Properties

Label 54.3.f.a.41.1
Level $54$
Weight $3$
Character 54.41
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 41.1
Character \(\chi\) \(=\) 54.41
Dual form 54.3.f.a.29.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39273 + 0.245576i) q^{2} +(-2.97067 + 0.418457i) q^{3} +(1.87939 - 0.684040i) q^{4} +(5.54906 - 6.61311i) q^{5} +(4.03458 - 1.31232i) q^{6} +(7.83131 + 2.85036i) q^{7} +(-2.44949 + 1.41421i) q^{8} +(8.64979 - 2.48620i) q^{9} +O(q^{10})\) \(q+(-1.39273 + 0.245576i) q^{2} +(-2.97067 + 0.418457i) q^{3} +(1.87939 - 0.684040i) q^{4} +(5.54906 - 6.61311i) q^{5} +(4.03458 - 1.31232i) q^{6} +(7.83131 + 2.85036i) q^{7} +(-2.44949 + 1.41421i) q^{8} +(8.64979 - 2.48620i) q^{9} +(-6.10431 + 10.5730i) q^{10} +(-10.8191 - 12.8937i) q^{11} +(-5.29680 + 2.81850i) q^{12} +(0.524960 - 2.97720i) q^{13} +(-11.6069 - 2.04660i) q^{14} +(-13.7171 + 21.9674i) q^{15} +(3.06418 - 2.57115i) q^{16} +(8.43596 + 4.87051i) q^{17} +(-11.4363 + 5.58678i) q^{18} +(3.84677 + 6.66281i) q^{19} +(5.90519 - 16.2244i) q^{20} +(-24.4570 - 5.19043i) q^{21} +(18.2344 + 15.3005i) q^{22} +(10.1434 + 27.8689i) q^{23} +(6.68484 - 5.22617i) q^{24} +(-8.59998 - 48.7729i) q^{25} +4.27534i q^{26} +(-24.6553 + 11.0052i) q^{27} +16.6678 q^{28} +(-10.5809 + 1.86569i) q^{29} +(13.7096 - 33.9633i) q^{30} +(-10.8017 + 3.93149i) q^{31} +(-3.63616 + 4.33340i) q^{32} +(37.5353 + 33.7755i) q^{33} +(-12.9451 - 4.71163i) q^{34} +(62.3062 - 35.9725i) q^{35} +(14.5556 - 10.5893i) q^{36} +(-11.5925 + 20.0787i) q^{37} +(-6.99373 - 8.33481i) q^{38} +(-0.313655 + 9.06395i) q^{39} +(-4.24001 + 24.0463i) q^{40} +(-16.7264 - 2.94931i) q^{41} +(35.3366 + 1.22281i) q^{42} +(18.0881 - 15.1778i) q^{43} +(-29.1530 - 16.8315i) q^{44} +(31.5567 - 70.9981i) q^{45} +(-20.9710 - 36.3228i) q^{46} +(-5.67901 + 15.6029i) q^{47} +(-8.02675 + 8.92027i) q^{48} +(15.6687 + 13.1476i) q^{49} +(23.9549 + 65.8155i) q^{50} +(-27.0986 - 10.9386i) q^{51} +(-1.04992 - 5.95439i) q^{52} +75.3383i q^{53} +(31.6355 - 21.3821i) q^{54} -145.303 q^{55} +(-23.2137 + 4.09321i) q^{56} +(-14.2156 - 18.1833i) q^{57} +(14.2781 - 5.19681i) q^{58} +(-38.6968 + 46.1170i) q^{59} +(-10.7532 + 50.6683i) q^{60} +(32.1023 + 11.6843i) q^{61} +(14.0783 - 8.12813i) q^{62} +(74.8257 + 5.18485i) q^{63} +(4.00000 - 6.92820i) q^{64} +(-16.7755 - 19.9923i) q^{65} +(-60.5710 - 37.8224i) q^{66} +(6.53483 - 37.0609i) q^{67} +(19.1860 + 3.38302i) q^{68} +(-41.7948 - 78.5447i) q^{69} +(-77.9416 + 65.4008i) q^{70} +(44.0325 + 25.4222i) q^{71} +(-17.6715 + 18.3226i) q^{72} +(49.2453 + 85.2954i) q^{73} +(11.2143 - 30.8110i) q^{74} +(45.9571 + 141.290i) q^{75} +(11.7872 + 9.89063i) q^{76} +(-47.9758 - 131.813i) q^{77} +(-1.78905 - 12.7006i) q^{78} +(-14.0913 - 79.9158i) q^{79} -34.5312i q^{80} +(68.6376 - 43.0102i) q^{81} +24.0196 q^{82} +(-15.8868 + 2.80127i) q^{83} +(-49.5146 + 6.97477i) q^{84} +(79.0209 - 28.7612i) q^{85} +(-21.4646 + 25.5805i) q^{86} +(30.6516 - 9.97000i) q^{87} +(44.7356 + 16.2824i) q^{88} +(14.0161 - 8.09222i) q^{89} +(-26.5145 + 106.631i) q^{90} +(12.5972 - 21.8190i) q^{91} +(38.1269 + 45.4378i) q^{92} +(30.4431 - 16.1992i) q^{93} +(4.07761 - 23.1253i) q^{94} +(65.4078 + 11.5332i) q^{95} +(8.98848 - 14.3947i) q^{96} +(-101.648 + 85.2929i) q^{97} +(-25.0509 - 14.4632i) q^{98} +(-125.639 - 84.6291i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39273 + 0.245576i −0.696364 + 0.122788i
\(3\) −2.97067 + 0.418457i −0.990224 + 0.139486i
\(4\) 1.87939 0.684040i 0.469846 0.171010i
\(5\) 5.54906 6.61311i 1.10981 1.32262i 0.168264 0.985742i \(-0.446184\pi\)
0.941547 0.336880i \(-0.109372\pi\)
\(6\) 4.03458 1.31232i 0.672429 0.218720i
\(7\) 7.83131 + 2.85036i 1.11876 + 0.407195i 0.834199 0.551463i \(-0.185930\pi\)
0.284560 + 0.958658i \(0.408153\pi\)
\(8\) −2.44949 + 1.41421i −0.306186 + 0.176777i
\(9\) 8.64979 2.48620i 0.961087 0.276244i
\(10\) −6.10431 + 10.5730i −0.610431 + 1.05730i
\(11\) −10.8191 12.8937i −0.983551 1.17215i −0.985070 0.172152i \(-0.944928\pi\)
0.00151930 0.999999i \(-0.499516\pi\)
\(12\) −5.29680 + 2.81850i −0.441400 + 0.234875i
\(13\) 0.524960 2.97720i 0.0403815 0.229015i −0.957937 0.286978i \(-0.907349\pi\)
0.998319 + 0.0579628i \(0.0184605\pi\)
\(14\) −11.6069 2.04660i −0.829062 0.146186i
\(15\) −13.7171 + 21.9674i −0.914475 + 1.46450i
\(16\) 3.06418 2.57115i 0.191511 0.160697i
\(17\) 8.43596 + 4.87051i 0.496233 + 0.286500i 0.727157 0.686472i \(-0.240841\pi\)
−0.230924 + 0.972972i \(0.574175\pi\)
\(18\) −11.4363 + 5.58678i −0.635348 + 0.310376i
\(19\) 3.84677 + 6.66281i 0.202462 + 0.350674i 0.949321 0.314308i \(-0.101772\pi\)
−0.746859 + 0.664982i \(0.768439\pi\)
\(20\) 5.90519 16.2244i 0.295259 0.811218i
\(21\) −24.4570 5.19043i −1.16462 0.247163i
\(22\) 18.2344 + 15.3005i 0.828836 + 0.695476i
\(23\) 10.1434 + 27.8689i 0.441019 + 1.21169i 0.938823 + 0.344400i \(0.111918\pi\)
−0.497804 + 0.867290i \(0.665860\pi\)
\(24\) 6.68484 5.22617i 0.278535 0.217757i
\(25\) −8.59998 48.7729i −0.343999 1.95092i
\(26\) 4.27534i 0.164436i
\(27\) −24.6553 + 11.0052i −0.913160 + 0.407602i
\(28\) 16.6678 0.595279
\(29\) −10.5809 + 1.86569i −0.364858 + 0.0643342i −0.353072 0.935596i \(-0.614863\pi\)
−0.0117860 + 0.999931i \(0.503752\pi\)
\(30\) 13.7096 33.9633i 0.456986 1.13211i
\(31\) −10.8017 + 3.93149i −0.348441 + 0.126822i −0.510311 0.859990i \(-0.670470\pi\)
0.161870 + 0.986812i \(0.448248\pi\)
\(32\) −3.63616 + 4.33340i −0.113630 + 0.135419i
\(33\) 37.5353 + 33.7755i 1.13743 + 1.02350i
\(34\) −12.9451 4.71163i −0.380738 0.138577i
\(35\) 62.3062 35.9725i 1.78018 1.02779i
\(36\) 14.5556 10.5893i 0.404323 0.294148i
\(37\) −11.5925 + 20.0787i −0.313309 + 0.542668i −0.979077 0.203492i \(-0.934771\pi\)
0.665767 + 0.746160i \(0.268104\pi\)
\(38\) −6.99373 8.33481i −0.184046 0.219337i
\(39\) −0.313655 + 9.06395i −0.00804244 + 0.232409i
\(40\) −4.24001 + 24.0463i −0.106000 + 0.601158i
\(41\) −16.7264 2.94931i −0.407960 0.0719344i −0.0340976 0.999419i \(-0.510856\pi\)
−0.373863 + 0.927484i \(0.621967\pi\)
\(42\) 35.3366 + 1.22281i 0.841348 + 0.0291146i
\(43\) 18.0881 15.1778i 0.420655 0.352971i −0.407757 0.913090i \(-0.633689\pi\)
0.828412 + 0.560119i \(0.189245\pi\)
\(44\) −29.1530 16.8315i −0.662567 0.382533i
\(45\) 31.5567 70.9981i 0.701259 1.57773i
\(46\) −20.9710 36.3228i −0.455891 0.789626i
\(47\) −5.67901 + 15.6029i −0.120830 + 0.331977i −0.985331 0.170653i \(-0.945412\pi\)
0.864501 + 0.502631i \(0.167634\pi\)
\(48\) −8.02675 + 8.92027i −0.167224 + 0.185839i
\(49\) 15.6687 + 13.1476i 0.319769 + 0.268318i
\(50\) 23.9549 + 65.8155i 0.479097 + 1.31631i
\(51\) −27.0986 10.9386i −0.531345 0.214482i
\(52\) −1.04992 5.95439i −0.0201908 0.114508i
\(53\) 75.3383i 1.42148i 0.703456 + 0.710739i \(0.251639\pi\)
−0.703456 + 0.710739i \(0.748361\pi\)
\(54\) 31.6355 21.3821i 0.585843 0.395964i
\(55\) −145.303 −2.64187
\(56\) −23.2137 + 4.09321i −0.414531 + 0.0730930i
\(57\) −14.2156 18.1833i −0.249397 0.319005i
\(58\) 14.2781 5.19681i 0.246174 0.0896001i
\(59\) −38.6968 + 46.1170i −0.655878 + 0.781645i −0.986788 0.162017i \(-0.948200\pi\)
0.330910 + 0.943662i \(0.392644\pi\)
\(60\) −10.7532 + 50.6683i −0.179219 + 0.844472i
\(61\) 32.1023 + 11.6843i 0.526267 + 0.191546i 0.591471 0.806326i \(-0.298547\pi\)
−0.0652037 + 0.997872i \(0.520770\pi\)
\(62\) 14.0783 8.12813i 0.227070 0.131099i
\(63\) 74.8257 + 5.18485i 1.18771 + 0.0822992i
\(64\) 4.00000 6.92820i 0.0625000 0.108253i
\(65\) −16.7755 19.9923i −0.258085 0.307573i
\(66\) −60.5710 37.8224i −0.917742 0.573066i
\(67\) 6.53483 37.0609i 0.0975348 0.553147i −0.896406 0.443233i \(-0.853831\pi\)
0.993941 0.109914i \(-0.0350575\pi\)
\(68\) 19.1860 + 3.38302i 0.282148 + 0.0497503i
\(69\) −41.7948 78.5447i −0.605721 1.13833i
\(70\) −77.9416 + 65.4008i −1.11345 + 0.934297i
\(71\) 44.0325 + 25.4222i 0.620175 + 0.358058i 0.776937 0.629578i \(-0.216772\pi\)
−0.156762 + 0.987636i \(0.550106\pi\)
\(72\) −17.6715 + 18.3226i −0.245438 + 0.254480i
\(73\) 49.2453 + 85.2954i 0.674593 + 1.16843i 0.976588 + 0.215120i \(0.0690144\pi\)
−0.301994 + 0.953310i \(0.597652\pi\)
\(74\) 11.2143 30.8110i 0.151545 0.416365i
\(75\) 45.9571 + 141.290i 0.612761 + 1.88386i
\(76\) 11.7872 + 9.89063i 0.155095 + 0.130140i
\(77\) −47.9758 131.813i −0.623063 1.71185i
\(78\) −1.78905 12.7006i −0.0229365 0.162829i
\(79\) −14.0913 79.9158i −0.178371 1.01159i −0.934180 0.356801i \(-0.883867\pi\)
0.755809 0.654792i \(-0.227244\pi\)
\(80\) 34.5312i 0.431640i
\(81\) 68.6376 43.0102i 0.847378 0.530990i
\(82\) 24.0196 0.292921
\(83\) −15.8868 + 2.80127i −0.191407 + 0.0337503i −0.268530 0.963271i \(-0.586538\pi\)
0.0771226 + 0.997022i \(0.475427\pi\)
\(84\) −49.5146 + 6.97477i −0.589460 + 0.0830329i
\(85\) 79.0209 28.7612i 0.929657 0.338368i
\(86\) −21.4646 + 25.5805i −0.249588 + 0.297448i
\(87\) 30.6516 9.97000i 0.352317 0.114598i
\(88\) 44.7356 + 16.2824i 0.508359 + 0.185027i
\(89\) 14.0161 8.09222i 0.157485 0.0909238i −0.419187 0.907900i \(-0.637685\pi\)
0.576671 + 0.816976i \(0.304351\pi\)
\(90\) −26.5145 + 106.631i −0.294605 + 1.18478i
\(91\) 12.5972 21.8190i 0.138431 0.239769i
\(92\) 38.1269 + 45.4378i 0.414422 + 0.493889i
\(93\) 30.4431 16.1992i 0.327345 0.174185i
\(94\) 4.07761 23.1253i 0.0433788 0.246014i
\(95\) 65.4078 + 11.5332i 0.688504 + 0.121402i
\(96\) 8.98848 14.3947i 0.0936300 0.149945i
\(97\) −101.648 + 85.2929i −1.04792 + 0.879308i −0.992873 0.119176i \(-0.961975\pi\)
−0.0550452 + 0.998484i \(0.517530\pi\)
\(98\) −25.0509 14.4632i −0.255622 0.147583i
\(99\) −125.639 84.6291i −1.26908 0.854839i
\(100\) −49.5253 85.7803i −0.495253 0.857803i
\(101\) −5.20626 + 14.3041i −0.0515471 + 0.141625i −0.962794 0.270235i \(-0.912898\pi\)
0.911247 + 0.411860i \(0.135121\pi\)
\(102\) 40.4272 + 8.57973i 0.396345 + 0.0841150i
\(103\) −28.9968 24.3312i −0.281522 0.236225i 0.491082 0.871113i \(-0.336602\pi\)
−0.772604 + 0.634889i \(0.781046\pi\)
\(104\) 2.92451 + 8.03502i 0.0281203 + 0.0772598i
\(105\) −170.038 + 132.935i −1.61941 + 1.26605i
\(106\) −18.5013 104.926i −0.174540 0.989866i
\(107\) 118.659i 1.10897i −0.832195 0.554483i \(-0.812916\pi\)
0.832195 0.554483i \(-0.187084\pi\)
\(108\) −38.8088 + 37.5483i −0.359341 + 0.347670i
\(109\) 206.055 1.89042 0.945208 0.326468i \(-0.105859\pi\)
0.945208 + 0.326468i \(0.105859\pi\)
\(110\) 202.367 35.6828i 1.83970 0.324389i
\(111\) 26.0353 64.4982i 0.234552 0.581065i
\(112\) 31.3252 11.4015i 0.279690 0.101799i
\(113\) −45.6567 + 54.4116i −0.404042 + 0.481519i −0.929248 0.369457i \(-0.879544\pi\)
0.525206 + 0.850975i \(0.323988\pi\)
\(114\) 24.2638 + 21.8334i 0.212841 + 0.191521i
\(115\) 240.586 + 87.5663i 2.09206 + 0.761446i
\(116\) −18.6093 + 10.7441i −0.160425 + 0.0926215i
\(117\) −2.86111 27.0573i −0.0244539 0.231259i
\(118\) 42.5689 73.7315i 0.360753 0.624843i
\(119\) 52.1819 + 62.1880i 0.438504 + 0.522588i
\(120\) 2.53334 73.2079i 0.0211112 0.610066i
\(121\) −28.1828 + 159.833i −0.232916 + 1.32093i
\(122\) −47.5792 8.38949i −0.389993 0.0687663i
\(123\) 50.9227 + 1.76216i 0.414006 + 0.0143265i
\(124\) −17.6112 + 14.7776i −0.142026 + 0.119174i
\(125\) −183.357 105.861i −1.46685 0.846888i
\(126\) −105.485 + 11.1543i −0.837184 + 0.0885261i
\(127\) −19.1347 33.1422i −0.150667 0.260963i 0.780806 0.624774i \(-0.214809\pi\)
−0.931473 + 0.363811i \(0.881475\pi\)
\(128\) −3.86952 + 10.6314i −0.0302306 + 0.0830579i
\(129\) −47.3827 + 52.6573i −0.367308 + 0.408196i
\(130\) 28.2733 + 23.7241i 0.217487 + 0.182493i
\(131\) −74.5355 204.785i −0.568973 1.56324i −0.806110 0.591765i \(-0.798431\pi\)
0.237137 0.971476i \(-0.423791\pi\)
\(132\) 93.6472 + 37.8015i 0.709448 + 0.286375i
\(133\) 11.1339 + 63.1432i 0.0837132 + 0.474761i
\(134\) 53.2205i 0.397168i
\(135\) −64.0349 + 224.117i −0.474333 + 1.66013i
\(136\) −27.5517 −0.202586
\(137\) −181.295 + 31.9672i −1.32332 + 0.233337i −0.790277 0.612749i \(-0.790064\pi\)
−0.533045 + 0.846087i \(0.678952\pi\)
\(138\) 77.4974 + 99.1277i 0.561575 + 0.718316i
\(139\) −228.486 + 83.1623i −1.64379 + 0.598290i −0.987695 0.156391i \(-0.950014\pi\)
−0.656092 + 0.754681i \(0.727792\pi\)
\(140\) 92.4907 110.226i 0.660648 0.787329i
\(141\) 10.3413 48.7276i 0.0733426 0.345586i
\(142\) −67.5683 24.5929i −0.475833 0.173189i
\(143\) −44.0665 + 25.4418i −0.308157 + 0.177915i
\(144\) 20.1121 29.8581i 0.139667 0.207348i
\(145\) −46.3758 + 80.3253i −0.319833 + 0.553968i
\(146\) −89.5318 106.700i −0.613232 0.730821i
\(147\) −52.0482 32.5005i −0.354069 0.221092i
\(148\) −8.05203 + 45.6653i −0.0544056 + 0.308550i
\(149\) 141.886 + 25.0183i 0.952255 + 0.167908i 0.628132 0.778107i \(-0.283820\pi\)
0.324123 + 0.946015i \(0.394931\pi\)
\(150\) −98.7030 185.492i −0.658020 1.23661i
\(151\) −77.8368 + 65.3129i −0.515476 + 0.432535i −0.863051 0.505117i \(-0.831449\pi\)
0.347575 + 0.937652i \(0.387005\pi\)
\(152\) −18.8453 10.8803i −0.123982 0.0715810i
\(153\) 85.0783 + 21.1554i 0.556068 + 0.138270i
\(154\) 99.1872 + 171.797i 0.644073 + 1.11557i
\(155\) −33.9398 + 93.2488i −0.218966 + 0.601605i
\(156\) 5.61063 + 17.2492i 0.0359656 + 0.110572i
\(157\) −237.118 198.965i −1.51030 1.26730i −0.863162 0.504927i \(-0.831519\pi\)
−0.647143 0.762369i \(-0.724036\pi\)
\(158\) 39.2508 + 107.841i 0.248423 + 0.682535i
\(159\) −31.5259 223.805i −0.198276 1.40758i
\(160\) 8.48002 + 48.0926i 0.0530001 + 0.300579i
\(161\) 247.162i 1.53517i
\(162\) −85.0313 + 76.7572i −0.524885 + 0.473810i
\(163\) 160.056 0.981937 0.490969 0.871177i \(-0.336643\pi\)
0.490969 + 0.871177i \(0.336643\pi\)
\(164\) −33.4527 + 5.89862i −0.203980 + 0.0359672i
\(165\) 431.647 60.8030i 2.61604 0.368503i
\(166\) 21.4381 7.80282i 0.129145 0.0470050i
\(167\) 160.019 190.703i 0.958197 1.14193i −0.0316076 0.999500i \(-0.510063\pi\)
0.989804 0.142434i \(-0.0454929\pi\)
\(168\) 67.2476 21.8735i 0.400283 0.130200i
\(169\) 150.220 + 54.6756i 0.888875 + 0.323524i
\(170\) −102.992 + 59.4622i −0.605833 + 0.349778i
\(171\) 49.8388 + 48.0680i 0.291455 + 0.281100i
\(172\) 23.6124 40.8979i 0.137281 0.237778i
\(173\) 43.4383 + 51.7678i 0.251088 + 0.299236i 0.876836 0.480790i \(-0.159650\pi\)
−0.625747 + 0.780026i \(0.715206\pi\)
\(174\) −40.2409 + 21.4128i −0.231270 + 0.123062i
\(175\) 71.6714 406.469i 0.409551 2.32268i
\(176\) −66.3031 11.6910i −0.376722 0.0664262i
\(177\) 95.6575 153.192i 0.540438 0.865489i
\(178\) −17.5334 + 14.7123i −0.0985024 + 0.0826533i
\(179\) 203.717 + 117.616i 1.13808 + 0.657073i 0.945955 0.324297i \(-0.105128\pi\)
0.192128 + 0.981370i \(0.438461\pi\)
\(180\) 10.7416 155.019i 0.0596756 0.861215i
\(181\) −108.916 188.647i −0.601744 1.04225i −0.992557 0.121781i \(-0.961140\pi\)
0.390813 0.920470i \(-0.372194\pi\)
\(182\) −12.1863 + 33.4815i −0.0669576 + 0.183965i
\(183\) −100.255 21.2767i −0.547840 0.116266i
\(184\) −64.2588 53.9195i −0.349233 0.293041i
\(185\) 68.4556 + 188.080i 0.370030 + 1.01665i
\(186\) −38.4208 + 30.0372i −0.206564 + 0.161490i
\(187\) −28.4706 161.465i −0.152249 0.863448i
\(188\) 33.2086i 0.176642i
\(189\) −224.452 + 15.9089i −1.18758 + 0.0841739i
\(190\) −93.9276 −0.494356
\(191\) 253.418 44.6844i 1.32679 0.233950i 0.535060 0.844814i \(-0.320289\pi\)
0.791735 + 0.610864i \(0.209178\pi\)
\(192\) −8.98353 + 22.2552i −0.0467892 + 0.115913i
\(193\) 72.0472 26.2230i 0.373302 0.135871i −0.148554 0.988904i \(-0.547462\pi\)
0.521856 + 0.853034i \(0.325240\pi\)
\(194\) 120.622 143.752i 0.621765 0.740990i
\(195\) 58.2004 + 52.3706i 0.298464 + 0.268567i
\(196\) 38.4410 + 13.9914i 0.196127 + 0.0713845i
\(197\) −211.300 + 121.994i −1.07259 + 0.619260i −0.928888 0.370361i \(-0.879234\pi\)
−0.143702 + 0.989621i \(0.545901\pi\)
\(198\) 195.764 + 87.0115i 0.988705 + 0.439452i
\(199\) −41.0539 + 71.1075i −0.206301 + 0.357324i −0.950547 0.310582i \(-0.899476\pi\)
0.744245 + 0.667906i \(0.232809\pi\)
\(200\) 90.0408 + 107.307i 0.450204 + 0.536533i
\(201\) −3.90445 + 112.830i −0.0194251 + 0.561344i
\(202\) 3.73817 21.2002i 0.0185058 0.104952i
\(203\) −88.1800 15.5485i −0.434384 0.0765936i
\(204\) −58.4111 2.02130i −0.286329 0.00990832i
\(205\) −112.320 + 94.2474i −0.547901 + 0.459743i
\(206\) 46.3597 + 26.7658i 0.225047 + 0.129931i
\(207\) 157.026 + 215.841i 0.758580 + 1.04271i
\(208\) −6.04625 10.4724i −0.0290685 0.0503481i
\(209\) 44.2895 121.684i 0.211911 0.582221i
\(210\) 204.172 226.900i 0.972246 1.08047i
\(211\) 44.0427 + 36.9562i 0.208733 + 0.175148i 0.741161 0.671328i \(-0.234276\pi\)
−0.532427 + 0.846476i \(0.678720\pi\)
\(212\) 51.5344 + 141.590i 0.243087 + 0.667876i
\(213\) −141.444 57.0952i −0.664057 0.268052i
\(214\) 29.1399 + 165.260i 0.136168 + 0.772245i
\(215\) 203.841i 0.948098i
\(216\) 44.8292 61.8251i 0.207542 0.286227i
\(217\) −95.7975 −0.441463
\(218\) −286.979 + 50.6022i −1.31642 + 0.232120i
\(219\) −181.984 232.778i −0.830978 1.06291i
\(220\) −273.080 + 99.3930i −1.24127 + 0.451786i
\(221\) 18.9290 22.5587i 0.0856516 0.102076i
\(222\) −20.4209 + 96.2221i −0.0919860 + 0.433433i
\(223\) −217.997 79.3444i −0.977565 0.355805i −0.196672 0.980469i \(-0.563013\pi\)
−0.780893 + 0.624665i \(0.785236\pi\)
\(224\) −40.8276 + 23.5718i −0.182266 + 0.105231i
\(225\) −195.647 400.494i −0.869542 1.77997i
\(226\) 50.2253 86.9928i 0.222236 0.384924i
\(227\) 137.899 + 164.342i 0.607485 + 0.723973i 0.978865 0.204508i \(-0.0655595\pi\)
−0.371379 + 0.928481i \(0.621115\pi\)
\(228\) −39.1547 24.4494i −0.171731 0.107234i
\(229\) −68.6623 + 389.403i −0.299835 + 1.70045i 0.347036 + 0.937852i \(0.387188\pi\)
−0.646871 + 0.762599i \(0.723923\pi\)
\(230\) −356.576 62.8739i −1.55033 0.273365i
\(231\) 197.678 + 371.496i 0.855750 + 1.60821i
\(232\) 23.2792 19.5336i 0.100342 0.0841966i
\(233\) 82.9298 + 47.8796i 0.355922 + 0.205492i 0.667290 0.744798i \(-0.267454\pi\)
−0.311368 + 0.950289i \(0.600787\pi\)
\(234\) 10.6294 + 36.9808i 0.0454246 + 0.158038i
\(235\) 71.6708 + 124.138i 0.304982 + 0.528245i
\(236\) −41.1803 + 113.142i −0.174493 + 0.479415i
\(237\) 75.3020 + 231.507i 0.317730 + 0.976823i
\(238\) −87.9471 73.7964i −0.369526 0.310069i
\(239\) −30.1617 82.8687i −0.126200 0.346731i 0.860462 0.509514i \(-0.170175\pi\)
−0.986662 + 0.162784i \(0.947953\pi\)
\(240\) 14.4498 + 102.581i 0.0602076 + 0.427420i
\(241\) −66.8780 379.284i −0.277502 1.57379i −0.730901 0.682484i \(-0.760900\pi\)
0.453399 0.891308i \(-0.350211\pi\)
\(242\) 229.525i 0.948449i
\(243\) −185.902 + 156.491i −0.765029 + 0.643996i
\(244\) 68.3251 0.280021
\(245\) 173.893 30.6620i 0.709767 0.125151i
\(246\) −71.3542 + 10.0512i −0.290058 + 0.0408584i
\(247\) 21.8559 7.95489i 0.0884854 0.0322060i
\(248\) 20.8986 24.9060i 0.0842687 0.100428i
\(249\) 46.0223 14.9696i 0.184828 0.0601189i
\(250\) 281.363 + 102.408i 1.12545 + 0.409631i
\(251\) −126.850 + 73.2368i −0.505378 + 0.291780i −0.730932 0.682451i \(-0.760914\pi\)
0.225554 + 0.974231i \(0.427581\pi\)
\(252\) 144.173 41.4395i 0.572115 0.164442i
\(253\) 249.589 432.301i 0.986518 1.70870i
\(254\) 34.7883 + 41.4591i 0.136962 + 0.163225i
\(255\) −222.710 + 118.507i −0.873371 + 0.464734i
\(256\) 2.77837 15.7569i 0.0108530 0.0615505i
\(257\) 204.456 + 36.0511i 0.795548 + 0.140277i 0.556627 0.830762i \(-0.312095\pi\)
0.238921 + 0.971039i \(0.423206\pi\)
\(258\) 53.0599 84.9733i 0.205659 0.329354i
\(259\) −148.016 + 124.200i −0.571489 + 0.479536i
\(260\) −45.2031 26.0980i −0.173858 0.100377i
\(261\) −86.8838 + 42.4440i −0.332888 + 0.162621i
\(262\) 154.098 + 266.905i 0.588160 + 1.01872i
\(263\) −11.3833 + 31.2753i −0.0432825 + 0.118918i −0.959451 0.281876i \(-0.909043\pi\)
0.916168 + 0.400794i \(0.131266\pi\)
\(264\) −139.708 29.6498i −0.529198 0.112310i
\(265\) 498.221 + 418.057i 1.88008 + 1.57757i
\(266\) −31.0129 85.2071i −0.116590 0.320328i
\(267\) −38.2511 + 29.9045i −0.143263 + 0.112002i
\(268\) −13.0697 74.1217i −0.0487674 0.276574i
\(269\) 399.099i 1.48364i −0.670599 0.741820i \(-0.733963\pi\)
0.670599 0.741820i \(-0.266037\pi\)
\(270\) 34.1455 327.860i 0.126465 1.21430i
\(271\) −83.9974 −0.309954 −0.154977 0.987918i \(-0.549530\pi\)
−0.154977 + 0.987918i \(0.549530\pi\)
\(272\) 38.3721 6.76604i 0.141074 0.0248751i
\(273\) −28.2919 + 70.0886i −0.103633 + 0.256735i
\(274\) 244.645 89.0434i 0.892864 0.324976i
\(275\) −535.817 + 638.562i −1.94843 + 2.32204i
\(276\) −132.276 119.026i −0.479262 0.431255i
\(277\) −168.403 61.2936i −0.607953 0.221277i 0.0196546 0.999807i \(-0.493743\pi\)
−0.627607 + 0.778530i \(0.715966\pi\)
\(278\) 297.797 171.933i 1.07121 0.618465i
\(279\) −83.6578 + 60.8617i −0.299849 + 0.218142i
\(280\) −101.746 + 176.228i −0.363377 + 0.629387i
\(281\) −298.873 356.183i −1.06361 1.26756i −0.962093 0.272722i \(-0.912076\pi\)
−0.101513 0.994834i \(-0.532368\pi\)
\(282\) −2.43631 + 70.4039i −0.00863938 + 0.249659i
\(283\) 45.4847 257.956i 0.160723 0.911507i −0.792642 0.609687i \(-0.791295\pi\)
0.953365 0.301819i \(-0.0975939\pi\)
\(284\) 100.144 + 17.6580i 0.352619 + 0.0621762i
\(285\) −199.131 6.89088i −0.698707 0.0241785i
\(286\) 55.1248 46.2552i 0.192744 0.161731i
\(287\) −122.583 70.7732i −0.427118 0.246596i
\(288\) −20.6783 + 46.5232i −0.0717996 + 0.161539i
\(289\) −97.0563 168.107i −0.335835 0.581683i
\(290\) 44.8630 123.260i 0.154700 0.425035i
\(291\) 266.272 295.913i 0.915023 1.01688i
\(292\) 150.896 + 126.617i 0.516769 + 0.433620i
\(293\) −33.5970 92.3071i −0.114666 0.315041i 0.869063 0.494701i \(-0.164722\pi\)
−0.983729 + 0.179660i \(0.942500\pi\)
\(294\) 80.4703 + 32.4826i 0.273709 + 0.110485i
\(295\) 90.2463 + 511.812i 0.305920 + 1.73496i
\(296\) 65.5768i 0.221543i
\(297\) 408.645 + 198.831i 1.37591 + 0.669464i
\(298\) −203.753 −0.683733
\(299\) 88.2960 15.5690i 0.295304 0.0520701i
\(300\) 183.019 + 234.101i 0.610063 + 0.780337i
\(301\) 184.916 67.3039i 0.614339 0.223601i
\(302\) 92.3663 110.078i 0.305849 0.364496i
\(303\) 9.48045 44.6713i 0.0312886 0.147430i
\(304\) 28.9183 + 10.5254i 0.0951259 + 0.0346230i
\(305\) 255.407 147.459i 0.837400 0.483473i
\(306\) −123.686 8.57051i −0.404203 0.0280082i
\(307\) −246.426 + 426.822i −0.802690 + 1.39030i 0.115150 + 0.993348i \(0.463265\pi\)
−0.917840 + 0.396952i \(0.870068\pi\)
\(308\) −180.330 214.909i −0.585487 0.697757i
\(309\) 96.3214 + 60.1460i 0.311720 + 0.194647i
\(310\) 24.3693 138.205i 0.0786106 0.445823i
\(311\) −16.6486 2.93559i −0.0535324 0.00943921i 0.146818 0.989164i \(-0.453097\pi\)
−0.200350 + 0.979724i \(0.564208\pi\)
\(312\) −12.0501 22.6456i −0.0386220 0.0725821i
\(313\) 319.525 268.113i 1.02085 0.856591i 0.0311120 0.999516i \(-0.490095\pi\)
0.989734 + 0.142925i \(0.0456507\pi\)
\(314\) 379.102 + 218.875i 1.20733 + 0.697053i
\(315\) 449.500 466.060i 1.42699 1.47956i
\(316\) −81.1487 140.554i −0.256800 0.444790i
\(317\) 155.193 426.388i 0.489567 1.34507i −0.411507 0.911407i \(-0.634997\pi\)
0.901074 0.433666i \(-0.142780\pi\)
\(318\) 98.8681 + 303.958i 0.310906 + 0.955844i
\(319\) 138.531 + 116.241i 0.434265 + 0.364392i
\(320\) −23.6207 64.8975i −0.0738148 0.202805i
\(321\) 49.6539 + 352.498i 0.154685 + 1.09813i
\(322\) −60.6970 344.230i −0.188500 1.06904i
\(323\) 74.9429i 0.232021i
\(324\) 99.5759 127.784i 0.307333 0.394394i
\(325\) −149.721 −0.460680
\(326\) −222.914 + 39.3058i −0.683786 + 0.120570i
\(327\) −612.123 + 86.2254i −1.87194 + 0.263686i
\(328\) 45.1420 16.4303i 0.137628 0.0500925i
\(329\) −88.9481 + 106.004i −0.270359 + 0.322201i
\(330\) −586.235 + 190.684i −1.77647 + 0.577830i
\(331\) 220.616 + 80.2978i 0.666515 + 0.242591i 0.653046 0.757318i \(-0.273491\pi\)
0.0134681 + 0.999909i \(0.495713\pi\)
\(332\) −27.9412 + 16.1319i −0.0841604 + 0.0485900i
\(333\) −50.3526 + 202.498i −0.151209 + 0.608101i
\(334\) −176.031 + 304.894i −0.527038 + 0.912857i
\(335\) −208.825 248.868i −0.623360 0.742891i
\(336\) −88.2860 + 46.9783i −0.262756 + 0.139816i
\(337\) −55.0894 + 312.428i −0.163470 + 0.927085i 0.787158 + 0.616752i \(0.211552\pi\)
−0.950628 + 0.310333i \(0.899559\pi\)
\(338\) −222.643 39.2579i −0.658706 0.116148i
\(339\) 112.862 180.744i 0.332927 0.533169i
\(340\) 128.837 108.107i 0.378932 0.317961i
\(341\) 167.555 + 96.7381i 0.491365 + 0.283689i
\(342\) −81.2163 54.7065i −0.237475 0.159961i
\(343\) −118.950 206.027i −0.346793 0.600662i
\(344\) −22.8421 + 62.7583i −0.0664016 + 0.182437i
\(345\) −751.346 159.456i −2.17782 0.462190i
\(346\) −73.2107 61.4310i −0.211592 0.177546i
\(347\) −15.0965 41.4774i −0.0435059 0.119531i 0.916037 0.401093i \(-0.131370\pi\)
−0.959543 + 0.281562i \(0.909147\pi\)
\(348\) 50.7862 39.7044i 0.145937 0.114093i
\(349\) 57.3986 + 325.523i 0.164466 + 0.932732i 0.949614 + 0.313423i \(0.101476\pi\)
−0.785148 + 0.619309i \(0.787413\pi\)
\(350\) 583.701i 1.66772i
\(351\) 19.8217 + 79.1810i 0.0564721 + 0.225587i
\(352\) 95.2132 0.270492
\(353\) −466.298 + 82.2209i −1.32096 + 0.232920i −0.789283 0.614029i \(-0.789548\pi\)
−0.531673 + 0.846949i \(0.678437\pi\)
\(354\) −95.6048 + 236.845i −0.270070 + 0.669055i
\(355\) 412.458 150.123i 1.16185 0.422880i
\(356\) 20.8063 24.7960i 0.0584447 0.0696517i
\(357\) −181.038 162.904i −0.507111 0.456315i
\(358\) −312.606 113.779i −0.873201 0.317819i
\(359\) 378.055 218.270i 1.05308 0.607994i 0.129568 0.991571i \(-0.458641\pi\)
0.923509 + 0.383576i \(0.125308\pi\)
\(360\) 23.1087 + 218.537i 0.0641908 + 0.607047i
\(361\) 150.905 261.375i 0.418018 0.724029i
\(362\) 198.017 + 235.988i 0.547009 + 0.651899i
\(363\) 16.8388 486.604i 0.0463878 1.34051i
\(364\) 8.74994 49.6234i 0.0240383 0.136328i
\(365\) 837.333 + 147.644i 2.29406 + 0.404505i
\(366\) 144.853 + 5.01258i 0.395772 + 0.0136956i
\(367\) 365.154 306.401i 0.994970 0.834879i 0.00869048 0.999962i \(-0.497234\pi\)
0.986280 + 0.165083i \(0.0527893\pi\)
\(368\) 102.736 + 59.3149i 0.279175 + 0.161182i
\(369\) −152.012 + 16.0742i −0.411957 + 0.0435614i
\(370\) −141.528 245.134i −0.382508 0.662523i
\(371\) −214.742 + 589.998i −0.578818 + 1.59029i
\(372\) 46.1334 51.2688i 0.124014 0.137819i
\(373\) −282.763 237.266i −0.758077 0.636102i 0.179549 0.983749i \(-0.442536\pi\)
−0.937625 + 0.347647i \(0.886981\pi\)
\(374\) 79.3036 + 217.885i 0.212042 + 0.582580i
\(375\) 588.991 + 237.752i 1.57064 + 0.634004i
\(376\) −8.15522 46.2506i −0.0216894 0.123007i
\(377\) 32.4807i 0.0861558i
\(378\) 308.694 77.2768i 0.816652 0.204436i
\(379\) −216.903 −0.572304 −0.286152 0.958184i \(-0.592376\pi\)
−0.286152 + 0.958184i \(0.592376\pi\)
\(380\) 130.816 23.0663i 0.344252 0.0607009i
\(381\) 70.7115 + 90.4477i 0.185594 + 0.237396i
\(382\) −341.969 + 124.466i −0.895206 + 0.325828i
\(383\) −346.686 + 413.164i −0.905185 + 1.07876i 0.0913699 + 0.995817i \(0.470875\pi\)
−0.996555 + 0.0829400i \(0.973569\pi\)
\(384\) 7.04628 33.2017i 0.0183497 0.0864626i
\(385\) −1137.91 414.166i −2.95561 1.07576i
\(386\) −93.9025 + 54.2146i −0.243271 + 0.140452i
\(387\) 118.724 176.255i 0.306780 0.455439i
\(388\) −132.692 + 229.830i −0.341990 + 0.592344i
\(389\) 94.9161 + 113.117i 0.244000 + 0.290788i 0.874120 0.485710i \(-0.161439\pi\)
−0.630120 + 0.776498i \(0.716994\pi\)
\(390\) −93.9183 58.6454i −0.240816 0.150373i
\(391\) −50.1658 + 284.504i −0.128301 + 0.727633i
\(392\) −56.9738 10.0460i −0.145341 0.0256276i
\(393\) 307.114 + 577.158i 0.781461 + 1.46860i
\(394\) 264.325 221.795i 0.670875 0.562931i
\(395\) −606.686 350.270i −1.53591 0.886760i
\(396\) −294.013 73.1086i −0.742458 0.184618i
\(397\) 251.308 + 435.278i 0.633017 + 1.09642i 0.986932 + 0.161139i \(0.0515169\pi\)
−0.353915 + 0.935278i \(0.615150\pi\)
\(398\) 39.7147 109.115i 0.0997857 0.274159i
\(399\) −59.4978 182.919i −0.149117 0.458443i
\(400\) −151.754 127.337i −0.379386 0.318342i
\(401\) 79.1589 + 217.487i 0.197404 + 0.542362i 0.998415 0.0562876i \(-0.0179264\pi\)
−0.801011 + 0.598650i \(0.795704\pi\)
\(402\) −22.2705 158.101i −0.0553993 0.393285i
\(403\) 6.03437 + 34.2226i 0.0149736 + 0.0849196i
\(404\) 30.4442i 0.0753569i
\(405\) 96.4433 692.574i 0.238132 1.71006i
\(406\) 126.629 0.311894
\(407\) 384.307 67.7638i 0.944244 0.166496i
\(408\) 81.8472 11.5292i 0.200606 0.0282579i
\(409\) −423.279 + 154.061i −1.03491 + 0.376677i −0.802949 0.596048i \(-0.796737\pi\)
−0.231963 + 0.972725i \(0.574515\pi\)
\(410\) 133.286 158.844i 0.325088 0.387424i
\(411\) 525.192 170.828i 1.27784 0.415641i
\(412\) −71.1396 25.8927i −0.172669 0.0628463i
\(413\) −434.497 + 250.857i −1.05205 + 0.607402i
\(414\) −271.700 262.046i −0.656280 0.632962i
\(415\) −69.6317 + 120.606i −0.167787 + 0.290616i
\(416\) 10.9926 + 13.1004i 0.0264244 + 0.0314914i
\(417\) 643.959 342.660i 1.54427 0.821726i
\(418\) −31.8005 + 180.350i −0.0760777 + 0.431458i
\(419\) −324.142 57.1549i −0.773608 0.136408i −0.227111 0.973869i \(-0.572928\pi\)
−0.546497 + 0.837461i \(0.684039\pi\)
\(420\) −228.635 + 366.149i −0.544368 + 0.871783i
\(421\) −156.740 + 131.520i −0.372303 + 0.312399i −0.809672 0.586883i \(-0.800355\pi\)
0.437369 + 0.899282i \(0.355910\pi\)
\(422\) −70.4151 40.6542i −0.166860 0.0963369i
\(423\) −10.3302 + 149.081i −0.0244213 + 0.352438i
\(424\) −106.544 184.540i −0.251284 0.435237i
\(425\) 165.000 453.333i 0.388234 1.06666i
\(426\) 211.014 + 44.7829i 0.495339 + 0.105124i
\(427\) 218.099 + 183.006i 0.510770 + 0.428587i
\(428\) −81.1678 223.007i −0.189645 0.521044i
\(429\) 120.261 94.0192i 0.280328 0.219159i
\(430\) 50.0584 + 283.895i 0.116415 + 0.660222i
\(431\) 5.85402i 0.0135824i 0.999977 + 0.00679120i \(0.00216172\pi\)
−0.999977 + 0.00679120i \(0.997838\pi\)
\(432\) −47.2521 + 97.1146i −0.109380 + 0.224802i
\(433\) 233.310 0.538821 0.269411 0.963025i \(-0.413171\pi\)
0.269411 + 0.963025i \(0.413171\pi\)
\(434\) 133.420 23.5255i 0.307419 0.0542063i
\(435\) 104.155 258.026i 0.239436 0.593164i
\(436\) 387.257 140.950i 0.888205 0.323280i
\(437\) −146.665 + 174.789i −0.335619 + 0.399975i
\(438\) 310.619 + 279.505i 0.709176 + 0.638140i
\(439\) 126.662 + 46.1012i 0.288524 + 0.105014i 0.482227 0.876046i \(-0.339828\pi\)
−0.193704 + 0.981060i \(0.562050\pi\)
\(440\) 355.918 205.489i 0.808904 0.467021i
\(441\) 168.218 + 74.7683i 0.381447 + 0.169543i
\(442\) −20.8231 + 36.0666i −0.0471110 + 0.0815987i
\(443\) 18.4121 + 21.9426i 0.0415622 + 0.0495319i 0.786425 0.617686i \(-0.211930\pi\)
−0.744863 + 0.667218i \(0.767485\pi\)
\(444\) 4.81096 139.026i 0.0108355 0.313122i
\(445\) 24.2616 137.594i 0.0545205 0.309201i
\(446\) 323.096 + 56.9705i 0.724430 + 0.127737i
\(447\) −431.966 14.9480i −0.966367 0.0334408i
\(448\) 51.0731 42.8555i 0.114003 0.0956595i
\(449\) 430.226 + 248.391i 0.958188 + 0.553210i 0.895615 0.444831i \(-0.146736\pi\)
0.0625728 + 0.998040i \(0.480069\pi\)
\(450\) 370.835 + 509.733i 0.824077 + 1.13274i
\(451\) 142.936 + 247.573i 0.316932 + 0.548942i
\(452\) −48.5869 + 133.491i −0.107493 + 0.295335i
\(453\) 203.897 226.594i 0.450104 0.500209i
\(454\) −232.414 195.019i −0.511926 0.429557i
\(455\) −74.3889 204.382i −0.163492 0.449191i
\(456\) 60.5360 + 24.4359i 0.132754 + 0.0535875i
\(457\) −80.5387 456.758i −0.176234 0.999470i −0.936710 0.350105i \(-0.886146\pi\)
0.760477 0.649365i \(-0.224965\pi\)
\(458\) 559.195i 1.22095i
\(459\) −261.592 27.2440i −0.569918 0.0593551i
\(460\) 512.054 1.11316
\(461\) −262.335 + 46.2568i −0.569057 + 0.100340i −0.450771 0.892640i \(-0.648851\pi\)
−0.118286 + 0.992980i \(0.537740\pi\)
\(462\) −366.543 468.848i −0.793382 1.01482i
\(463\) −224.935 + 81.8697i −0.485821 + 0.176824i −0.573306 0.819341i \(-0.694339\pi\)
0.0874848 + 0.996166i \(0.472117\pi\)
\(464\) −27.6247 + 32.9218i −0.0595360 + 0.0709522i
\(465\) 61.8033 291.214i 0.132910 0.626266i
\(466\) −127.257 46.3177i −0.273083 0.0993942i
\(467\) −184.565 + 106.559i −0.395215 + 0.228177i −0.684417 0.729091i \(-0.739943\pi\)
0.289202 + 0.957268i \(0.406610\pi\)
\(468\) −23.8854 48.8939i −0.0510371 0.104474i
\(469\) 156.813 271.609i 0.334357 0.579123i
\(470\) −130.303 155.289i −0.277241 0.330403i
\(471\) 787.658 + 491.838i 1.67231 + 1.04424i
\(472\) 29.5681 167.689i 0.0626442 0.355273i
\(473\) −391.394 69.0132i −0.827470 0.145905i
\(474\) −161.728 303.934i −0.341198 0.641212i
\(475\) 291.882 244.918i 0.614489 0.515617i
\(476\) 140.609 + 81.1807i 0.295397 + 0.170548i
\(477\) 187.306 + 651.660i 0.392675 + 1.36616i
\(478\) 62.3576 + 108.007i 0.130455 + 0.225955i
\(479\) 136.882 376.079i 0.285765 0.785134i −0.710882 0.703312i \(-0.751704\pi\)
0.996647 0.0818220i \(-0.0260739\pi\)
\(480\) −45.3161 139.319i −0.0944085 0.290248i
\(481\) 53.6927 + 45.0535i 0.111627 + 0.0936664i
\(482\) 186.286 + 511.816i 0.386485 + 1.06186i
\(483\) −103.427 734.238i −0.214134 1.52016i
\(484\) 56.3657 + 319.666i 0.116458 + 0.660466i
\(485\) 1145.51i 2.36187i
\(486\) 220.481 263.603i 0.453664 0.542392i
\(487\) −323.676 −0.664632 −0.332316 0.943168i \(-0.607830\pi\)
−0.332316 + 0.943168i \(0.607830\pi\)
\(488\) −95.1583 + 16.7790i −0.194997 + 0.0343832i
\(489\) −475.473 + 66.9765i −0.972338 + 0.136966i
\(490\) −234.656 + 85.4077i −0.478889 + 0.174301i
\(491\) 589.862 702.970i 1.20135 1.43171i 0.327956 0.944693i \(-0.393640\pi\)
0.873392 0.487018i \(-0.161915\pi\)
\(492\) 96.9088 31.5214i 0.196969 0.0640679i
\(493\) −98.3467 35.7953i −0.199486 0.0726070i
\(494\) −28.4858 + 16.4463i −0.0576635 + 0.0332921i
\(495\) −1256.84 + 361.252i −2.53907 + 0.729801i
\(496\) −22.9898 + 39.8195i −0.0463504 + 0.0802813i
\(497\) 272.369 + 324.597i 0.548027 + 0.653113i
\(498\) −60.4204 + 32.1505i −0.121326 + 0.0645593i
\(499\) −37.5201 + 212.787i −0.0751906 + 0.426427i 0.923855 + 0.382743i \(0.125021\pi\)
−0.999045 + 0.0436840i \(0.986091\pi\)
\(500\) −417.011 73.5303i −0.834022 0.147061i
\(501\) −395.562 + 633.477i −0.789546 + 1.26443i
\(502\) 158.682 133.150i 0.316100 0.265240i
\(503\) 31.3557 + 18.1032i 0.0623373 + 0.0359905i 0.530845 0.847469i \(-0.321875\pi\)
−0.468507 + 0.883460i \(0.655208\pi\)
\(504\) −190.617 + 93.1193i −0.378209 + 0.184761i
\(505\) 65.7046 + 113.804i 0.130108 + 0.225354i
\(506\) −241.447 + 663.371i −0.477169 + 1.31101i
\(507\) −469.134 99.5626i −0.925313 0.196376i
\(508\) −58.6321 49.1982i −0.115417 0.0968468i
\(509\) −79.8138 219.287i −0.156805 0.430818i 0.836267 0.548322i \(-0.184733\pi\)
−0.993072 + 0.117503i \(0.962511\pi\)
\(510\) 281.072 219.740i 0.551121 0.430863i
\(511\) 142.532 + 808.342i 0.278929 + 1.58188i
\(512\) 22.6274i 0.0441942i
\(513\) −168.169 121.939i −0.327815 0.237698i
\(514\) −293.605 −0.571216
\(515\) −321.809 + 56.7437i −0.624873 + 0.110182i
\(516\) −53.0307 + 131.375i −0.102773 + 0.254603i
\(517\) 262.620 95.5860i 0.507970 0.184886i
\(518\) 175.645 209.326i 0.339083 0.404104i
\(519\) −150.704 135.608i −0.290373 0.261287i
\(520\) 69.3647 + 25.2467i 0.133394 + 0.0485513i
\(521\) −119.806 + 69.1700i −0.229954 + 0.132764i −0.610551 0.791977i \(-0.709052\pi\)
0.380597 + 0.924741i \(0.375719\pi\)
\(522\) 110.582 80.4495i 0.211844 0.154118i
\(523\) 98.4346 170.494i 0.188212 0.325992i −0.756442 0.654060i \(-0.773064\pi\)
0.944654 + 0.328068i \(0.106398\pi\)
\(524\) −280.162 333.884i −0.534660 0.637183i
\(525\) −42.8225 + 1237.48i −0.0815667 + 2.35710i
\(526\) 8.17338 46.3535i 0.0155387 0.0881246i
\(527\) −110.271 19.4437i −0.209243 0.0368951i
\(528\) 201.857 + 6.98519i 0.382305 + 0.0132295i
\(529\) −268.547 + 225.338i −0.507651 + 0.425969i
\(530\) −796.551 459.889i −1.50293 0.867715i
\(531\) −220.063 + 495.111i −0.414431 + 0.932412i
\(532\) 64.1173 + 111.054i 0.120521 + 0.208749i
\(533\) −17.5613 + 48.2494i −0.0329481 + 0.0905242i
\(534\) 45.9296 51.0424i 0.0860105 0.0955850i
\(535\) −784.708 658.448i −1.46674 1.23074i
\(536\) 36.4050 + 100.022i 0.0679197 + 0.186608i
\(537\) −654.394 264.152i −1.21861 0.491903i
\(538\) 98.0090 + 555.837i 0.182173 + 1.03315i
\(539\) 344.271i 0.638722i
\(540\) 32.9589 + 465.005i 0.0610350 + 0.861120i
\(541\) −136.735 −0.252745 −0.126373 0.991983i \(-0.540334\pi\)
−0.126373 + 0.991983i \(0.540334\pi\)
\(542\) 116.986 20.6277i 0.215841 0.0380585i
\(543\) 402.493 + 514.833i 0.741240 + 0.948127i
\(544\) −51.7803 + 18.8465i −0.0951844 + 0.0346443i
\(545\) 1143.41 1362.67i 2.09801 2.50031i
\(546\) 22.1909 104.562i 0.0406426 0.191506i
\(547\) 625.697 + 227.735i 1.14387 + 0.416335i 0.843310 0.537428i \(-0.180604\pi\)
0.300561 + 0.953763i \(0.402826\pi\)
\(548\) −318.857 + 184.092i −0.581855 + 0.335934i
\(549\) 306.727 + 21.2539i 0.558702 + 0.0387138i
\(550\) 589.433 1020.93i 1.07170 1.85623i
\(551\) −53.1330 63.3214i −0.0964300 0.114921i
\(552\) 213.455 + 133.288i 0.386694 + 0.241463i
\(553\) 117.436 666.011i 0.212361 1.20436i
\(554\) 249.592 + 44.0098i 0.450527 + 0.0794400i
\(555\) −282.063 530.079i −0.508221 0.955097i
\(556\) −372.528 + 312.588i −0.670014 + 0.562208i
\(557\) −943.861 544.939i −1.69454 0.978346i −0.950761 0.309926i \(-0.899696\pi\)
−0.743784 0.668420i \(-0.766971\pi\)
\(558\) 101.566 105.308i 0.182019 0.188724i
\(559\) −35.6916 61.8197i −0.0638490 0.110590i
\(560\) 98.4265 270.425i 0.175762 0.482901i
\(561\) 152.143 + 467.745i 0.271199 + 0.833770i
\(562\) 503.719 + 422.671i 0.896298 + 0.752083i
\(563\) 209.400 + 575.323i 0.371937 + 1.02189i 0.974612 + 0.223901i \(0.0718793\pi\)
−0.602675 + 0.797987i \(0.705898\pi\)
\(564\) −13.8964 98.6519i −0.0246390 0.174915i
\(565\) 106.478 + 603.866i 0.188457 + 1.06879i
\(566\) 370.433i 0.654475i
\(567\) 660.117 141.184i 1.16423 0.249001i
\(568\) −143.809 −0.253186
\(569\) 491.784 86.7148i 0.864295 0.152399i 0.276111 0.961126i \(-0.410954\pi\)
0.588184 + 0.808727i \(0.299843\pi\)
\(570\) 279.028 39.3047i 0.489523 0.0689556i
\(571\) 284.552 103.569i 0.498341 0.181381i −0.0806069 0.996746i \(-0.525686\pi\)
0.578947 + 0.815365i \(0.303464\pi\)
\(572\) −65.4147 + 77.9582i −0.114361 + 0.136291i
\(573\) −734.123 + 238.787i −1.28119 + 0.416732i
\(574\) 188.105 + 68.4645i 0.327708 + 0.119276i
\(575\) 1272.01 734.397i 2.21220 1.27721i
\(576\) 17.3743 69.8723i 0.0301637 0.121306i
\(577\) −18.5614 + 32.1493i −0.0321688 + 0.0557181i −0.881662 0.471882i \(-0.843575\pi\)
0.849493 + 0.527600i \(0.176908\pi\)
\(578\) 176.456 + 210.292i 0.305287 + 0.363827i
\(579\) −203.055 + 108.049i −0.350700 + 0.186613i
\(580\) −32.2123 + 182.685i −0.0555385 + 0.314974i
\(581\) −132.399 23.3455i −0.227881 0.0401817i
\(582\) −298.175 + 477.516i −0.512329 + 0.820474i
\(583\) 971.386 815.090i 1.66619 1.39810i
\(584\) −241.252 139.287i −0.413102 0.238505i
\(585\) −194.809 131.222i −0.333007 0.224310i
\(586\) 69.4599 + 120.308i 0.118532 + 0.205304i
\(587\) −299.988 + 824.210i −0.511053 + 1.40411i 0.369088 + 0.929394i \(0.379670\pi\)
−0.880141 + 0.474712i \(0.842552\pi\)
\(588\) −120.050 25.4779i −0.204167 0.0433297i
\(589\) −67.7464 56.8459i −0.115019 0.0965126i
\(590\) −251.377 690.653i −0.426063 1.17060i
\(591\) 576.654 450.825i 0.975726 0.762817i
\(592\) 16.1041 + 91.3307i 0.0272028 + 0.154275i
\(593\) 284.591i 0.479917i −0.970783 0.239958i \(-0.922866\pi\)
0.970783 0.239958i \(-0.0771338\pi\)
\(594\) −617.960 176.564i −1.04034 0.297246i
\(595\) 700.817 1.17784
\(596\) 283.772 50.0367i 0.476127 0.0839541i
\(597\) 92.2024 228.416i 0.154443 0.382607i
\(598\) −119.149 + 43.3667i −0.199246 + 0.0725195i
\(599\) −211.516 + 252.075i −0.353115 + 0.420827i −0.913138 0.407651i \(-0.866348\pi\)
0.560022 + 0.828477i \(0.310793\pi\)
\(600\) −312.385 281.094i −0.520642 0.468490i
\(601\) −6.64685 2.41926i −0.0110597 0.00402538i 0.336484 0.941689i \(-0.390762\pi\)
−0.347544 + 0.937664i \(0.612984\pi\)
\(602\) −241.010 + 139.147i −0.400348 + 0.231141i
\(603\) −35.6158 336.815i −0.0590643 0.558566i
\(604\) −101.609 + 175.992i −0.168226 + 0.291377i
\(605\) 900.604 + 1073.30i 1.48860 + 1.77405i
\(606\) −2.23350 + 64.5432i −0.00368564 + 0.106507i
\(607\) 83.8924 475.778i 0.138208 0.783818i −0.834363 0.551215i \(-0.814165\pi\)
0.972572 0.232603i \(-0.0747244\pi\)
\(608\) −42.8601 7.55739i −0.0704936 0.0124299i
\(609\) 268.460 + 9.28998i 0.440821 + 0.0152545i
\(610\) −319.500 + 268.092i −0.523771 + 0.439496i
\(611\) 43.4718 + 25.0984i 0.0711485 + 0.0410776i
\(612\) 174.366 18.4379i 0.284912 0.0301273i
\(613\) −287.932 498.713i −0.469710 0.813562i 0.529690 0.848191i \(-0.322308\pi\)
−0.999400 + 0.0346296i \(0.988975\pi\)
\(614\) 238.387 654.963i 0.388253 1.06672i
\(615\) 294.226 326.979i 0.478417 0.531673i
\(616\) 303.927 + 255.025i 0.493389 + 0.414002i
\(617\) −239.991 659.369i −0.388964 1.06867i −0.967469 0.252991i \(-0.918586\pi\)
0.578505 0.815679i \(-0.303636\pi\)
\(618\) −148.920 60.1129i −0.240971 0.0972700i
\(619\) 78.3389 + 444.282i 0.126557 + 0.717741i 0.980371 + 0.197162i \(0.0631726\pi\)
−0.853814 + 0.520579i \(0.825716\pi\)
\(620\) 198.467i 0.320107i
\(621\) −556.793 575.485i −0.896608 0.926707i
\(622\) 23.9079 0.0384371
\(623\) 132.830 23.4216i 0.213211 0.0375949i
\(624\) 22.3437 + 28.5800i 0.0358072 + 0.0458013i
\(625\) −554.064 + 201.663i −0.886502 + 0.322660i
\(626\) −379.169 + 451.876i −0.605701 + 0.721847i
\(627\) −80.6498 + 380.017i −0.128628 + 0.606088i
\(628\) −581.736 211.735i −0.926331 0.337157i
\(629\) −195.587 + 112.922i −0.310949 + 0.179527i
\(630\) −511.579 + 759.481i −0.812030 + 1.20553i
\(631\) 283.716 491.411i 0.449630 0.778782i −0.548732 0.835998i \(-0.684889\pi\)
0.998362 + 0.0572166i \(0.0182226\pi\)
\(632\) 147.535 + 175.825i 0.233441 + 0.278204i
\(633\) −146.301 91.3548i −0.231123 0.144320i
\(634\) −111.431 + 631.954i −0.175758 + 0.996773i
\(635\) −325.353 57.3685i −0.512367 0.0903441i
\(636\) −212.341 399.052i −0.333870 0.627440i
\(637\) 47.3684 39.7468i 0.0743616 0.0623968i
\(638\) −221.482 127.872i −0.347150 0.200427i
\(639\) 444.076 + 110.423i 0.694954 + 0.172806i
\(640\) 48.8345 + 84.5839i 0.0763039 + 0.132162i
\(641\) 50.9735 140.049i 0.0795219 0.218485i −0.893560 0.448943i \(-0.851800\pi\)
0.973082 + 0.230459i \(0.0740227\pi\)
\(642\) −155.719 478.741i −0.242554 0.745702i
\(643\) −20.8996 17.5368i −0.0325032 0.0272734i 0.626391 0.779509i \(-0.284531\pi\)
−0.658895 + 0.752235i \(0.728976\pi\)
\(644\) 169.069 + 464.513i 0.262529 + 0.721294i
\(645\) 85.2988 + 605.545i 0.132246 + 0.938830i
\(646\) −18.4042 104.375i −0.0284894 0.161571i
\(647\) 263.970i 0.407991i 0.978972 + 0.203996i \(0.0653929\pi\)
−0.978972 + 0.203996i \(0.934607\pi\)
\(648\) −107.302 + 202.421i −0.165589 + 0.312378i
\(649\) 1013.28 1.56129
\(650\) 208.521 36.7679i 0.320801 0.0565659i
\(651\) 284.583 40.0871i 0.437147 0.0615778i
\(652\) 300.806 109.485i 0.461360 0.167921i
\(653\) −538.345 + 641.575i −0.824418 + 0.982503i −0.999998 0.00196193i \(-0.999375\pi\)
0.175580 + 0.984465i \(0.443820\pi\)
\(654\) 831.346 270.411i 1.27117 0.413472i
\(655\) −1767.87 643.450i −2.69903 0.982367i
\(656\) −58.8357 + 33.9688i −0.0896885 + 0.0517817i
\(657\) 638.023 + 615.353i 0.971115 + 0.936611i
\(658\) 97.8485 169.479i 0.148706 0.257566i
\(659\) −477.726 569.332i −0.724926 0.863933i 0.270173 0.962812i \(-0.412919\pi\)
−0.995100 + 0.0988784i \(0.968475\pi\)
\(660\) 769.639 409.536i 1.16612 0.620509i
\(661\) 46.6386 264.501i 0.0705577 0.400152i −0.928991 0.370103i \(-0.879322\pi\)
0.999548 0.0300495i \(-0.00956649\pi\)
\(662\) −326.978 57.6550i −0.493924 0.0870922i
\(663\) −46.7920 + 74.9355i −0.0705762 + 0.113025i
\(664\) 34.9530 29.3290i 0.0526400 0.0441702i
\(665\) 479.355 + 276.756i 0.720835 + 0.416174i
\(666\) 20.3990 294.390i 0.0306291 0.442027i
\(667\) −159.321 275.952i −0.238862 0.413722i
\(668\) 170.289 467.864i 0.254923 0.700395i
\(669\) 680.800 + 144.484i 1.01764 + 0.215970i
\(670\) 351.953 + 295.324i 0.525303 + 0.440782i
\(671\) −196.664 540.329i −0.293090 0.805259i
\(672\) 111.422 87.1089i 0.165806 0.129626i
\(673\) 114.573 + 649.776i 0.170242 + 0.965492i 0.943493 + 0.331392i \(0.107518\pi\)
−0.773251 + 0.634100i \(0.781371\pi\)
\(674\) 448.656i 0.665661i
\(675\) 748.793 + 1107.87i 1.10932 + 1.64128i
\(676\) 319.721 0.472961
\(677\) 251.116 44.2786i 0.370925 0.0654041i 0.0149216 0.999889i \(-0.495250\pi\)
0.356004 + 0.934485i \(0.384139\pi\)
\(678\) −112.800 + 279.444i −0.166372 + 0.412159i
\(679\) −1039.15 + 378.221i −1.53042 + 0.557026i
\(680\) −152.886 + 182.203i −0.224833 + 0.267945i
\(681\) −478.423 430.501i −0.702531 0.632160i
\(682\) −257.116 93.5824i −0.377002 0.137218i
\(683\) −376.413 + 217.322i −0.551117 + 0.318187i −0.749572 0.661923i \(-0.769741\pi\)
0.198456 + 0.980110i \(0.436407\pi\)
\(684\) 126.547 + 56.2466i 0.185010 + 0.0822318i
\(685\) −794.615 + 1376.31i −1.16002 + 2.00922i
\(686\) 216.260 + 257.729i 0.315248 + 0.375698i
\(687\) 41.0246 1185.52i 0.0597156 1.72565i
\(688\) 16.4010 93.0147i 0.0238387 0.135196i
\(689\) 224.297 + 39.5496i 0.325540 + 0.0574015i
\(690\) 1085.58 + 37.5662i 1.57330 + 0.0544437i
\(691\) −1022.63 + 858.086i −1.47992 + 1.24180i −0.573657 + 0.819096i \(0.694476\pi\)
−0.906266 + 0.422707i \(0.861080\pi\)
\(692\) 117.049 + 67.5780i 0.169145 + 0.0976561i
\(693\) −742.693 1020.87i −1.07171 1.47312i
\(694\) 31.2112 + 54.0594i 0.0449729 + 0.0778954i
\(695\) −717.924 + 1972.48i −1.03298 + 2.83810i
\(696\) −60.9810 + 67.7693i −0.0876164 + 0.0973697i
\(697\) −126.738 106.346i −0.181834 0.152577i
\(698\) −159.881 439.270i −0.229056 0.629327i
\(699\) −266.393 107.532i −0.381106 0.153837i
\(700\) −143.343 812.938i −0.204775 1.16134i
\(701\) 1001.61i 1.42883i −0.699722 0.714415i \(-0.746693\pi\)
0.699722 0.714415i \(-0.253307\pi\)
\(702\) −47.0512 105.410i −0.0670245 0.150157i
\(703\) −178.374 −0.253733
\(704\) −132.606 + 23.3820i −0.188361 + 0.0332131i
\(705\) −264.857 338.781i −0.375683 0.480540i
\(706\) 629.235 229.023i 0.891267 0.324395i
\(707\) −81.5437 + 97.1800i −0.115338 + 0.137454i
\(708\) 74.9881 353.340i 0.105915 0.499067i
\(709\) 720.055 + 262.078i 1.01559 + 0.369645i 0.795578 0.605852i \(-0.207167\pi\)
0.220014 + 0.975497i \(0.429390\pi\)
\(710\) −537.576 + 310.370i −0.757149 + 0.437140i
\(711\) −320.574 656.221i −0.450877 0.922955i
\(712\) −22.8883 + 39.6436i −0.0321464 + 0.0556792i
\(713\) −219.132 261.152i −0.307339 0.366272i
\(714\) 292.143 + 182.423i 0.409163 + 0.255494i
\(715\) −76.2782 + 432.595i −0.106683 + 0.605028i
\(716\) 463.317 + 81.6953i 0.647090 + 0.114100i
\(717\) 124.278 + 233.554i 0.173330 + 0.325738i
\(718\) −472.926 + 396.832i −0.658671 + 0.552691i
\(719\) 544.595 + 314.422i 0.757434 + 0.437305i 0.828374 0.560176i \(-0.189267\pi\)
−0.0709399 + 0.997481i \(0.522600\pi\)
\(720\) −85.8514 298.688i −0.119238 0.414844i
\(721\) −157.730 273.196i −0.218765 0.378913i
\(722\) −145.982 + 401.082i −0.202191 + 0.555516i
\(723\) 357.387 + 1098.74i 0.494311 + 1.51970i
\(724\) −333.737 280.038i −0.460962 0.386793i
\(725\) 181.990 + 500.015i 0.251021 + 0.689675i
\(726\) 96.0463 + 681.843i 0.132295 + 0.939177i
\(727\) −116.145 658.690i −0.159759 0.906039i −0.954305 0.298835i \(-0.903402\pi\)
0.794546 0.607204i \(-0.207709\pi\)
\(728\) 71.2606i 0.0978855i
\(729\) 486.769 542.676i 0.667722 0.744411i
\(730\) −1202.44 −1.64717
\(731\) 226.514 39.9406i 0.309869 0.0546383i
\(732\) −202.971 + 28.5911i −0.277283 + 0.0390589i
\(733\) −104.288 + 37.9578i −0.142276 + 0.0517842i −0.412177 0.911104i \(-0.635231\pi\)
0.269901 + 0.962888i \(0.413009\pi\)
\(734\) −433.316 + 516.406i −0.590349 + 0.703550i
\(735\) −503.748 + 163.853i −0.685371 + 0.222930i
\(736\) −157.650 57.3800i −0.214199 0.0779619i
\(737\) −548.551 + 316.706i −0.744302 + 0.429723i
\(738\) 207.764 59.7174i 0.281523 0.0809179i
\(739\) −231.298 + 400.619i −0.312987 + 0.542110i −0.979008 0.203824i \(-0.934663\pi\)
0.666020 + 0.745934i \(0.267996\pi\)
\(740\) 257.309 + 306.649i 0.347715 + 0.414390i
\(741\) −61.5979 + 32.7771i −0.0831280 + 0.0442336i
\(742\) 154.188 874.442i 0.207800 1.17849i
\(743\) 952.218 + 167.902i 1.28159 + 0.225978i 0.772653 0.634829i \(-0.218929\pi\)
0.508932 + 0.860807i \(0.330040\pi\)
\(744\) −51.6609 + 82.7328i −0.0694367 + 0.111200i
\(745\) 952.783 799.480i 1.27890 1.07313i
\(746\) 452.078 + 261.007i 0.606003 + 0.349876i
\(747\) −130.453 + 63.7282i −0.174636 + 0.0853121i
\(748\) −163.956 283.979i −0.219192 0.379652i
\(749\) 338.223 929.259i 0.451566 1.24067i
\(750\) −878.690 186.481i −1.17159 0.248642i
\(751\) −805.112 675.569i −1.07205 0.899560i −0.0768166 0.997045i \(-0.524476\pi\)
−0.995237 + 0.0974855i \(0.968920\pi\)
\(752\) 22.7160 + 62.4118i 0.0302075 + 0.0829944i
\(753\) 346.183 270.644i 0.459739 0.359421i
\(754\) −7.97648 45.2368i −0.0105789 0.0599958i
\(755\) 877.168i 1.16181i
\(756\) −410.950 + 183.433i −0.543585 + 0.242637i
\(757\) −266.724 −0.352343 −0.176172 0.984359i \(-0.556371\pi\)
−0.176172 + 0.984359i \(0.556371\pi\)
\(758\) 302.087 53.2662i 0.398532 0.0702720i
\(759\) −560.548 + 1388.67i −0.738535 + 1.82960i
\(760\) −176.526 + 64.2503i −0.232271 + 0.0845399i
\(761\) −0.229396 + 0.273383i −0.000301440 + 0.000359242i −0.766195 0.642608i \(-0.777852\pi\)
0.765894 + 0.642967i \(0.222297\pi\)
\(762\) −120.694 108.604i −0.158391 0.142525i
\(763\) 1613.68 + 587.333i 2.11492 + 0.769768i
\(764\) 445.704 257.327i 0.583382 0.336816i
\(765\) 612.007 445.240i 0.800010 0.582013i
\(766\) 381.376 660.563i 0.497880