.921 + 275.065i 1.21679 + 0.485124i
\(568\) 214.413 0.377487
\(569\) −459.085 + 80.9491i −0.806828 + 0.142265i −0.561824 0.827257i \(-0.689900\pi\)
−0.245004 + 0.969522i \(0.578789\pi\)
\(570\) −525.723 533.752i −0.922322 0.936407i
\(571\) −496.079 + 180.558i −0.868789 + 0.316213i −0.737677 0.675154i \(-0.764077\pi\)
−0.131113 + 0.991367i \(0.541855\pi\)
\(572\) −50.8116 + 60.5549i −0.0888315 + 0.105865i
\(573\) −524.877 373.482i −0.916016 0.651801i
\(574\) 646.264 + 235.221i 1.12590 + 0.409792i
\(575\) −834.033 + 481.529i −1.45049 + 0.837442i
\(576\) 61.8011 + 36.9408i 0.107294 + 0.0641334i
\(577\) 171.837 297.630i 0.297811 0.515824i −0.677824 0.735224i \(-0.737077\pi\)
0.975635 + 0.219401i \(0.0704101\pi\)
\(578\) 261.774 + 311.970i 0.452895 + 0.539740i
\(579\) 768.935 + 365.679i 1.32804 + 0.631571i
\(580\) 140.708 797.993i 0.242600 1.37585i
\(581\) −423.748 74.7182i −0.729342 0.128603i
\(582\) 148.029 11.8213i 0.254346 0.0203115i
\(583\) −200.459 + 168.205i −0.343841 + 0.288517i
\(584\) 129.891 + 74.9929i 0.222417 + 0.128412i
\(585\) −350.651 + 285.288i −0.599404 + 0.487672i
\(586\) −344.943 597.459i −0.588640 1.01956i
\(587\) −56.2267 + 154.482i −0.0957866 + 0.263172i −0.978327 0.207064i \(-0.933609\pi\)
0.882541 + 0.470236i \(0.155831\pi\)
\(588\) −87.5059 191.431i −0.148819 0.325563i
\(589\) −106.888 89.6899i −0.181474 0.152275i
\(590\) 113.405 + 311.577i 0.192212 + 0.528097i
\(591\) 514.911 + 142.161i 0.871254 + 0.240542i
\(592\) 46.2590 + 262.348i 0.0781403 + 0.443155i
\(593\) 349.285i 0.589014i 0.955649 + 0.294507i \(0.0951555\pi\)
−0.955649 + 0.294507i \(0.904845\pi\)
\(594\) 250.718 16.2021i 0.422084 0.0272762i
\(595\) −77.9106 −0.130942
\(596\) 165.289 29.1449i 0.277330 0.0489008i
\(597\) 423.014 109.918i 0.708566 0.184116i
\(598\) 171.165 62.2988i 0.286228 0.104179i
\(599\) −387.503 + 461.808i −0.646917 + 0.770965i −0.985446 0.169991i \(-0.945626\pi\)
0.338529 + 0.940956i \(0.390071\pi\)
\(600\) 36.0927 379.406i 0.0601546 0.632343i
\(601\) 37.6412 + 13.7003i 0.0626310 + 0.0227958i 0.373146 0.927773i \(-0.378279\pi\)
−0.310515 + 0.950569i \(0.600501\pi\)
\(602\) −533.426 + 307.974i −0.886090 + 0.511584i
\(603\) −131.165 25.1832i −0.217520 0.0417632i
\(604\) −129.080 + 223.573i −0.213709 + 0.370154i
\(605\) 417.648 + 497.734i 0.690328 + 0.822701i
\(606\) −423.675 + 291.901i −0.699134 + 0.481685i
\(607\) 173.949 986.513i 0.286572 1.62523i −0.413046 0.910710i \(-0.635535\pi\)
0.699617 0.714518i \(-0.253354\pi\)
\(608\) −117.650 20.7449i −0.193504 0.0341199i
\(609\) −756.230 1097.62i −1.24176 1.80233i
\(610\) 372.218 312.328i 0.610193 0.512013i
\(611\) 33.9447 + 19.5980i 0.0555560 + 0.0320753i
\(612\) 3.44881 17.9628i 0.00563530 0.0293510i
\(613\) −45.2825 78.4316i −0.0738704 0.127947i 0.826724 0.562608i \(-0.190202\pi\)
−0.900594 + 0.434660i \(0.856868\pi\)
\(614\) −4.23085 + 11.6242i −0.00689063 + 0.0189319i
\(615\) 1324.38 + 125.988i 2.15346 + 0.204858i
\(616\) −130.725 109.691i −0.212216 0.178070i
\(617\) −337.332 926.812i −0.546729 1.50213i −0.838100 0.545516i \(-0.816334\pi\)
0.291371 0.956610i \(-0.405889\pi\)
\(618\) −201.583 775.787i −0.326186 1.25532i
\(619\) 169.172 + 959.420i 0.273298 + 1.54995i 0.744316 + 0.667828i \(0.232776\pi\)
−0.471017 + 0.882124i \(0.656113\pi\)
\(620\) 110.491i 0.178211i
\(621\) −518.987 256.528i −0.835728 0.413088i
\(622\) −73.3706 −0.117959
\(623\) −211.668 + 37.3228i −0.339757 + 0.0599083i
\(624\) −19.1837 + 69.4839i −0.0307430 + 0.111352i
\(625\) −253.245 + 92.1738i −0.405193 + 0.147478i
\(626\) 332.234 395.941i 0.530725 0.632493i
\(627\) −379.135 + 173.308i −0.604681 + 0.276408i
\(628\) 390.218 + 142.028i 0.621366 + 0.226159i
\(629\) 58.6084 33.8376i 0.0931771 0.0537958i
\(630\) −615.875 756.979i −0.977579 1.20155i
\(631\) 5.01746 8.69050i 0.00795160 0.0137726i −0.862022 0.506870i \(-0.830802\pi\)
0.869974 + 0.493098i \(0.164136\pi\)
\(632\) 148.828 + 177.367i 0.235488 + 0.280644i
\(633\) 70.9907 + 888.964i 0.112150 + 1.40437i
\(634\) −112.582 + 638.487i −0.177575 + 1.00708i
\(635\) −1277.09 225.185i −2.01116 0.354622i
\(636\) −102.482 + 215.495i −0.161136 + 0.338829i
\(637\) 161.426 135.453i 0.253416 0.212642i
\(638\) −390.471 225.439i −0.612024 0.353352i
\(639\) 350.043 585.614i 0.547799 0.916454i
\(640\) −47.3000 81.9260i −0.0739062 0.128009i
\(641\) −80.7353 + 221.818i −0.125952 + 0.346050i −0.986602 0.163147i \(-0.947835\pi\)
0.860650 + 0.509197i \(0.170058\pi\)
\(642\) −188.113 + 264.366i −0.293010 + 0.411785i
\(643\) −21.9909 18.4526i −0.0342005 0.0286976i 0.625527 0.780202i \(-0.284884\pi\)
−0.659728 + 0.751505i \(0.729328\pi\)
\(644\) 134.489 + 369.506i 0.208834 + 0.573768i
\(645\) −848.867 + 836.098i −1.31607 + 1.29628i
\(646\) 5.27004 + 29.8879i 0.00815796 + 0.0462661i
\(647\) 230.995i 0.357024i 0.983938 + 0.178512i \(0.0571284\pi\)
−0.983938 + 0.178512i \(0.942872\pi\)
\(648\) 201.789 108.486i 0.311403 0.167416i
\(649\) 184.497 0.284280
\(650\) 375.763 66.2572i 0.578098 0.101934i
\(651\) −127.540 129.488i −0.195915 0.198907i
\(652\) −321.437 + 116.993i −0.493001 + 0.179438i
\(653\) 704.150 839.173i 1.07833 1.28510i 0.122092 0.992519i \(-0.461040\pi\)
0.956239 0.292586i \(-0.0945157\pi\)
\(654\) 151.343 + 107.690i 0.231411 + 0.164663i
\(655\) 1063.94 + 387.241i 1.62433 + 0.591208i
\(656\) 183.718 106.070i 0.280058 0.161692i
\(657\) 416.881 232.335i 0.634522 0.353630i
\(658\) −42.3077 + 73.2791i −0.0642975 + 0.111366i
\(659\) 231.520 + 275.915i 0.351321 + 0.418688i 0.912545 0.408976i \(-0.134114\pi\)
−0.561224 + 0.827664i \(0.689670\pi\)
\(660\) −298.109 141.770i −0.451680 0.214803i
\(661\) −27.1592 + 154.027i −0.0410880 + 0.233022i −0.998435 0.0559177i \(-0.982192\pi\)
0.957347 + 0.288940i \(0.0933027\pi\)
\(662\) 618.857 + 109.121i 0.934830 + 0.164836i
\(663\) 18.2540 1.45772i 0.0275324 0.00219868i
\(664\) −101.673 + 85.3141i −0.153123 + 0.128485i
\(665\) 1402.27 + 809.598i 2.10867 + 1.21744i
\(666\) 792.059 + 301.957i 1.18928 + 0.453388i
\(667\) 519.470 + 899.749i 0.778816 + 1.34895i
\(668\) −107.877 + 296.391i −0.161493 + 0.443698i
\(669\) −263.525 576.498i −0.393909 0.861730i
\(670\) 134.428 + 112.799i 0.200639 + 0.168356i
\(671\) −92.4709 254.062i −0.137811 0.378632i
\(672\) −150.000 41.4133i −0.223215 0.0616269i
\(673\) −131.778 747.351i −0.195807 1.11048i −0.911265 0.411821i \(-0.864893\pi\)
0.715458 0.698656i \(-0.246218\pi\)
\(674\) 127.210i 0.188739i
\(675\) −977.327 717.984i −1.44789 1.06368i
\(676\) 265.833 0.393244
\(677\) 1043.94 184.074i 1.54200 0.271897i 0.662966 0.748649i \(-0.269297\pi\)
0.879038 + 0.476752i \(0.158186\pi\)
\(678\) −0.852545 + 0.221528i −0.00125744 + 0.000326738i
\(679\) −301.595 + 109.772i −0.444176 + 0.161667i
\(680\) −15.4476 + 18.4097i −0.0227171 + 0.0270731i
\(681\) 4.57151 48.0555i 0.00671293 0.0705661i
\(682\) −57.7726 21.0275i −0.0847106 0.0308321i
\(683\) 927.527 535.508i 1.35802 0.784053i 0.368663 0.929563i \(-0.379816\pi\)
0.989357 + 0.145511i \(0.0464825\pi\)
\(684\) −248.732 + 287.464i −0.363643 + 0.420269i
\(685\) −196.537 + 340.412i −0.286916 + 0.496952i
\(686\) −116.026 138.274i −0.169134 0.201565i
\(687\) −645.681 + 444.857i −0.939856 + 0.647536i
\(688\) −32.9922 + 187.108i −0.0479538 + 0.271959i
\(689\) −235.270 41.4844i −0.341466 0.0602096i
\(690\) 431.553 + 626.370i 0.625439 + 0.907783i
\(691\) 338.945 284.409i 0.490514 0.411590i −0.363696 0.931518i \(-0.618485\pi\)
0.854211 + 0.519927i \(0.174041\pi\)
\(692\) −29.0207 16.7551i −0.0419375 0.0242126i
\(693\) −513.011 + 177.963i −0.740276 + 0.256801i
\(694\) −351.156 608.220i −0.505988 0.876398i
\(695\) 138.538 380.631i 0.199336 0.547670i
\(696\) −409.300 38.9366i −0.588075 0.0559434i
\(697\) −41.2837 34.6411i −0.0592305 0.0497003i
\(698\) −164.048 450.719i −0.235026 0.645729i
\(699\) −242.727 934.126i −0.347249 1.33638i
\(700\) 143.035 + 811.191i 0.204335 + 1.15884i
\(701\) 77.6184i 0.110725i −0.998466 0.0553626i \(-0.982369\pi\)
0.998466 0.0553626i \(-0.0176315\pi\)
\(702\) 158.459 + 165.833i 0.225725 + 0.236229i
\(703\) −1406.48 −2.00068
\(704\) −51.8385 + 9.14053i −0.0736343 + 0.0129837i
\(705\) −43.5602 + 157.777i −0.0617875 + 0.223797i
\(706\) 293.434 106.801i 0.415629 0.151277i
\(707\) 714.763 851.821i 1.01098 1.20484i
\(708\) 153.012 69.9440i 0.216119 0.0987909i
\(709\) −139.805 50.8850i −0.197187 0.0717700i 0.241539 0.970391i \(-0.422348\pi\)
−0.438726 + 0.898621i \(0.644570\pi\)
\(710\) −776.313 + 448.204i −1.09340 + 0.631274i
\(711\) 727.405 116.924i 1.02307 0.164449i
\(712\) −33.1491 + 57.4159i −0.0465577 + 0.0806404i
\(713\) 91.0618 + 108.523i 0.127716 + 0.152206i
\(714\) 3.14690 + 39.4064i 0.00440743 + 0.0551910i
\(715\) 57.3881 325.464i 0.0802631 0.455195i
\(716\) −214.368 37.7989i −0.299397 0.0527917i
\(717\) 101.629 213.702i 0.141742 0.298050i
\(718\) −618.223 + 518.750i −0.861034 + 0.722494i
\(719\) −22.6129 13.0556i −0.0314505 0.0181580i 0.484192 0.874962i \(-0.339114\pi\)
−0.515643 + 0.856804i \(0.672447\pi\)
\(720\) −300.981 4.56189i −0.418029 0.00633596i
\(721\) 866.187 + 1500.28i 1.20137 + 2.08083i
\(722\) 41.1123 112.955i 0.0569422 0.156447i
\(723\) 526.935 740.534i 0.728818 1.02425i
\(724\) −56.9275 47.7679i −0.0786292 0.0659777i
\(725\) 744.350 + 2045.09i 1.02669 + 2.82081i
\(726\) 234.879 231.346i 0.323525 0.318659i
\(727\) −159.723 905.834i −0.219701 1.24599i −0.872559 0.488508i \(-0.837541\pi\)
0.652858 0.757480i \(-0.273570\pi\)
\(728\) 155.793i 0.214001i
\(729\) 33.1339 728.247i 0.0454512 0.998967i
\(730\) −627.056 −0.858980
\(731\) 47.5330 8.38135i 0.0650246 0.0114656i
\(732\) −173.006 175.649i −0.236348 0.239957i
\(733\) 332.814 121.134i 0.454044 0.165258i −0.104867 0.994486i \(-0.533442\pi\)
0.558911 + 0.829228i \(0.311219\pi\)
\(734\) 192.215 229.073i 0.261874 0.312089i
\(735\) 716.992 + 510.184i 0.975500 + 0.694128i
\(736\) 113.978 + 41.4844i 0.154861 + 0.0563647i
\(737\) 84.5624 48.8222i 0.114739 0.0662444i
\(738\) 10.2300 674.946i 0.0138618 0.914561i
\(739\) 410.346 710.740i 0.555272 0.961760i −0.442610 0.896714i \(-0.645947\pi\)
0.997882 0.0650455i \(-0.0207192\pi\)
\(740\) −715.896 853.171i −0.967427 1.15293i
\(741\) −343.691 163.448i −0.463820 0.220577i
\(742\) 89.5558 507.896i 0.120695 0.684496i
\(743\) −132.906 23.4348i −0.178877 0.0315408i 0.0834921 0.996508i \(-0.473393\pi\)
−0.262369 + 0.964968i \(0.584504\pi\)
\(744\) −55.8851 + 4.46286i −0.0751143 + 0.00599846i
\(745\) −537.529 + 451.040i −0.721515 + 0.605423i
\(746\) 85.0755 + 49.1184i 0.114042 + 0.0658423i
\(747\) 67.0251 + 416.977i 0.0897257 + 0.558202i
\(748\) 6.68612 + 11.5807i 0.00893866 + 0.0154822i
\(749\) 239.843 658.963i 0.320218 0.879791i
\(750\) 293.716 + 642.544i 0.391622 + 0.856726i
\(751\) 938.326 + 787.349i 1.24944 + 1.04840i 0.996726 + 0.0808587i \(0.0257663\pi\)
0.252710 + 0.967542i \(0.418678\pi\)
\(752\) 8.92686 + 24.5264i 0.0118708 + 0.0326148i
\(753\) 238.355 + 65.8068i 0.316540 + 0.0873928i
\(754\) −71.4779 405.371i −0.0947982 0.537627i
\(755\) 1079.31i 1.42955i
\(756\) −357.996 + 342.078i −0.473540 + 0.452484i
\(757\) 915.003 1.20872 0.604361 0.796710i \(-0.293428\pi\)
0.604361 + 0.796710i \(0.293428\pi\)
\(758\) −543.458 + 95.8264i −0.716964 + 0.126420i
\(759\) 409.641 106.443i 0.539711 0.140241i
\(760\) 469.335 170.824i 0.617546 0.224768i
\(761\) −482.010 + 574.437i −0.633391 + 0.754846i −0.983311 0.181934i \(-0.941764\pi\)
0.349920 + 0.936780i \(0.386209\pi\)
\(762\) −62.3130 + 655.032i −0.0817756 + 0.859622i
\(763\) −377.240 137.304i −0.494416 0.179953i
\(764\) 371.925 214.731i 0.486813 0.281062i
\(765\) 25.0623 + 72.2464i 0.0327611 + 0.0944398i
\(766\) 128.227 222.095i