Properties

Label 54.3.f.a.29.6
Level $54$
Weight $3$
Character 54.29
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 29.6
Character \(\chi\) \(=\) 54.29
Dual form 54.3.f.a.41.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39273 + 0.245576i) q^{2} +(2.89593 + 0.783318i) q^{3} +(1.87939 + 0.684040i) q^{4} +(-3.55779 - 4.24001i) q^{5} +(3.84088 + 1.80212i) q^{6} +(-10.2625 + 3.73526i) q^{7} +(2.44949 + 1.41421i) q^{8} +(7.77283 + 4.53687i) q^{9} +O(q^{10})\) \(q+(1.39273 + 0.245576i) q^{2} +(2.89593 + 0.783318i) q^{3} +(1.87939 + 0.684040i) q^{4} +(-3.55779 - 4.24001i) q^{5} +(3.84088 + 1.80212i) q^{6} +(-10.2625 + 3.73526i) q^{7} +(2.44949 + 1.41421i) q^{8} +(7.77283 + 4.53687i) q^{9} +(-3.91380 - 6.77890i) q^{10} +(2.64446 - 3.15155i) q^{11} +(4.90675 + 3.45309i) q^{12} +(-0.953621 - 5.40825i) q^{13} +(-15.2102 + 2.68197i) q^{14} +(-6.98185 - 15.0657i) q^{15} +(3.06418 + 2.57115i) q^{16} +(4.10708 - 2.37123i) q^{17} +(9.71129 + 8.22744i) q^{18} +(-17.1665 + 29.7332i) q^{19} +(-3.78613 - 10.4023i) q^{20} +(-32.6455 + 2.77822i) q^{21} +(4.45696 - 3.73984i) q^{22} +(12.6292 - 34.6986i) q^{23} +(5.98577 + 6.01419i) q^{24} +(-0.978615 + 5.55000i) q^{25} -7.76642i q^{26} +(18.9558 + 19.2270i) q^{27} -21.8423 q^{28} +(-5.18449 - 0.914165i) q^{29} +(-6.02406 - 22.6970i) q^{30} +(34.9235 + 12.7111i) q^{31} +(3.63616 + 4.33340i) q^{32} +(10.1269 - 7.05521i) q^{33} +(6.30237 - 2.29387i) q^{34} +(52.3496 + 30.2240i) q^{35} +(11.5047 + 13.8434i) q^{36} +(-12.1981 - 21.1278i) q^{37} +(-31.2100 + 37.1946i) q^{38} +(1.47476 - 16.4089i) q^{39} +(-2.71850 - 15.4174i) q^{40} +(-22.6189 + 3.98833i) q^{41} +(-46.1486 - 4.14763i) q^{42} +(39.1915 + 32.8855i) q^{43} +(7.12575 - 4.11406i) q^{44} +(-8.41774 - 49.0981i) q^{45} +(26.1102 - 45.2243i) q^{46} +(28.3436 + 77.8733i) q^{47} +(6.85962 + 9.84610i) q^{48} +(53.8315 - 45.1700i) q^{49} +(-2.72589 + 7.48932i) q^{50} +(13.7513 - 3.64975i) q^{51} +(1.90724 - 10.8165i) q^{52} -16.2927i q^{53} +(21.6785 + 31.4331i) q^{54} -22.7711 q^{55} +(-30.4205 - 5.36395i) q^{56} +(-73.0035 + 72.6585i) q^{57} +(-6.99608 - 2.54637i) q^{58} +(-45.6558 - 54.4105i) q^{59} +(-2.81606 - 33.0901i) q^{60} +(-74.1675 + 26.9948i) q^{61} +(45.5174 + 26.2795i) q^{62} +(-96.7154 - 17.5263i) q^{63} +(4.00000 + 6.92820i) q^{64} +(-19.5383 + 23.2848i) q^{65} +(15.8365 - 7.33909i) q^{66} +(-12.1162 - 68.7145i) q^{67} +(9.34081 - 1.64704i) q^{68} +(63.7534 - 90.5919i) q^{69} +(65.4865 + 54.9497i) q^{70} +(-65.9072 + 38.0516i) q^{71} +(12.6234 + 22.1054i) q^{72} +(25.5063 - 44.1783i) q^{73} +(-11.8002 - 32.4208i) q^{74} +(-7.18141 + 15.3058i) q^{75} +(-52.6012 + 44.1376i) q^{76} +(-15.3671 + 42.2207i) q^{77} +(6.08357 - 22.4910i) q^{78} +(5.51385 - 31.2706i) q^{79} -22.1398i q^{80} +(39.8337 + 70.5286i) q^{81} -32.4815 q^{82} +(28.7447 + 5.06847i) q^{83} +(-63.2539 - 17.1095i) q^{84} +(-24.6662 - 8.97776i) q^{85} +(46.5072 + 55.4251i) q^{86} +(-14.2978 - 6.70846i) q^{87} +(10.9346 - 3.97985i) q^{88} +(-69.2878 - 40.0033i) q^{89} +(0.333680 - 70.4476i) q^{90} +(29.9878 + 51.9404i) q^{91} +(47.4704 - 56.5731i) q^{92} +(91.1791 + 64.1666i) q^{93} +(20.3511 + 115.417i) q^{94} +(187.144 - 32.9986i) q^{95} +(7.13562 + 15.3975i) q^{96} +(36.3741 + 30.5215i) q^{97} +(86.0653 - 49.6898i) q^{98} +(34.8531 - 12.4989i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39273 + 0.245576i 0.696364 + 0.122788i
\(3\) 2.89593 + 0.783318i 0.965310 + 0.261106i
\(4\) 1.87939 + 0.684040i 0.469846 + 0.171010i
\(5\) −3.55779 4.24001i −0.711559 0.848003i 0.282223 0.959349i \(-0.408928\pi\)
−0.993782 + 0.111346i \(0.964484\pi\)
\(6\) 3.84088 + 1.80212i 0.640147 + 0.300353i
\(7\) −10.2625 + 3.73526i −1.46608 + 0.533609i −0.947032 0.321138i \(-0.895935\pi\)
−0.519045 + 0.854747i \(0.673712\pi\)
\(8\) 2.44949 + 1.41421i 0.306186 + 0.176777i
\(9\) 7.77283 + 4.53687i 0.863647 + 0.504096i
\(10\) −3.91380 6.77890i −0.391380 0.677890i
\(11\) 2.64446 3.15155i 0.240406 0.286505i −0.632328 0.774701i \(-0.717901\pi\)
0.872734 + 0.488196i \(0.162345\pi\)
\(12\) 4.90675 + 3.45309i 0.408896 + 0.287757i
\(13\) −0.953621 5.40825i −0.0733555 0.416020i −0.999267 0.0382793i \(-0.987812\pi\)
0.925912 0.377740i \(-0.123299\pi\)
\(14\) −15.2102 + 2.68197i −1.08644 + 0.191570i
\(15\) −6.98185 15.0657i −0.465456 1.00438i
\(16\) 3.06418 + 2.57115i 0.191511 + 0.160697i
\(17\) 4.10708 2.37123i 0.241593 0.139484i −0.374316 0.927301i \(-0.622122\pi\)
0.615909 + 0.787817i \(0.288789\pi\)
\(18\) 9.71129 + 8.22744i 0.539516 + 0.457080i
\(19\) −17.1665 + 29.7332i −0.903499 + 1.56491i −0.0805801 + 0.996748i \(0.525677\pi\)
−0.822919 + 0.568158i \(0.807656\pi\)
\(20\) −3.78613 10.4023i −0.189306 0.520115i
\(21\) −32.6455 + 2.77822i −1.55455 + 0.132296i
\(22\) 4.45696 3.73984i 0.202589 0.169993i
\(23\) 12.6292 34.6986i 0.549098 1.50863i −0.285833 0.958279i \(-0.592270\pi\)
0.834931 0.550354i \(-0.185507\pi\)
\(24\) 5.98577 + 6.01419i 0.249407 + 0.250591i
\(25\) −0.978615 + 5.55000i −0.0391446 + 0.222000i
\(26\) 7.76642i 0.298708i
\(27\) 18.9558 + 19.2270i 0.702065 + 0.712113i
\(28\) −21.8423 −0.780084
\(29\) −5.18449 0.914165i −0.178775 0.0315229i 0.0835437 0.996504i \(-0.473376\pi\)
−0.262319 + 0.964981i \(0.584487\pi\)
\(30\) −6.02406 22.6970i −0.200802 0.756565i
\(31\) 34.9235 + 12.7111i 1.12656 + 0.410036i 0.837044 0.547136i \(-0.184282\pi\)
0.289520 + 0.957172i \(0.406504\pi\)
\(32\) 3.63616 + 4.33340i 0.113630 + 0.135419i
\(33\) 10.1269 7.05521i 0.306874 0.213794i
\(34\) 6.30237 2.29387i 0.185364 0.0674669i
\(35\) 52.3496 + 30.2240i 1.49570 + 0.863544i
\(36\) 11.5047 + 13.8434i 0.319576 + 0.384540i
\(37\) −12.1981 21.1278i −0.329679 0.571021i 0.652769 0.757557i \(-0.273607\pi\)
−0.982448 + 0.186536i \(0.940274\pi\)
\(38\) −31.2100 + 37.1946i −0.821316 + 0.978806i
\(39\) 1.47476 16.4089i 0.0378144 0.420741i
\(40\) −2.71850 15.4174i −0.0679624 0.385434i
\(41\) −22.6189 + 3.98833i −0.551681 + 0.0972763i −0.442538 0.896750i \(-0.645922\pi\)
−0.109143 + 0.994026i \(0.534811\pi\)
\(42\) −46.1486 4.14763i −1.09878 0.0987531i
\(43\) 39.1915 + 32.8855i 0.911430 + 0.764780i 0.972390 0.233360i \(-0.0749720\pi\)
−0.0609609 + 0.998140i \(0.519416\pi\)
\(44\) 7.12575 4.11406i 0.161949 0.0935013i
\(45\) −8.41774 49.0981i −0.187061 1.09107i
\(46\) 26.1102 45.2243i 0.567614 0.983136i
\(47\) 28.3436 + 77.8733i 0.603055 + 1.65688i 0.745047 + 0.667012i \(0.232427\pi\)
−0.141992 + 0.989868i \(0.545351\pi\)
\(48\) 6.85962 + 9.84610i 0.142909 + 0.205127i
\(49\) 53.8315 45.1700i 1.09860 0.921836i
\(50\) −2.72589 + 7.48932i −0.0545178 + 0.149786i
\(51\) 13.7513 3.64975i 0.269632 0.0715638i
\(52\) 1.90724 10.8165i 0.0366777 0.208010i
\(53\) 16.2927i 0.307409i −0.988117 0.153704i \(-0.950880\pi\)
0.988117 0.153704i \(-0.0491204\pi\)
\(54\) 21.6785 + 31.4331i 0.401454 + 0.582095i
\(55\) −22.7711 −0.414020
\(56\) −30.4205 5.36395i −0.543222 0.0957848i
\(57\) −73.0035 + 72.6585i −1.28076 + 1.27471i
\(58\) −6.99608 2.54637i −0.120622 0.0439029i
\(59\) −45.6558 54.4105i −0.773827 0.922212i 0.224810 0.974403i \(-0.427824\pi\)
−0.998637 + 0.0521911i \(0.983380\pi\)
\(60\) −2.81606 33.0901i −0.0469343 0.551501i
\(61\) −74.1675 + 26.9948i −1.21586 + 0.442537i −0.868733 0.495281i \(-0.835065\pi\)
−0.347128 + 0.937818i \(0.612843\pi\)
\(62\) 45.5174 + 26.2795i 0.734151 + 0.423862i
\(63\) −96.7154 17.5263i −1.53516 0.278195i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) −19.5383 + 23.2848i −0.300589 + 0.358228i
\(66\) 15.8365 7.33909i 0.239948 0.111198i
\(67\) −12.1162 68.7145i −0.180839 1.02559i −0.931186 0.364545i \(-0.881224\pi\)
0.750347 0.661045i \(-0.229887\pi\)
\(68\) 9.34081 1.64704i 0.137365 0.0242211i
\(69\) 63.7534 90.5919i 0.923963 1.31293i
\(70\) 65.4865 + 54.9497i 0.935521 + 0.784995i
\(71\) −65.9072 + 38.0516i −0.928271 + 0.535937i −0.886264 0.463180i \(-0.846708\pi\)
−0.0420065 + 0.999117i \(0.513375\pi\)
\(72\) 12.6234 + 22.1054i 0.175324 + 0.307020i
\(73\) 25.5063 44.1783i 0.349402 0.605182i −0.636741 0.771077i \(-0.719718\pi\)
0.986143 + 0.165896i \(0.0530515\pi\)
\(74\) −11.8002 32.4208i −0.159462 0.438119i
\(75\) −7.18141 + 15.3058i −0.0957522 + 0.204078i
\(76\) −52.6012 + 44.1376i −0.692121 + 0.580758i
\(77\) −15.3671 + 42.2207i −0.199572 + 0.548321i
\(78\) 6.08357 22.4910i 0.0779945 0.288346i
\(79\) 5.51385 31.2706i 0.0697956 0.395830i −0.929818 0.368021i \(-0.880036\pi\)
0.999613 0.0278099i \(-0.00885329\pi\)
\(80\) 22.1398i 0.276747i
\(81\) 39.8337 + 70.5286i 0.491774 + 0.870723i
\(82\) −32.4815 −0.396115
\(83\) 28.7447 + 5.06847i 0.346322 + 0.0610659i 0.344104 0.938932i \(-0.388183\pi\)
0.00221805 + 0.999998i \(0.499294\pi\)
\(84\) −63.2539 17.1095i −0.753023 0.203684i
\(85\) −24.6662 8.97776i −0.290190 0.105621i
\(86\) 46.5072 + 55.4251i 0.540781 + 0.644478i
\(87\) −14.2978 6.70846i −0.164343 0.0771087i
\(88\) 10.9346 3.97985i 0.124256 0.0452256i
\(89\) −69.2878 40.0033i −0.778514 0.449475i 0.0573893 0.998352i \(-0.481722\pi\)
−0.835903 + 0.548877i \(0.815056\pi\)
\(90\) 0.333680 70.4476i 0.00370755 0.782751i
\(91\) 29.9878 + 51.9404i 0.329536 + 0.570774i
\(92\) 47.4704 56.5731i 0.515983 0.614925i
\(93\) 91.1791 + 64.1666i 0.980421 + 0.689964i
\(94\) 20.3511 + 115.417i 0.216501 + 1.22784i
\(95\) 187.144 32.9986i 1.96994 0.347353i
\(96\) 7.13562 + 15.3975i 0.0743294 + 0.160391i
\(97\) 36.3741 + 30.5215i 0.374991 + 0.314655i 0.810732 0.585417i \(-0.199069\pi\)
−0.435741 + 0.900072i \(0.643514\pi\)
\(98\) 86.0653 49.6898i 0.878217 0.507039i
\(99\) 34.8531 12.4989i 0.352052 0.126251i
\(100\) −5.63562 + 9.76118i −0.0563562 + 0.0976118i
\(101\) −15.6059 42.8769i −0.154514 0.424524i 0.838148 0.545442i \(-0.183638\pi\)
−0.992662 + 0.120918i \(0.961416\pi\)
\(102\) 20.0481 1.70614i 0.196550 0.0167269i
\(103\) −10.9188 + 9.16192i −0.106007 + 0.0889507i −0.694251 0.719733i \(-0.744264\pi\)
0.588243 + 0.808684i \(0.299820\pi\)
\(104\) 5.31254 14.5961i 0.0510821 0.140347i
\(105\) 127.926 + 128.533i 1.21834 + 1.22412i
\(106\) 4.00108 22.6913i 0.0377461 0.214069i
\(107\) 105.487i 0.985863i −0.870068 0.492931i \(-0.835925\pi\)
0.870068 0.492931i \(-0.164075\pi\)
\(108\) 22.4731 + 49.1015i 0.208084 + 0.454644i
\(109\) 57.5260 0.527762 0.263881 0.964555i \(-0.414997\pi\)
0.263881 + 0.964555i \(0.414997\pi\)
\(110\) −31.7139 5.59202i −0.288308 0.0508366i
\(111\) −18.7752 70.7396i −0.169146 0.637293i
\(112\) −41.0502 14.9410i −0.366519 0.133402i
\(113\) −76.8178 91.5479i −0.679803 0.810158i 0.310279 0.950646i \(-0.399577\pi\)
−0.990082 + 0.140487i \(0.955133\pi\)
\(114\) −119.517 + 83.2657i −1.04840 + 0.730401i
\(115\) −192.055 + 69.9022i −1.67004 + 0.607845i
\(116\) −9.11832 5.26446i −0.0786062 0.0453833i
\(117\) 17.1242 46.3639i 0.146361 0.396272i
\(118\) −50.2243 86.9910i −0.425629 0.737212i
\(119\) −33.2920 + 39.6758i −0.279765 + 0.333410i
\(120\) 4.20411 46.7770i 0.0350343 0.389809i
\(121\) 18.0724 + 102.493i 0.149358 + 0.847053i
\(122\) −109.924 + 19.3826i −0.901020 + 0.158874i
\(123\) −68.6270 6.16789i −0.557943 0.0501454i
\(124\) 56.9397 + 47.7781i 0.459192 + 0.385307i
\(125\) −92.8213 + 53.5904i −0.742570 + 0.428723i
\(126\) −130.394 48.1603i −1.03487 0.382224i
\(127\) −68.8561 + 119.262i −0.542174 + 0.939072i 0.456605 + 0.889669i \(0.349065\pi\)
−0.998779 + 0.0494029i \(0.984268\pi\)
\(128\) 3.86952 + 10.6314i 0.0302306 + 0.0830579i
\(129\) 87.7359 + 125.934i 0.680124 + 0.976230i
\(130\) −32.9297 + 27.6313i −0.253305 + 0.212549i
\(131\) −21.9189 + 60.2217i −0.167320 + 0.459708i −0.994807 0.101777i \(-0.967547\pi\)
0.827487 + 0.561484i \(0.189769\pi\)
\(132\) 23.8583 6.33229i 0.180745 0.0479719i
\(133\) 65.1105 369.260i 0.489552 2.77639i
\(134\) 98.6761i 0.736389i
\(135\) 14.0822 148.779i 0.104313 1.10206i
\(136\) 13.4137 0.0986300
\(137\) 75.1710 + 13.2547i 0.548694 + 0.0967495i 0.441121 0.897448i \(-0.354581\pi\)
0.107573 + 0.994197i \(0.465692\pi\)
\(138\) 111.038 110.514i 0.804626 0.800824i
\(139\) −100.055 36.4171i −0.719821 0.261993i −0.0439712 0.999033i \(-0.514001\pi\)
−0.675850 + 0.737039i \(0.736223\pi\)
\(140\) 77.7106 + 92.6118i 0.555075 + 0.661513i
\(141\) 21.0815 + 247.718i 0.149514 + 1.75686i
\(142\) −101.135 + 36.8103i −0.712221 + 0.259227i
\(143\) −19.5662 11.2966i −0.136827 0.0789969i
\(144\) 12.1524 + 33.8869i 0.0843914 + 0.235326i
\(145\) 14.5693 + 25.2347i 0.100478 + 0.174032i
\(146\) 46.3725 55.2646i 0.317620 0.378525i
\(147\) 191.275 88.6419i 1.30119 0.603006i
\(148\) −8.47273 48.0512i −0.0572482 0.324670i
\(149\) −84.0145 + 14.8140i −0.563856 + 0.0994230i −0.448308 0.893879i \(-0.647973\pi\)
−0.115547 + 0.993302i \(0.536862\pi\)
\(150\) −13.7605 + 19.5533i −0.0917367 + 0.130355i
\(151\) −42.4996 35.6614i −0.281454 0.236168i 0.491121 0.871091i \(-0.336587\pi\)
−0.772575 + 0.634923i \(0.781032\pi\)
\(152\) −84.0983 + 48.5542i −0.553278 + 0.319435i
\(153\) 42.6816 + 0.202164i 0.278965 + 0.00132133i
\(154\) −31.7705 + 55.0282i −0.206302 + 0.357326i
\(155\) −70.3553 193.299i −0.453905 1.24709i
\(156\) 13.9960 29.8299i 0.0897180 0.191217i
\(157\) −12.9857 + 10.8963i −0.0827115 + 0.0694032i −0.683206 0.730226i \(-0.739415\pi\)
0.600494 + 0.799629i \(0.294970\pi\)
\(158\) 15.3586 42.1974i 0.0972063 0.267072i
\(159\) 12.7623 47.1825i 0.0802663 0.296745i
\(160\) 5.43699 30.8347i 0.0339812 0.192717i
\(161\) 403.269i 2.50478i
\(162\) 38.1574 + 108.009i 0.235540 + 0.666724i
\(163\) 230.772 1.41578 0.707890 0.706322i \(-0.249647\pi\)
0.707890 + 0.706322i \(0.249647\pi\)
\(164\) −45.2379 7.97666i −0.275841 0.0486382i
\(165\) −65.9435 17.8370i −0.399657 0.108103i
\(166\) 38.7889 + 14.1180i 0.233668 + 0.0850481i
\(167\) 103.061 + 122.823i 0.617132 + 0.735469i 0.980574 0.196147i \(-0.0628431\pi\)
−0.363442 + 0.931617i \(0.618399\pi\)
\(168\) −83.8938 39.3625i −0.499368 0.234301i
\(169\) 130.468 47.4866i 0.772001 0.280986i
\(170\) −32.1486 18.5610i −0.189109 0.109182i
\(171\) −268.328 + 153.229i −1.56917 + 0.896077i
\(172\) 51.1608 + 88.6132i 0.297447 + 0.515193i
\(173\) 204.014 243.135i 1.17927 1.40540i 0.284620 0.958640i \(-0.408133\pi\)
0.894653 0.446762i \(-0.147423\pi\)
\(174\) −18.2656 12.8543i −0.104974 0.0738750i
\(175\) −10.6876 60.6125i −0.0610721 0.346357i
\(176\) 16.2062 2.85759i 0.0920808 0.0162363i
\(177\) −89.5954 193.332i −0.506189 1.09227i
\(178\) −86.6752 72.7291i −0.486939 0.408591i
\(179\) −38.5365 + 22.2490i −0.215287 + 0.124296i −0.603766 0.797161i \(-0.706334\pi\)
0.388479 + 0.921458i \(0.373001\pi\)
\(180\) 17.7649 98.0324i 0.0986940 0.544624i
\(181\) 19.0288 32.9588i 0.105131 0.182093i −0.808661 0.588276i \(-0.799807\pi\)
0.913792 + 0.406183i \(0.133140\pi\)
\(182\) 29.0096 + 79.7032i 0.159393 + 0.437930i
\(183\) −235.929 + 20.0782i −1.28923 + 0.109717i
\(184\) 80.0064 67.1333i 0.434817 0.364855i
\(185\) −46.1836 + 126.888i −0.249641 + 0.685884i
\(186\) 111.230 + 111.758i 0.598011 + 0.600850i
\(187\) 3.38800 19.2143i 0.0181176 0.102750i
\(188\) 165.742i 0.881607i
\(189\) −266.352 126.514i −1.40927 0.669385i
\(190\) 268.745 1.41445
\(191\) 201.386 + 35.5097i 1.05438 + 0.185915i 0.673859 0.738860i \(-0.264635\pi\)
0.380516 + 0.924774i \(0.375746\pi\)
\(192\) 6.15674 + 23.1969i 0.0320663 + 0.120817i
\(193\) 108.871 + 39.6259i 0.564100 + 0.205316i 0.608300 0.793707i \(-0.291852\pi\)
−0.0442003 + 0.999023i \(0.514074\pi\)
\(194\) 43.1639 + 51.4408i 0.222495 + 0.265159i
\(195\) −74.8209 + 52.1265i −0.383697 + 0.267316i
\(196\) 132.068 48.0689i 0.673817 0.245249i
\(197\) −76.7079 44.2873i −0.389380 0.224809i 0.292511 0.956262i \(-0.405509\pi\)
−0.681892 + 0.731453i \(0.738842\pi\)
\(198\) 51.6104 8.84845i 0.260658 0.0446892i
\(199\) 134.773 + 233.434i 0.677253 + 1.17304i 0.975805 + 0.218644i \(0.0701632\pi\)
−0.298551 + 0.954394i \(0.596503\pi\)
\(200\) −10.2460 + 12.2107i −0.0512300 + 0.0610535i
\(201\) 18.7376 208.483i 0.0932217 1.03723i
\(202\) −11.2053 63.5483i −0.0554717 0.314596i
\(203\) 56.6207 9.98375i 0.278920 0.0491810i
\(204\) 28.3405 + 2.54712i 0.138924 + 0.0124859i
\(205\) 97.3841 + 81.7149i 0.475044 + 0.398609i
\(206\) −17.4568 + 10.0787i −0.0847418 + 0.0489257i
\(207\) 255.588 212.409i 1.23472 1.02613i
\(208\) 10.9834 19.0238i 0.0528047 0.0914604i
\(209\) 48.3096 + 132.729i 0.231146 + 0.635069i
\(210\) 146.601 + 210.427i 0.698101 + 1.00203i
\(211\) −107.762 + 90.4231i −0.510721 + 0.428546i −0.861383 0.507957i \(-0.830401\pi\)
0.350662 + 0.936502i \(0.385957\pi\)
\(212\) 11.1448 30.6202i 0.0525700 0.144435i
\(213\) −220.669 + 58.5684i −1.03601 + 0.274969i
\(214\) 25.9051 146.915i 0.121052 0.686520i
\(215\) 283.172i 1.31708i
\(216\) 19.2408 + 73.9039i 0.0890777 + 0.342148i
\(217\) −405.883 −1.87043
\(218\) 80.1181 + 14.1270i 0.367514 + 0.0648027i
\(219\) 108.470 107.958i 0.495298 0.492957i
\(220\) −42.7956 15.5763i −0.194526 0.0708015i
\(221\) −16.7408 19.9509i −0.0757502 0.0902756i
\(222\) −8.77679 103.132i −0.0395351 0.464557i
\(223\) −324.808 + 118.221i −1.45654 + 0.530137i −0.944410 0.328770i \(-0.893366\pi\)
−0.512130 + 0.858908i \(0.671144\pi\)
\(224\) −53.5026 30.8897i −0.238851 0.137901i
\(225\) −32.7862 + 38.6993i −0.145717 + 0.171997i
\(226\) −84.5044 146.366i −0.373913 0.647637i
\(227\) −118.546 + 141.278i −0.522230 + 0.622369i −0.961106 0.276178i \(-0.910932\pi\)
0.438877 + 0.898547i \(0.355376\pi\)
\(228\) −186.903 + 86.6161i −0.819750 + 0.379895i
\(229\) 38.3747 + 217.634i 0.167575 + 0.950365i 0.946370 + 0.323086i \(0.104720\pi\)
−0.778794 + 0.627279i \(0.784168\pi\)
\(230\) −284.646 + 50.1908i −1.23759 + 0.218221i
\(231\) −77.5742 + 110.231i −0.335819 + 0.477190i
\(232\) −11.4065 9.57121i −0.0491660 0.0412552i
\(233\) 364.370 210.369i 1.56382 0.902872i 0.566955 0.823748i \(-0.308121\pi\)
0.996865 0.0791236i \(-0.0252122\pi\)
\(234\) 35.2352 60.3670i 0.150578 0.257979i
\(235\) 229.343 397.234i 0.975929 1.69036i
\(236\) −48.5859 133.489i −0.205872 0.565630i
\(237\) 40.4625 86.2384i 0.170728 0.363875i
\(238\) −56.1101 + 47.0820i −0.235757 + 0.197823i
\(239\) −27.2416 + 74.8456i −0.113981 + 0.313162i −0.983546 0.180658i \(-0.942177\pi\)
0.869565 + 0.493819i \(0.164400\pi\)
\(240\) 17.3425 64.1153i 0.0722603 0.267147i
\(241\) −9.36196 + 53.0943i −0.0388463 + 0.220308i −0.998051 0.0624044i \(-0.980123\pi\)
0.959205 + 0.282713i \(0.0912343\pi\)
\(242\) 147.184i 0.608197i
\(243\) 60.1093 + 235.448i 0.247363 + 0.968923i
\(244\) −157.855 −0.646946
\(245\) −383.043 67.5407i −1.56344 0.275677i
\(246\) −94.0641 25.4433i −0.382374 0.103428i
\(247\) 177.175 + 64.4865i 0.717308 + 0.261079i
\(248\) 67.5685 + 80.5250i 0.272453 + 0.324697i
\(249\) 79.2724 + 37.1942i 0.318363 + 0.149374i
\(250\) −142.435 + 51.8422i −0.569741 + 0.207369i
\(251\) −179.256 103.494i −0.714167 0.412325i 0.0984348 0.995144i \(-0.468616\pi\)
−0.812602 + 0.582819i \(0.801950\pi\)
\(252\) −169.777 99.0958i −0.673717 0.393237i
\(253\) −75.9567 131.561i −0.300224 0.520003i
\(254\) −125.186 + 149.190i −0.492857 + 0.587364i
\(255\) −64.3991 45.3204i −0.252546 0.177727i
\(256\) 2.77837 + 15.7569i 0.0108530 + 0.0615505i
\(257\) 201.153 35.4686i 0.782695 0.138010i 0.231999 0.972716i \(-0.425473\pi\)
0.550696 + 0.834706i \(0.314362\pi\)
\(258\) 91.2661 + 196.937i 0.353745 + 0.763322i
\(259\) 204.102 + 171.262i 0.788037 + 0.661241i
\(260\) −52.6477 + 30.3962i −0.202491 + 0.116908i
\(261\) −36.1507 30.6270i −0.138508 0.117345i
\(262\) −45.3161 + 78.4897i −0.172962 + 0.299579i
\(263\) 65.2110 + 179.166i 0.247951 + 0.681239i 0.999761 + 0.0218596i \(0.00695867\pi\)
−0.751810 + 0.659379i \(0.770819\pi\)
\(264\) 34.7832 2.96015i 0.131755 0.0112127i
\(265\) −69.0812 + 57.9660i −0.260684 + 0.218740i
\(266\) 181.362 498.289i 0.681814 1.87327i
\(267\) −169.317 170.121i −0.634147 0.637158i
\(268\) 24.2324 137.429i 0.0904196 0.512795i
\(269\) 70.9150i 0.263624i −0.991275 0.131812i \(-0.957920\pi\)
0.991275 0.131812i \(-0.0420796\pi\)
\(270\) 56.1491 203.750i 0.207960 0.754629i
\(271\) −117.923 −0.435141 −0.217570 0.976045i \(-0.569813\pi\)
−0.217570 + 0.976045i \(0.569813\pi\)
\(272\) 18.6816 + 3.29407i 0.0686824 + 0.0121106i
\(273\) 46.1568 + 173.906i 0.169072 + 0.637018i
\(274\) 101.438 + 36.9203i 0.370211 + 0.134746i
\(275\) 14.9032 + 17.7609i 0.0541934 + 0.0645852i
\(276\) 181.786 126.647i 0.658644 0.458867i
\(277\) 232.933 84.7808i 0.840915 0.306068i 0.114584 0.993414i \(-0.463446\pi\)
0.726331 + 0.687346i \(0.241224\pi\)
\(278\) −130.406 75.2902i −0.469088 0.270828i
\(279\) 213.786 + 257.244i 0.766256 + 0.922023i
\(280\) 85.4865 + 148.067i 0.305309 + 0.528811i
\(281\) 46.1416 54.9895i 0.164205 0.195692i −0.677667 0.735369i \(-0.737009\pi\)
0.841872 + 0.539677i \(0.181453\pi\)
\(282\) −31.4727 + 350.181i −0.111605 + 1.24178i
\(283\) −52.2646 296.407i −0.184681 1.04738i −0.926365 0.376627i \(-0.877084\pi\)
0.741685 0.670749i \(-0.234027\pi\)
\(284\) −149.894 + 26.4303i −0.527795 + 0.0930646i
\(285\) 567.805 + 51.0318i 1.99230 + 0.179059i
\(286\) −24.4762 20.5380i −0.0855813 0.0718112i
\(287\) 217.230 125.418i 0.756900 0.436997i
\(288\) 8.60314 + 50.1795i 0.0298720 + 0.174235i
\(289\) −133.255 + 230.804i −0.461088 + 0.798629i
\(290\) 14.0940 + 38.7229i 0.0486000 + 0.133527i
\(291\) 81.4289 + 116.881i 0.279824 + 0.401652i
\(292\) 78.1560 65.5806i 0.267657 0.224591i
\(293\) −34.3361 + 94.3376i −0.117188 + 0.321971i −0.984394 0.175978i \(-0.943691\pi\)
0.867206 + 0.497949i \(0.165913\pi\)
\(294\) 288.162 76.4818i 0.980143 0.260142i
\(295\) −68.2672 + 387.163i −0.231414 + 1.31242i
\(296\) 69.0030i 0.233118i
\(297\) 110.723 8.89479i 0.372804 0.0299488i
\(298\) −120.647 −0.404857
\(299\) −199.702 35.2129i −0.667900 0.117769i
\(300\) −23.9665 + 23.8532i −0.0798882 + 0.0795107i
\(301\) −525.040 191.099i −1.74432 0.634881i
\(302\) −50.4328 60.1035i −0.166996 0.199018i
\(303\) −11.6074 136.393i −0.0383083 0.450142i
\(304\) −129.050 + 46.9703i −0.424506 + 0.154507i
\(305\) 378.331 + 218.429i 1.24043 + 0.716162i
\(306\) 59.3942 + 10.7631i 0.194099 + 0.0351736i
\(307\) −136.003 235.565i −0.443008 0.767312i 0.554903 0.831915i \(-0.312755\pi\)
−0.997911 + 0.0646029i \(0.979422\pi\)
\(308\) −57.7613 + 68.8372i −0.187537 + 0.223498i
\(309\) −38.7967 + 17.9794i −0.125556 + 0.0581859i
\(310\) −50.5161 286.491i −0.162955 0.924165i
\(311\) 402.304 70.9371i 1.29358 0.228094i 0.515845 0.856682i \(-0.327478\pi\)
0.777738 + 0.628588i \(0.216367\pi\)
\(312\) 26.8181 38.1078i 0.0859555 0.122141i
\(313\) 186.473 + 156.470i 0.595761 + 0.499903i 0.890080 0.455805i \(-0.150648\pi\)
−0.294319 + 0.955707i \(0.595093\pi\)
\(314\) −20.7614 + 11.9866i −0.0661192 + 0.0381739i
\(315\) 269.782 + 472.429i 0.856450 + 1.49978i
\(316\) 31.7530 54.9978i 0.100484 0.174044i
\(317\) −92.9426 255.358i −0.293194 0.805545i −0.995595 0.0937628i \(-0.970110\pi\)
0.702400 0.711782i \(-0.252112\pi\)
\(318\) 29.3613 62.5782i 0.0923313 0.196787i
\(319\) −16.5912 + 13.9217i −0.0520101 + 0.0436417i
\(320\) 15.1445 41.6092i 0.0473266 0.130029i
\(321\) 82.6301 305.484i 0.257415 0.951663i
\(322\) −99.0331 + 561.644i −0.307556 + 1.74424i
\(323\) 162.822i 0.504094i
\(324\) 26.6184 + 159.798i 0.0821557 + 0.493204i
\(325\) 30.9490 0.0952278
\(326\) 321.403 + 56.6720i 0.985899 + 0.173841i
\(327\) 166.591 + 45.0612i 0.509454 + 0.137802i
\(328\) −61.0452 22.2186i −0.186113 0.0677397i
\(329\) −581.754 693.308i −1.76825 2.10732i
\(330\) −87.4610 41.0362i −0.265033 0.124352i
\(331\) 416.626 151.639i 1.25869 0.458125i 0.375360 0.926879i \(-0.377519\pi\)
0.883329 + 0.468754i \(0.155297\pi\)
\(332\) 50.5553 + 29.1881i 0.152275 + 0.0879161i
\(333\) 1.03998 219.564i 0.00312306 0.659351i
\(334\) 113.374 + 196.369i 0.339442 + 0.587931i
\(335\) −248.243 + 295.845i −0.741025 + 0.883120i
\(336\) −107.175 75.4236i −0.318973 0.224475i
\(337\) 26.8736 + 152.408i 0.0797435 + 0.452248i 0.998368 + 0.0571153i \(0.0181903\pi\)
−0.918624 + 0.395133i \(0.870699\pi\)
\(338\) 193.368 34.0961i 0.572096 0.100876i
\(339\) −150.748 325.289i −0.444684 0.959554i
\(340\) −40.2161 33.7453i −0.118283 0.0992510i
\(341\) 132.414 76.4490i 0.388310 0.224191i
\(342\) −411.337 + 147.512i −1.20274 + 0.431321i
\(343\) −116.158 + 201.191i −0.338652 + 0.586562i
\(344\) 49.4919 + 135.978i 0.143872 + 0.395285i
\(345\) −610.933 + 51.9921i −1.77082 + 0.150702i
\(346\) 343.844 288.520i 0.993770 0.833872i
\(347\) −71.9673 + 197.728i −0.207398 + 0.569823i −0.999159 0.0410093i \(-0.986943\pi\)
0.791760 + 0.610832i \(0.209165\pi\)
\(348\) −22.2823 22.3881i −0.0640295 0.0643335i
\(349\) −74.8630 + 424.569i −0.214507 + 1.21653i 0.667252 + 0.744832i \(0.267470\pi\)
−0.881760 + 0.471699i \(0.843641\pi\)
\(350\) 87.0414i 0.248690i
\(351\) 85.9081 120.853i 0.244752 0.344310i
\(352\) 23.2726 0.0661154
\(353\) −269.966 47.6023i −0.764777 0.134851i −0.222365 0.974964i \(-0.571378\pi\)
−0.542412 + 0.840113i \(0.682489\pi\)
\(354\) −77.3044 291.261i −0.218374 0.822772i
\(355\) 395.823 + 144.068i 1.11500 + 0.405825i
\(356\) −102.855 122.577i −0.288917 0.344318i
\(357\) −127.490 + 88.8203i −0.357115 + 0.248796i
\(358\) −59.1346 + 21.5233i −0.165181 + 0.0601208i
\(359\) −40.2168 23.2192i −0.112025 0.0646774i 0.442941 0.896551i \(-0.353935\pi\)
−0.554965 + 0.831873i \(0.687269\pi\)
\(360\) 48.8161 132.170i 0.135600 0.367138i
\(361\) −408.876 708.195i −1.13262 1.96176i
\(362\) 34.5958 41.2296i 0.0955685 0.113894i
\(363\) −27.9486 + 310.970i −0.0769934 + 0.856667i
\(364\) 20.8293 + 118.129i 0.0572234 + 0.324530i
\(365\) −278.063 + 49.0300i −0.761816 + 0.134329i
\(366\) −333.516 29.9750i −0.911247 0.0818988i
\(367\) −490.518 411.594i −1.33656 1.12151i −0.982495 0.186288i \(-0.940354\pi\)
−0.354067 0.935220i \(-0.615201\pi\)
\(368\) 127.914 73.8509i 0.347591 0.200682i
\(369\) −193.908 71.6185i −0.525495 0.194088i
\(370\) −95.4820 + 165.380i −0.258059 + 0.446972i
\(371\) 60.8574 + 167.204i 0.164036 + 0.450686i
\(372\) 127.468 + 182.964i 0.342656 + 0.491839i
\(373\) −3.55616 + 2.98397i −0.00953393 + 0.00799992i −0.647542 0.762030i \(-0.724203\pi\)
0.638008 + 0.770030i \(0.279759\pi\)
\(374\) 9.43713 25.9283i 0.0252330 0.0693270i
\(375\) −310.782 + 82.4855i −0.828753 + 0.219961i
\(376\) −40.7022 + 230.834i −0.108251 + 0.613920i
\(377\) 28.9108i 0.0766864i
\(378\) −339.888 241.609i −0.899174 0.639177i
\(379\) 259.991 0.685992 0.342996 0.939337i \(-0.388558\pi\)
0.342996 + 0.939337i \(0.388558\pi\)
\(380\) 374.288 + 65.9971i 0.984969 + 0.173677i
\(381\) −292.823 + 291.439i −0.768563 + 0.764931i
\(382\) 271.755 + 98.9108i 0.711401 + 0.258929i
\(383\) −171.274 204.117i −0.447191 0.532942i 0.494609 0.869116i \(-0.335311\pi\)
−0.941800 + 0.336174i \(0.890867\pi\)
\(384\) 2.87808 + 33.8189i 0.00749500 + 0.0880700i
\(385\) 233.689 85.0559i 0.606985 0.220924i
\(386\) 141.897 + 81.9242i 0.367609 + 0.212239i
\(387\) 155.431 + 433.420i 0.401631 + 1.11995i
\(388\) 47.4830 + 82.2430i 0.122379 + 0.211967i
\(389\) 15.2282 18.1483i 0.0391471 0.0466538i −0.746116 0.665816i \(-0.768083\pi\)
0.785263 + 0.619163i \(0.212528\pi\)
\(390\) −117.006 + 54.2239i −0.300016 + 0.139036i
\(391\) −30.4088 172.457i −0.0777718 0.441066i
\(392\) 195.740 34.5142i 0.499336 0.0880464i
\(393\) −110.648 + 157.228i −0.281548 + 0.400072i
\(394\) −95.9574 80.5178i −0.243547 0.204360i
\(395\) −152.205 + 87.8756i −0.385329 + 0.222470i
\(396\) 74.0522 + 0.350753i 0.187000 + 0.000885740i
\(397\) 113.459 196.518i 0.285792 0.495006i −0.687009 0.726649i \(-0.741077\pi\)
0.972801 + 0.231643i \(0.0744100\pi\)
\(398\) 130.377 + 358.208i 0.327580 + 0.900020i
\(399\) 477.803 1018.35i 1.19750 2.55225i
\(400\) −17.2685 + 14.4900i −0.0431713 + 0.0362251i
\(401\) −175.968 + 483.469i −0.438824 + 1.20566i 0.501434 + 0.865196i \(0.332806\pi\)
−0.940258 + 0.340463i \(0.889416\pi\)
\(402\) 77.2947 285.759i 0.192275 0.710844i
\(403\) 35.4411 200.997i 0.0879432 0.498751i
\(404\) 91.2573i 0.225884i
\(405\) 157.322 419.821i 0.388450 1.03660i
\(406\) 81.3090 0.200268
\(407\) −98.8427 17.4286i −0.242857 0.0428222i
\(408\) 38.8451 + 10.5072i 0.0952085 + 0.0257529i
\(409\) 260.800 + 94.9234i 0.637653 + 0.232087i 0.640559 0.767909i \(-0.278703\pi\)
−0.00290599 + 0.999996i \(0.500925\pi\)
\(410\) 115.562 + 137.722i 0.281859 + 0.335907i
\(411\) 207.307 + 97.2674i 0.504398 + 0.236660i
\(412\) −26.7877 + 9.74992i −0.0650186 + 0.0236648i
\(413\) 671.782 + 387.854i 1.62659 + 0.939113i
\(414\) 408.127 233.062i 0.985813 0.562951i
\(415\) −80.7773 139.910i −0.194644 0.337134i
\(416\) 19.9686 23.7977i 0.0480015 0.0572060i
\(417\) −261.227 183.836i −0.626442 0.440854i
\(418\) 34.6870 + 196.720i 0.0829833 + 0.470622i
\(419\) −316.326 + 55.7768i −0.754955 + 0.133119i −0.537863 0.843032i \(-0.680768\pi\)
−0.217092 + 0.976151i \(0.569657\pi\)
\(420\) 152.500 + 329.070i 0.363095 + 0.783499i
\(421\) −101.935 85.5332i −0.242125 0.203167i 0.513648 0.858001i \(-0.328294\pi\)
−0.755772 + 0.654834i \(0.772738\pi\)
\(422\) −172.289 + 99.4711i −0.408268 + 0.235714i
\(423\) −132.991 + 733.887i −0.314400 + 1.73496i
\(424\) 23.0413 39.9087i 0.0543427 0.0941244i
\(425\) 9.14105 + 25.1148i 0.0215084 + 0.0590937i
\(426\) −321.715 + 27.3789i −0.755200 + 0.0642696i
\(427\) 660.315 554.070i 1.54640 1.29759i
\(428\) 72.1576 198.251i 0.168592 0.463204i
\(429\) −47.8136 48.0406i −0.111454 0.111983i
\(430\) 69.5402 394.382i 0.161721 0.917168i
\(431\) 24.4994i 0.0568432i −0.999596 0.0284216i \(-0.990952\pi\)
0.999596 0.0284216i \(-0.00904810\pi\)
\(432\) 8.64819 + 107.653i 0.0200190 + 0.249197i
\(433\) −25.7694 −0.0595137 −0.0297568 0.999557i \(-0.509473\pi\)
−0.0297568 + 0.999557i \(0.509473\pi\)
\(434\) −565.285 99.6750i −1.30250 0.229666i
\(435\) 22.4248 + 84.4903i 0.0515512 + 0.194231i
\(436\) 108.114 + 39.3501i 0.247967 + 0.0902526i
\(437\) 814.901 + 971.161i 1.86476 + 2.22234i
\(438\) 177.581 123.718i 0.405437 0.282461i
\(439\) 425.746 154.959i 0.969809 0.352981i 0.191939 0.981407i \(-0.438522\pi\)
0.777870 + 0.628425i \(0.216300\pi\)
\(440\) −55.7775 32.2032i −0.126767 0.0731890i
\(441\) 623.353 106.872i 1.41350 0.242340i
\(442\) −18.4159 31.8973i −0.0416650 0.0721659i
\(443\) −320.772 + 382.281i −0.724090 + 0.862937i −0.995021 0.0996616i \(-0.968224\pi\)
0.270931 + 0.962599i \(0.412668\pi\)
\(444\) 13.1029 145.790i 0.0295111 0.328356i
\(445\) 76.8970 + 436.105i 0.172802 + 0.980010i
\(446\) −481.402 + 84.8842i −1.07938 + 0.190323i
\(447\) −254.904 22.9097i −0.570256 0.0512520i
\(448\) −66.9288 56.1600i −0.149395 0.125357i
\(449\) −172.434 + 99.5548i −0.384040 + 0.221726i −0.679575 0.733606i \(-0.737836\pi\)
0.295534 + 0.955332i \(0.404502\pi\)
\(450\) −55.1659 + 45.8462i −0.122591 + 0.101880i
\(451\) −47.2456 + 81.8317i −0.104757 + 0.181445i
\(452\) −81.7478 224.600i −0.180858 0.496903i
\(453\) −95.1417 136.564i −0.210026 0.301465i
\(454\) −199.797 + 167.650i −0.440081 + 0.369272i
\(455\) 113.538 311.942i 0.249533 0.685587i
\(456\) −281.576 + 74.7338i −0.617491 + 0.163890i
\(457\) 1.65470 9.38428i 0.00362079 0.0205345i −0.982944 0.183906i \(-0.941126\pi\)
0.986565 + 0.163371i \(0.0522369\pi\)
\(458\) 312.529i 0.682377i
\(459\) 123.445 + 34.0187i 0.268942 + 0.0741148i
\(460\) −408.761 −0.888610
\(461\) 746.412 + 131.612i 1.61911 + 0.285493i 0.908436 0.418024i \(-0.137277\pi\)
0.710678 + 0.703517i \(0.248388\pi\)
\(462\) −135.110 + 134.471i −0.292445 + 0.291064i
\(463\) −598.493 217.833i −1.29264 0.470483i −0.398048 0.917365i \(-0.630312\pi\)
−0.894593 + 0.446882i \(0.852534\pi\)
\(464\) −13.5357 16.1313i −0.0291718 0.0347656i
\(465\) −52.3290 614.892i −0.112536 1.32235i
\(466\) 559.130 203.507i 1.19985 0.436710i
\(467\) −632.615 365.241i −1.35464 0.782100i −0.365742 0.930716i \(-0.619185\pi\)
−0.988895 + 0.148617i \(0.952518\pi\)
\(468\) 63.8977 75.4219i 0.136534 0.161158i
\(469\) 381.010 + 659.929i 0.812388 + 1.40710i
\(470\) 416.964 496.919i 0.887158 1.05727i
\(471\) −46.1410 + 21.3830i −0.0979639 + 0.0453992i
\(472\) −34.8854 197.845i −0.0739098 0.419163i
\(473\) 207.281 36.5492i 0.438226 0.0772711i
\(474\) 77.5314 110.170i 0.163568 0.232426i
\(475\) −148.220 124.371i −0.312042 0.261834i
\(476\) −89.7083 + 51.7931i −0.188463 + 0.108809i
\(477\) 73.9177 126.640i 0.154964 0.265493i
\(478\) −56.3204 + 97.5497i −0.117825 + 0.204079i
\(479\) −119.189 327.468i −0.248828 0.683650i −0.999730 0.0232359i \(-0.992603\pi\)
0.750902 0.660414i \(-0.229619\pi\)
\(480\) 39.8985 85.0363i 0.0831219 0.177159i
\(481\) −102.632 + 86.1184i −0.213372 + 0.179040i
\(482\) −26.0773 + 71.6469i −0.0541023 + 0.148645i
\(483\) −315.888 + 1167.84i −0.654012 + 2.41789i
\(484\) −36.1447 + 204.987i −0.0746791 + 0.423527i
\(485\) 262.816i 0.541889i
\(486\) 25.8956 + 342.677i 0.0532831 + 0.705096i
\(487\) −24.8144 −0.0509535 −0.0254768 0.999675i \(-0.508110\pi\)
−0.0254768 + 0.999675i \(0.508110\pi\)
\(488\) −219.849 38.7653i −0.450510 0.0794371i
\(489\) 668.301 + 180.768i 1.36667 + 0.369669i
\(490\) −516.888 188.132i −1.05487 0.383943i
\(491\) −357.910 426.541i −0.728941 0.868719i 0.266525 0.963828i \(-0.414124\pi\)
−0.995467 + 0.0951093i \(0.969680\pi\)
\(492\) −124.757 58.5355i −0.253572 0.118975i
\(493\) −23.4608 + 8.53904i −0.0475879 + 0.0173206i
\(494\) 230.921 + 133.322i 0.467451 + 0.269883i
\(495\) −176.996 103.309i −0.357567 0.208706i
\(496\) 74.3296 + 128.743i 0.149858 + 0.259562i
\(497\) 534.243 636.686i 1.07494 1.28106i
\(498\) 101.271 + 71.2687i 0.203355 + 0.143110i
\(499\) −71.2311 403.972i −0.142748 0.809562i −0.969148 0.246479i \(-0.920726\pi\)
0.826400 0.563083i \(-0.190385\pi\)
\(500\) −211.105 + 37.2235i −0.422210 + 0.0744470i
\(501\) 202.248 + 436.418i 0.403688 + 0.871093i
\(502\) −224.239 188.159i −0.446692 0.374819i
\(503\) −435.156 + 251.237i −0.865121 + 0.499478i −0.865724 0.500522i \(-0.833141\pi\)
0.000603145 1.00000i \(0.499808\pi\)
\(504\) −212.117 179.707i −0.420868 0.356561i
\(505\) −126.276 + 218.717i −0.250052 + 0.433102i
\(506\) −73.4789 201.882i −0.145215 0.398976i
\(507\) 415.024 35.3197i 0.818588 0.0696641i
\(508\) −210.987 + 177.039i −0.415329 + 0.348503i
\(509\) 40.2964 110.713i 0.0791678 0.217512i −0.893794 0.448478i \(-0.851966\pi\)
0.972962 + 0.230966i \(0.0741886\pi\)
\(510\) −78.5609 78.9339i −0.154041 0.154772i
\(511\) −96.7426 + 548.654i −0.189320 + 1.07369i
\(512\) 22.6274i 0.0441942i
\(513\) −897.086 + 233.555i −1.74871 + 0.455273i
\(514\) 288.861 0.561987
\(515\) 77.6934 + 13.6994i 0.150861 + 0.0266008i
\(516\) 78.7460 + 296.693i 0.152608 + 0.574986i
\(517\) 320.375 + 116.607i 0.619681 + 0.225546i
\(518\) 242.200 + 288.643i 0.467568 + 0.557226i
\(519\) 781.263 544.293i 1.50532 1.04873i
\(520\) −80.7885 + 29.4046i −0.155363 + 0.0565474i
\(521\) 0.627494 + 0.362284i 0.00120440 + 0.000695363i 0.500602 0.865678i \(-0.333112\pi\)
−0.499398 + 0.866373i \(0.666445\pi\)
\(522\) −42.8268 51.5328i −0.0820437 0.0987218i
\(523\) 290.424 + 503.029i 0.555304 + 0.961814i 0.997880 + 0.0650834i \(0.0207313\pi\)
−0.442576 + 0.896731i \(0.645935\pi\)
\(524\) −82.3881 + 98.1863i −0.157229 + 0.187379i
\(525\) 16.5282 183.901i 0.0314824 0.350288i
\(526\) 46.8225 + 265.544i 0.0890162 + 0.504836i
\(527\) 173.575 30.6059i 0.329363 0.0580757i
\(528\) 49.1705 + 4.41922i 0.0931259 + 0.00836974i
\(529\) −639.256 536.399i −1.20842 1.01399i
\(530\) −110.446 + 63.7662i −0.208389 + 0.120314i
\(531\) −108.022 630.058i −0.203431 1.18655i
\(532\) 374.956 649.443i 0.704805 1.22076i
\(533\) 43.1398 + 118.526i 0.0809377 + 0.222374i
\(534\) −194.035 278.513i −0.363362 0.521559i
\(535\) −447.268 + 375.302i −0.836014 + 0.701499i
\(536\) 67.4984 185.450i 0.125930 0.345990i
\(537\) −129.027 + 34.2454i −0.240274 + 0.0637716i
\(538\) 17.4150 98.7653i 0.0323699 0.183579i
\(539\) 289.103i 0.536369i
\(540\) 128.236 269.979i 0.237475 0.499962i
\(541\) 15.2361 0.0281629 0.0140815 0.999901i \(-0.495518\pi\)
0.0140815 + 0.999901i \(0.495518\pi\)
\(542\) −164.235 28.9590i −0.303016 0.0534300i
\(543\) 80.9232 80.5408i 0.149030 0.148326i
\(544\) 25.2095 + 9.17550i 0.0463409 + 0.0168667i
\(545\) −204.666 243.911i −0.375534 0.447543i
\(546\) 21.5768 + 253.539i 0.0395180 + 0.464356i
\(547\) −539.917 + 196.514i −0.987051 + 0.359257i −0.784578 0.620031i \(-0.787120\pi\)
−0.202473 + 0.979288i \(0.564898\pi\)
\(548\) 132.209 + 76.3307i 0.241257 + 0.139290i
\(549\) −698.963 126.662i −1.27316 0.230715i
\(550\) 16.3944 + 28.3960i 0.0298081 + 0.0516291i
\(551\) 116.180 138.458i 0.210854 0.251286i
\(552\) 284.280 131.743i 0.514999 0.238665i
\(553\) 60.2177 + 341.512i 0.108893 + 0.617562i
\(554\) 345.233 60.8739i 0.623164 0.109881i
\(555\) −233.139 + 331.284i −0.420069 + 0.596908i
\(556\) −163.131 136.883i −0.293402 0.246193i
\(557\) −276.094 + 159.403i −0.495680 + 0.286181i −0.726928 0.686714i \(-0.759052\pi\)
0.231248 + 0.972895i \(0.425719\pi\)
\(558\) 234.572 + 410.772i 0.420380 + 0.736151i
\(559\) 140.480 243.318i 0.251305 0.435273i
\(560\) 82.6979 + 227.210i 0.147675 + 0.405733i
\(561\) 24.8623 52.9894i 0.0443179 0.0944553i
\(562\) 77.7668 65.2541i 0.138375 0.116111i
\(563\) 84.4286 231.966i 0.149962 0.412017i −0.841852 0.539708i \(-0.818534\pi\)
0.991814 + 0.127691i \(0.0407567\pi\)
\(564\) −129.829 + 479.978i −0.230193 + 0.851024i
\(565\) −114.862 + 651.417i −0.203296 + 1.15295i
\(566\) 425.650i 0.752031i
\(567\) −672.237 575.013i −1.18560 1.01413i
\(568\) −215.252 −0.378965
\(569\) 165.837 + 29.2415i 0.291454 + 0.0513911i 0.317463 0.948271i \(-0.397169\pi\)
−0.0260097 + 0.999662i \(0.508280\pi\)
\(570\) 778.266 + 210.512i 1.36538 + 0.369320i
\(571\) −605.483 220.378i −1.06039 0.385951i −0.247816 0.968807i \(-0.579713\pi\)
−0.812575 + 0.582856i \(0.801935\pi\)
\(572\) −29.0451 34.6146i −0.0507782 0.0605151i
\(573\) 555.383 + 260.583i 0.969256 + 0.454769i
\(574\) 333.343 121.327i 0.580736 0.211371i
\(575\) 180.218 + 104.049i 0.313422 + 0.180955i
\(576\) −0.341029 + 71.9992i −0.000592064 + 0.124999i
\(577\) 63.2482 + 109.549i 0.109616 + 0.189860i 0.915615 0.402057i \(-0.131705\pi\)
−0.805999 + 0.591917i \(0.798371\pi\)
\(578\) −242.267 + 288.723i −0.419147 + 0.499520i
\(579\) 284.244 + 200.035i 0.490922 + 0.345483i
\(580\) 10.1197 + 57.3917i 0.0174478 + 0.0989512i
\(581\) −313.926 + 55.3536i −0.540320 + 0.0952730i
\(582\) 84.7053 + 182.780i 0.145542 + 0.314055i
\(583\) −51.3472 43.0854i −0.0880741 0.0739029i
\(584\) 124.955 72.1428i 0.213964 0.123532i
\(585\) −257.508 + 92.3463i −0.440184 + 0.157857i
\(586\) −70.9878 + 122.955i −0.121140 + 0.209820i
\(587\) −327.703 900.357i −0.558268 1.53383i −0.822149 0.569273i \(-0.807225\pi\)
0.263881 0.964555i \(-0.414997\pi\)
\(588\) 420.113 35.7528i 0.714479 0.0608041i
\(589\) −977.455 + 820.182i −1.65952 + 1.39250i
\(590\) −190.155 + 522.448i −0.322297 + 0.885504i
\(591\) −187.450 188.340i −0.317174 0.318680i
\(592\) 16.9455 96.1025i 0.0286241 0.162335i
\(593\) 733.805i 1.23745i −0.785609 0.618723i \(-0.787650\pi\)
0.785609 0.618723i \(-0.212350\pi\)
\(594\) 156.391 + 14.8028i 0.263285 + 0.0249205i
\(595\) 286.672 0.481802
\(596\) −168.029 29.6280i −0.281928 0.0497115i
\(597\) 207.441 + 781.580i 0.347473 + 1.30918i
\(598\) −269.484 98.0840i −0.450641 0.164020i
\(599\) 727.241 + 866.692i 1.21409 + 1.44690i 0.858930 + 0.512094i \(0.171130\pi\)
0.355162 + 0.934805i \(0.384426\pi\)
\(600\) −39.2365 + 27.3355i −0.0653942 + 0.0455591i
\(601\) 713.313 259.625i 1.18688 0.431988i 0.328251 0.944590i \(-0.393541\pi\)
0.858626 + 0.512602i \(0.171318\pi\)
\(602\) −684.309 395.086i −1.13673 0.656289i
\(603\) 217.571 589.076i 0.360815 0.976908i
\(604\) −55.4793 96.0929i −0.0918531 0.159094i
\(605\) 370.276 441.278i 0.612026 0.729384i
\(606\) 17.3288 192.809i 0.0285954 0.318166i
\(607\) 79.5776 + 451.307i 0.131100 + 0.743504i 0.977497 + 0.210951i \(0.0676561\pi\)
−0.846397 + 0.532553i \(0.821233\pi\)
\(608\) −191.266 + 33.7254i −0.314582 + 0.0554693i
\(609\) 171.790 + 15.4397i 0.282085 + 0.0253526i
\(610\) 473.271 + 397.122i 0.775855 + 0.651019i
\(611\) 394.130 227.551i 0.645057 0.372424i
\(612\) 80.0769 + 29.5759i 0.130845 + 0.0483266i
\(613\) 44.6060 77.2599i 0.0727667 0.126036i −0.827346 0.561692i \(-0.810150\pi\)
0.900113 + 0.435657i \(0.143484\pi\)
\(614\) −131.567 361.477i −0.214278 0.588725i
\(615\) 218.009 + 312.923i 0.354486 + 0.508819i
\(616\) −97.3506 + 81.6868i −0.158037 + 0.132608i
\(617\) 185.560 509.821i 0.300745 0.826290i −0.693626 0.720335i \(-0.743988\pi\)
0.994371 0.105955i \(-0.0337899\pi\)
\(618\) −58.4485 + 15.5130i −0.0945769 + 0.0251019i
\(619\) 89.2899 506.388i 0.144249 0.818075i −0.823719 0.566999i \(-0.808104\pi\)
0.967967 0.251076i \(-0.0807844\pi\)
\(620\) 411.410i 0.663565i
\(621\) 906.548 414.915i 1.45982 0.668140i
\(622\) 577.721 0.928812
\(623\) 860.491 + 151.728i 1.38121 + 0.243544i
\(624\) 46.7087 46.4880i 0.0748537 0.0745000i
\(625\) 689.857 + 251.087i 1.10377 + 0.401740i
\(626\) 221.281 + 263.713i 0.353485 + 0.421266i
\(627\) 35.9318 + 422.217i 0.0573076 + 0.673393i
\(628\) −31.8587 + 11.5956i −0.0507304 + 0.0184643i
\(629\) −100.197 57.8490i −0.159296 0.0919698i
\(630\) 259.716 + 724.218i 0.412247 + 1.14955i
\(631\) 317.732 + 550.327i 0.503537 + 0.872151i 0.999992 + 0.00408856i \(0.00130143\pi\)
−0.496455 + 0.868062i \(0.665365\pi\)
\(632\) 57.7294 68.7993i 0.0913440 0.108860i
\(633\) −382.902 + 177.447i −0.604900 + 0.280327i
\(634\) −66.7342 378.469i −0.105259 0.596954i
\(635\) 750.649 132.360i 1.18212 0.208440i
\(636\) 56.2601 79.9441i 0.0884592 0.125698i
\(637\) −295.625 248.059i −0.464090 0.389418i
\(638\) −26.5259 + 15.3147i −0.0415766 + 0.0240043i
\(639\) −684.920 3.24417i −1.07186 0.00507695i
\(640\) 31.3104 54.2312i 0.0489225 0.0847362i
\(641\) 219.882 + 604.121i 0.343030 + 0.942466i 0.984510 + 0.175327i \(0.0560982\pi\)
−0.641481 + 0.767139i \(0.721680\pi\)
\(642\) 190.101 405.164i 0.296107 0.631097i
\(643\) 499.083 418.781i 0.776179 0.651292i −0.166104 0.986108i \(-0.553119\pi\)
0.942283 + 0.334816i \(0.108674\pi\)
\(644\) −275.852 + 757.898i −0.428342 + 1.17686i
\(645\) 221.814 820.048i 0.343898 1.27139i
\(646\) −39.9852 + 226.768i −0.0618966 + 0.351033i
\(647\) 736.107i 1.13772i 0.822433 + 0.568862i \(0.192616\pi\)
−0.822433 + 0.568862i \(0.807384\pi\)
\(648\) −2.17027 + 229.092i −0.00334918 + 0.353538i
\(649\) −292.213 −0.450250
\(650\) 43.1036 + 7.60033i 0.0663132 + 0.0116928i
\(651\) −1175.41 317.935i −1.80554 0.488380i
\(652\) 433.710 + 157.858i 0.665199 + 0.242113i
\(653\) 102.032 + 121.597i 0.156251 + 0.186213i 0.838491 0.544916i \(-0.183438\pi\)
−0.682240 + 0.731129i \(0.738994\pi\)
\(654\) 220.951 + 103.669i 0.337845 + 0.158515i
\(655\) 333.324 121.320i 0.508891 0.185221i
\(656\) −79.5630 45.9357i −0.121285 0.0700240i
\(657\) 398.687 227.671i 0.606830 0.346532i
\(658\) −639.966 1108.45i −0.972593 1.68458i
\(659\) −813.429 + 969.407i −1.23434 + 1.47103i −0.403057 + 0.915175i \(0.632052\pi\)
−0.831281 + 0.555852i \(0.812392\pi\)
\(660\) −111.732 78.6305i −0.169291 0.119137i
\(661\) −155.505 881.911i −0.235257 1.33421i −0.842073 0.539364i \(-0.818665\pi\)
0.606816 0.794842i \(-0.292447\pi\)
\(662\) 617.486 108.879i 0.932758 0.164470i
\(663\) −32.8523 70.8898i −0.0495510 0.106923i
\(664\) 63.2419 + 53.0663i 0.0952439 + 0.0799191i
\(665\) −1797.32 + 1037.68i −2.70273 + 1.56042i
\(666\) 55.3679 305.537i 0.0831350 0.458765i
\(667\) −97.1964 + 168.349i −0.145722 + 0.252397i
\(668\) 109.675 + 301.330i 0.164185 + 0.451093i
\(669\) −1033.23 + 87.9305i −1.54444 + 0.131436i
\(670\) −418.388 + 351.069i −0.624460 + 0.523984i
\(671\) −111.058 + 305.129i −0.165511 + 0.454738i
\(672\) −130.743 131.364i −0.194559 0.195482i
\(673\) 198.279 1124.50i 0.294620 1.67087i −0.374122 0.927380i \(-0.622056\pi\)
0.668742 0.743495i \(-0.266833\pi\)
\(674\) 218.862i 0.324721i
\(675\) −125.260 + 86.3886i −0.185571 + 0.127983i
\(676\) 277.683 0.410773
\(677\) −1228.42 216.603i −1.81450 0.319945i −0.839703 0.543046i \(-0.817271\pi\)
−0.974795 + 0.223101i \(0.928382\pi\)
\(678\) −130.068 490.059i −0.191840 0.722801i
\(679\) −487.297 177.362i −0.717668 0.261210i
\(680\) −47.7231 56.8742i −0.0701811 0.0836385i
\(681\) −453.967 + 316.271i −0.666618 + 0.464422i
\(682\) 203.190 73.9552i 0.297933 0.108439i
\(683\) −779.418 449.997i −1.14117 0.658854i −0.194449 0.980913i \(-0.562292\pi\)
−0.946720 + 0.322059i \(0.895625\pi\)
\(684\) −609.106 + 104.430i −0.890506 + 0.152675i
\(685\) −211.243 365.884i −0.308384 0.534137i
\(686\) −211.184 + 251.679i −0.307848 + 0.366879i
\(687\) −59.3459 + 660.312i −0.0863841 + 0.961152i
\(688\) 35.5359 + 201.534i 0.0516511 + 0.292928i
\(689\) −88.1149 + 15.5370i −0.127888 + 0.0225501i
\(690\) −863.631 77.6193i −1.25164 0.112492i
\(691\) −286.646 240.525i −0.414828 0.348082i 0.411363 0.911471i \(-0.365053\pi\)
−0.826192 + 0.563389i \(0.809497\pi\)
\(692\) 549.735 317.390i 0.794415 0.458656i
\(693\) −310.995 + 258.456i −0.448767 + 0.372952i
\(694\) −148.788 + 257.709i −0.214392 + 0.371338i
\(695\) 201.567 + 553.800i 0.290024 + 0.796834i
\(696\) −25.5352 36.6525i −0.0366885 0.0526616i
\(697\) −83.4406 + 70.0150i −0.119714 + 0.100452i
\(698\) −208.528 + 572.925i −0.298750 + 0.820810i
\(699\) 1219.98 323.797i 1.74532 0.463229i
\(700\) 21.3752 121.225i 0.0305361 0.173179i
\(701\) 574.292i 0.819247i 0.912255 + 0.409624i \(0.134340\pi\)
−0.912255 + 0.409624i \(0.865660\pi\)
\(702\) 149.325 147.218i 0.212714 0.209713i
\(703\) 837.596 1.19146
\(704\) 32.4124 + 5.71519i 0.0460404 + 0.00811816i
\(705\) 975.323 970.715i 1.38344 1.37690i
\(706\) −364.300 132.594i −0.516005 0.187811i
\(707\) 320.313 + 381.734i 0.453059 + 0.539935i
\(708\) −36.1374 424.632i −0.0510415 0.599763i
\(709\) −98.2153 + 35.7475i −0.138527 + 0.0504195i −0.410353 0.911927i \(-0.634595\pi\)
0.271827 + 0.962346i \(0.412372\pi\)
\(710\) 515.895 + 297.852i 0.726613 + 0.419510i
\(711\) 184.729 218.045i 0.259815 0.306674i
\(712\) −113.146 195.975i −0.158914 0.275246i
\(713\) 882.114 1051.26i 1.23719 1.47442i
\(714\) −199.371 + 92.3941i −0.279231 + 0.129403i
\(715\) 21.7150 + 123.152i 0.0303706 + 0.172240i
\(716\) −87.6441 + 15.4540i −0.122408 + 0.0215838i
\(717\) −137.518 + 195.409i −0.191796 + 0.272537i
\(718\) −50.3091 42.2143i −0.0700683 0.0587943i
\(719\) 960.194 554.368i 1.33546 0.771027i 0.349328 0.937001i \(-0.386410\pi\)
0.986130 + 0.165974i \(0.0530766\pi\)
\(720\) 100.445 172.089i 0.139507 0.239012i
\(721\) 77.8320 134.809i 0.107950 0.186975i
\(722\) −395.539 1086.73i −0.547837 1.50517i
\(723\) −68.7013 + 146.424i −0.0950225 + 0.202523i
\(724\) 58.3075 48.9258i 0.0805353 0.0675771i
\(725\) 10.1472 27.8793i 0.0139962 0.0384542i
\(726\) −115.292 + 426.234i −0.158804 + 0.587099i
\(727\) −178.676 + 1013.32i −0.245772 + 1.39384i 0.572921 + 0.819611i \(0.305810\pi\)
−0.818693 + 0.574232i \(0.805301\pi\)
\(728\) 169.637i 0.233017i
\(729\) −10.3584 + 728.926i −0.0142091 + 0.999899i
\(730\) −399.307 −0.546995
\(731\) 238.942 + 42.1319i 0.326870 + 0.0576359i
\(732\) −457.137 123.650i −0.624504 0.168921i
\(733\) 315.178 + 114.715i 0.429984 + 0.156501i 0.547940 0.836517i \(-0.315412\pi\)
−0.117956 + 0.993019i \(0.537634\pi\)
\(734\) −582.081 693.697i −0.793026 0.945092i
\(735\) −1056.36 495.637i −1.43722 0.674337i
\(736\) 196.285 71.4418i 0.266691 0.0970677i
\(737\) −248.598 143.528i −0.337311 0.194747i
\(738\) −252.473 147.364i −0.342104 0.199680i
\(739\) 130.983 + 226.869i 0.177244 + 0.306995i 0.940935 0.338586i \(-0.109949\pi\)
−0.763692 + 0.645581i \(0.776615\pi\)
\(740\) −173.594 + 206.881i −0.234586 + 0.279569i
\(741\) 462.574 + 325.533i 0.624256 + 0.439316i
\(742\) 43.6965 + 247.815i 0.0588902 + 0.333983i
\(743\) −477.341 + 84.1680i −0.642450 + 0.113281i −0.485376 0.874305i \(-0.661317\pi\)
−0.157074 + 0.987587i \(0.550206\pi\)
\(744\) 132.597 + 286.122i 0.178222 + 0.384573i
\(745\) 361.718 + 303.517i 0.485527 + 0.407406i
\(746\) −5.68555 + 3.28255i −0.00762138 + 0.00440021i
\(747\) 200.433 + 169.807i 0.268317 + 0.227319i
\(748\) 19.5107 33.7936i 0.0260838 0.0451785i
\(749\) 394.023 + 1082.57i 0.526065 + 1.44535i
\(750\) −453.092 + 38.5594i −0.604122 + 0.0514125i
\(751\) 668.630 561.047i 0.890320 0.747067i −0.0779544 0.996957i \(-0.524839\pi\)
0.968274 + 0.249890i \(0.0803944\pi\)
\(752\) −113.374 + 311.493i −0.150764 + 0.414220i
\(753\) −438.045 440.124i −0.581733 0.584495i
\(754\) −7.09978 + 40.2649i −0.00941616 + 0.0534017i
\(755\) 307.075i 0.406722i
\(756\) −414.038 419.964i −0.547670 0.555508i
\(757\) 599.418 0.791834 0.395917 0.918286i \(-0.370427\pi\)
0.395917 + 0.918286i \(0.370427\pi\)
\(758\) 362.097 + 63.8474i 0.477700 + 0.0842314i
\(759\) −116.911 440.489i −0.154033 0.580355i
\(760\) 505.075 + 183.832i 0.664572 + 0.241884i
\(761\) −754.984 899.755i −0.992094 1.18233i −0.983230 0.182371i \(-0.941623\pi\)
−0.00886470 0.999961i \(-0.502822\pi\)
\(762\) −479.393 + 333.985i −0.629124 + 0.438301i
\(763\) −590.364 + 214.875i −0.773740 + 0.281618i
\(764\) 354.191 + 204.492i 0.463601 + 0.267660i
\(765\) −150.995 181.690i −0.197379 0.237503i
\(766\) −188.412 326.340i −0.245969 0.426031i