Properties

Label 54.3.f.a.29.1
Level $54$
Weight $3$
Character 54.29
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 29.1
Character \(\chi\) \(=\) 54.29
Dual form 54.3.f.a.41.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39273 - 0.245576i) q^{2} +(-2.97067 - 0.418457i) q^{3} +(1.87939 + 0.684040i) q^{4} +(5.54906 + 6.61311i) q^{5} +(4.03458 + 1.31232i) q^{6} +(7.83131 - 2.85036i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(8.64979 + 2.48620i) q^{9} +O(q^{10})\) \(q+(-1.39273 - 0.245576i) q^{2} +(-2.97067 - 0.418457i) q^{3} +(1.87939 + 0.684040i) q^{4} +(5.54906 + 6.61311i) q^{5} +(4.03458 + 1.31232i) q^{6} +(7.83131 - 2.85036i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(8.64979 + 2.48620i) q^{9} +(-6.10431 - 10.5730i) q^{10} +(-10.8191 + 12.8937i) q^{11} +(-5.29680 - 2.81850i) q^{12} +(0.524960 + 2.97720i) q^{13} +(-11.6069 + 2.04660i) q^{14} +(-13.7171 - 21.9674i) q^{15} +(3.06418 + 2.57115i) q^{16} +(8.43596 - 4.87051i) q^{17} +(-11.4363 - 5.58678i) q^{18} +(3.84677 - 6.66281i) q^{19} +(5.90519 + 16.2244i) q^{20} +(-24.4570 + 5.19043i) q^{21} +(18.2344 - 15.3005i) q^{22} +(10.1434 - 27.8689i) q^{23} +(6.68484 + 5.22617i) q^{24} +(-8.59998 + 48.7729i) q^{25} -4.27534i q^{26} +(-24.6553 - 11.0052i) q^{27} +16.6678 q^{28} +(-10.5809 - 1.86569i) q^{29} +(13.7096 + 33.9633i) q^{30} +(-10.8017 - 3.93149i) q^{31} +(-3.63616 - 4.33340i) q^{32} +(37.5353 - 33.7755i) q^{33} +(-12.9451 + 4.71163i) q^{34} +(62.3062 + 35.9725i) q^{35} +(14.5556 + 10.5893i) q^{36} +(-11.5925 - 20.0787i) q^{37} +(-6.99373 + 8.33481i) q^{38} +(-0.313655 - 9.06395i) q^{39} +(-4.24001 - 24.0463i) q^{40} +(-16.7264 + 2.94931i) q^{41} +(35.3366 - 1.22281i) q^{42} +(18.0881 + 15.1778i) q^{43} +(-29.1530 + 16.8315i) q^{44} +(31.5567 + 70.9981i) q^{45} +(-20.9710 + 36.3228i) q^{46} +(-5.67901 - 15.6029i) q^{47} +(-8.02675 - 8.92027i) q^{48} +(15.6687 - 13.1476i) q^{49} +(23.9549 - 65.8155i) q^{50} +(-27.0986 + 10.9386i) q^{51} +(-1.04992 + 5.95439i) q^{52} -75.3383i q^{53} +(31.6355 + 21.3821i) q^{54} -145.303 q^{55} +(-23.2137 - 4.09321i) q^{56} +(-14.2156 + 18.1833i) q^{57} +(14.2781 + 5.19681i) q^{58} +(-38.6968 - 46.1170i) q^{59} +(-10.7532 - 50.6683i) q^{60} +(32.1023 - 11.6843i) q^{61} +(14.0783 + 8.12813i) q^{62} +(74.8257 - 5.18485i) q^{63} +(4.00000 + 6.92820i) q^{64} +(-16.7755 + 19.9923i) q^{65} +(-60.5710 + 37.8224i) q^{66} +(6.53483 + 37.0609i) q^{67} +(19.1860 - 3.38302i) q^{68} +(-41.7948 + 78.5447i) q^{69} +(-77.9416 - 65.4008i) q^{70} +(44.0325 - 25.4222i) q^{71} +(-17.6715 - 18.3226i) q^{72} +(49.2453 - 85.2954i) q^{73} +(11.2143 + 30.8110i) q^{74} +(45.9571 - 141.290i) q^{75} +(11.7872 - 9.89063i) q^{76} +(-47.9758 + 131.813i) q^{77} +(-1.78905 + 12.7006i) q^{78} +(-14.0913 + 79.9158i) q^{79} +34.5312i q^{80} +(68.6376 + 43.0102i) q^{81} +24.0196 q^{82} +(-15.8868 - 2.80127i) q^{83} +(-49.5146 - 6.97477i) q^{84} +(79.0209 + 28.7612i) q^{85} +(-21.4646 - 25.5805i) q^{86} +(30.6516 + 9.97000i) q^{87} +(44.7356 - 16.2824i) q^{88} +(14.0161 + 8.09222i) q^{89} +(-26.5145 - 106.631i) q^{90} +(12.5972 + 21.8190i) q^{91} +(38.1269 - 45.4378i) q^{92} +(30.4431 + 16.1992i) q^{93} +(4.07761 + 23.1253i) q^{94} +(65.4078 - 11.5332i) q^{95} +(8.98848 + 14.3947i) q^{96} +(-101.648 - 85.2929i) q^{97} +(-25.0509 + 14.4632i) q^{98} +(-125.639 + 84.6291i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39273 0.245576i −0.696364 0.122788i
\(3\) −2.97067 0.418457i −0.990224 0.139486i
\(4\) 1.87939 + 0.684040i 0.469846 + 0.171010i
\(5\) 5.54906 + 6.61311i 1.10981 + 1.32262i 0.941547 + 0.336880i \(0.109372\pi\)
0.168264 + 0.985742i \(0.446184\pi\)
\(6\) 4.03458 + 1.31232i 0.672429 + 0.218720i
\(7\) 7.83131 2.85036i 1.11876 0.407195i 0.284560 0.958658i \(-0.408153\pi\)
0.834199 + 0.551463i \(0.185930\pi\)
\(8\) −2.44949 1.41421i −0.306186 0.176777i
\(9\) 8.64979 + 2.48620i 0.961087 + 0.276244i
\(10\) −6.10431 10.5730i −0.610431 1.05730i
\(11\) −10.8191 + 12.8937i −0.983551 + 1.17215i 0.00151930 + 0.999999i \(0.499516\pi\)
−0.985070 + 0.172152i \(0.944928\pi\)
\(12\) −5.29680 2.81850i −0.441400 0.234875i
\(13\) 0.524960 + 2.97720i 0.0403815 + 0.229015i 0.998319 0.0579628i \(-0.0184605\pi\)
−0.957937 + 0.286978i \(0.907349\pi\)
\(14\) −11.6069 + 2.04660i −0.829062 + 0.146186i
\(15\) −13.7171 21.9674i −0.914475 1.46450i
\(16\) 3.06418 + 2.57115i 0.191511 + 0.160697i
\(17\) 8.43596 4.87051i 0.496233 0.286500i −0.230924 0.972972i \(-0.574175\pi\)
0.727157 + 0.686472i \(0.240841\pi\)
\(18\) −11.4363 5.58678i −0.635348 0.310376i
\(19\) 3.84677 6.66281i 0.202462 0.350674i −0.746859 0.664982i \(-0.768439\pi\)
0.949321 + 0.314308i \(0.101772\pi\)
\(20\) 5.90519 + 16.2244i 0.295259 + 0.811218i
\(21\) −24.4570 + 5.19043i −1.16462 + 0.247163i
\(22\) 18.2344 15.3005i 0.828836 0.695476i
\(23\) 10.1434 27.8689i 0.441019 1.21169i −0.497804 0.867290i \(-0.665860\pi\)
0.938823 0.344400i \(-0.111918\pi\)
\(24\) 6.68484 + 5.22617i 0.278535 + 0.217757i
\(25\) −8.59998 + 48.7729i −0.343999 + 1.95092i
\(26\) 4.27534i 0.164436i
\(27\) −24.6553 11.0052i −0.913160 0.407602i
\(28\) 16.6678 0.595279
\(29\) −10.5809 1.86569i −0.364858 0.0643342i −0.0117860 0.999931i \(-0.503752\pi\)
−0.353072 + 0.935596i \(0.614863\pi\)
\(30\) 13.7096 + 33.9633i 0.456986 + 1.13211i
\(31\) −10.8017 3.93149i −0.348441 0.126822i 0.161870 0.986812i \(-0.448248\pi\)
−0.510311 + 0.859990i \(0.670470\pi\)
\(32\) −3.63616 4.33340i −0.113630 0.135419i
\(33\) 37.5353 33.7755i 1.13743 1.02350i
\(34\) −12.9451 + 4.71163i −0.380738 + 0.138577i
\(35\) 62.3062 + 35.9725i 1.78018 + 1.02779i
\(36\) 14.5556 + 10.5893i 0.404323 + 0.294148i
\(37\) −11.5925 20.0787i −0.313309 0.542668i 0.665767 0.746160i \(-0.268104\pi\)
−0.979077 + 0.203492i \(0.934771\pi\)
\(38\) −6.99373 + 8.33481i −0.184046 + 0.219337i
\(39\) −0.313655 9.06395i −0.00804244 0.232409i
\(40\) −4.24001 24.0463i −0.106000 0.601158i
\(41\) −16.7264 + 2.94931i −0.407960 + 0.0719344i −0.373863 0.927484i \(-0.621967\pi\)
−0.0340976 + 0.999419i \(0.510856\pi\)
\(42\) 35.3366 1.22281i 0.841348 0.0291146i
\(43\) 18.0881 + 15.1778i 0.420655 + 0.352971i 0.828412 0.560119i \(-0.189245\pi\)
−0.407757 + 0.913090i \(0.633689\pi\)
\(44\) −29.1530 + 16.8315i −0.662567 + 0.382533i
\(45\) 31.5567 + 70.9981i 0.701259 + 1.57773i
\(46\) −20.9710 + 36.3228i −0.455891 + 0.789626i
\(47\) −5.67901 15.6029i −0.120830 0.331977i 0.864501 0.502631i \(-0.167634\pi\)
−0.985331 + 0.170653i \(0.945412\pi\)
\(48\) −8.02675 8.92027i −0.167224 0.185839i
\(49\) 15.6687 13.1476i 0.319769 0.268318i
\(50\) 23.9549 65.8155i 0.479097 1.31631i
\(51\) −27.0986 + 10.9386i −0.531345 + 0.214482i
\(52\) −1.04992 + 5.95439i −0.0201908 + 0.114508i
\(53\) 75.3383i 1.42148i −0.703456 0.710739i \(-0.748361\pi\)
0.703456 0.710739i \(-0.251639\pi\)
\(54\) 31.6355 + 21.3821i 0.585843 + 0.395964i
\(55\) −145.303 −2.64187
\(56\) −23.2137 4.09321i −0.414531 0.0730930i
\(57\) −14.2156 + 18.1833i −0.249397 + 0.319005i
\(58\) 14.2781 + 5.19681i 0.246174 + 0.0896001i
\(59\) −38.6968 46.1170i −0.655878 0.781645i 0.330910 0.943662i \(-0.392644\pi\)
−0.986788 + 0.162017i \(0.948200\pi\)
\(60\) −10.7532 50.6683i −0.179219 0.844472i
\(61\) 32.1023 11.6843i 0.526267 0.191546i −0.0652037 0.997872i \(-0.520770\pi\)
0.591471 + 0.806326i \(0.298547\pi\)
\(62\) 14.0783 + 8.12813i 0.227070 + 0.131099i
\(63\) 74.8257 5.18485i 1.18771 0.0822992i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) −16.7755 + 19.9923i −0.258085 + 0.307573i
\(66\) −60.5710 + 37.8224i −0.917742 + 0.573066i
\(67\) 6.53483 + 37.0609i 0.0975348 + 0.553147i 0.993941 + 0.109914i \(0.0350575\pi\)
−0.896406 + 0.443233i \(0.853831\pi\)
\(68\) 19.1860 3.38302i 0.282148 0.0497503i
\(69\) −41.7948 + 78.5447i −0.605721 + 1.13833i
\(70\) −77.9416 65.4008i −1.11345 0.934297i
\(71\) 44.0325 25.4222i 0.620175 0.358058i −0.156762 0.987636i \(-0.550106\pi\)
0.776937 + 0.629578i \(0.216772\pi\)
\(72\) −17.6715 18.3226i −0.245438 0.254480i
\(73\) 49.2453 85.2954i 0.674593 1.16843i −0.301994 0.953310i \(-0.597652\pi\)
0.976588 0.215120i \(-0.0690144\pi\)
\(74\) 11.2143 + 30.8110i 0.151545 + 0.416365i
\(75\) 45.9571 141.290i 0.612761 1.88386i
\(76\) 11.7872 9.89063i 0.155095 0.130140i
\(77\) −47.9758 + 131.813i −0.623063 + 1.71185i
\(78\) −1.78905 + 12.7006i −0.0229365 + 0.162829i
\(79\) −14.0913 + 79.9158i −0.178371 + 1.01159i 0.755809 + 0.654792i \(0.227244\pi\)
−0.934180 + 0.356801i \(0.883867\pi\)
\(80\) 34.5312i 0.431640i
\(81\) 68.6376 + 43.0102i 0.847378 + 0.530990i
\(82\) 24.0196 0.292921
\(83\) −15.8868 2.80127i −0.191407 0.0337503i 0.0771226 0.997022i \(-0.475427\pi\)
−0.268530 + 0.963271i \(0.586538\pi\)
\(84\) −49.5146 6.97477i −0.589460 0.0830329i
\(85\) 79.0209 + 28.7612i 0.929657 + 0.338368i
\(86\) −21.4646 25.5805i −0.249588 0.297448i
\(87\) 30.6516 + 9.97000i 0.352317 + 0.114598i
\(88\) 44.7356 16.2824i 0.508359 0.185027i
\(89\) 14.0161 + 8.09222i 0.157485 + 0.0909238i 0.576671 0.816976i \(-0.304351\pi\)
−0.419187 + 0.907900i \(0.637685\pi\)
\(90\) −26.5145 106.631i −0.294605 1.18478i
\(91\) 12.5972 + 21.8190i 0.138431 + 0.239769i
\(92\) 38.1269 45.4378i 0.414422 0.493889i
\(93\) 30.4431 + 16.1992i 0.327345 + 0.174185i
\(94\) 4.07761 + 23.1253i 0.0433788 + 0.246014i
\(95\) 65.4078 11.5332i 0.688504 0.121402i
\(96\) 8.98848 + 14.3947i 0.0936300 + 0.149945i
\(97\) −101.648 85.2929i −1.04792 0.879308i −0.0550452 0.998484i \(-0.517530\pi\)
−0.992873 + 0.119176i \(0.961975\pi\)
\(98\) −25.0509 + 14.4632i −0.255622 + 0.147583i
\(99\) −125.639 + 84.6291i −1.26908 + 0.854839i
\(100\) −49.5253 + 85.7803i −0.495253 + 0.857803i
\(101\) −5.20626 14.3041i −0.0515471 0.141625i 0.911247 0.411860i \(-0.135121\pi\)
−0.962794 + 0.270235i \(0.912898\pi\)
\(102\) 40.4272 8.57973i 0.396345 0.0841150i
\(103\) −28.9968 + 24.3312i −0.281522 + 0.236225i −0.772604 0.634889i \(-0.781046\pi\)
0.491082 + 0.871113i \(0.336602\pi\)
\(104\) 2.92451 8.03502i 0.0281203 0.0772598i
\(105\) −170.038 132.935i −1.61941 1.26605i
\(106\) −18.5013 + 104.926i −0.174540 + 0.989866i
\(107\) 118.659i 1.10897i 0.832195 + 0.554483i \(0.187084\pi\)
−0.832195 + 0.554483i \(0.812916\pi\)
\(108\) −38.8088 37.5483i −0.359341 0.347670i
\(109\) 206.055 1.89042 0.945208 0.326468i \(-0.105859\pi\)
0.945208 + 0.326468i \(0.105859\pi\)
\(110\) 202.367 + 35.6828i 1.83970 + 0.324389i
\(111\) 26.0353 + 64.4982i 0.234552 + 0.581065i
\(112\) 31.3252 + 11.4015i 0.279690 + 0.101799i
\(113\) −45.6567 54.4116i −0.404042 0.481519i 0.525206 0.850975i \(-0.323988\pi\)
−0.929248 + 0.369457i \(0.879544\pi\)
\(114\) 24.2638 21.8334i 0.212841 0.191521i
\(115\) 240.586 87.5663i 2.09206 0.761446i
\(116\) −18.6093 10.7441i −0.160425 0.0926215i
\(117\) −2.86111 + 27.0573i −0.0244539 + 0.231259i
\(118\) 42.5689 + 73.7315i 0.360753 + 0.624843i
\(119\) 52.1819 62.1880i 0.438504 0.522588i
\(120\) 2.53334 + 73.2079i 0.0211112 + 0.610066i
\(121\) −28.1828 159.833i −0.232916 1.32093i
\(122\) −47.5792 + 8.38949i −0.389993 + 0.0687663i
\(123\) 50.9227 1.76216i 0.414006 0.0143265i
\(124\) −17.6112 14.7776i −0.142026 0.119174i
\(125\) −183.357 + 105.861i −1.46685 + 0.846888i
\(126\) −105.485 11.1543i −0.837184 0.0885261i
\(127\) −19.1347 + 33.1422i −0.150667 + 0.260963i −0.931473 0.363811i \(-0.881475\pi\)
0.780806 + 0.624774i \(0.214809\pi\)
\(128\) −3.86952 10.6314i −0.0302306 0.0830579i
\(129\) −47.3827 52.6573i −0.367308 0.408196i
\(130\) 28.2733 23.7241i 0.217487 0.182493i
\(131\) −74.5355 + 204.785i −0.568973 + 1.56324i 0.237137 + 0.971476i \(0.423791\pi\)
−0.806110 + 0.591765i \(0.798431\pi\)
\(132\) 93.6472 37.8015i 0.709448 0.286375i
\(133\) 11.1339 63.1432i 0.0837132 0.474761i
\(134\) 53.2205i 0.397168i
\(135\) −64.0349 224.117i −0.474333 1.66013i
\(136\) −27.5517 −0.202586
\(137\) −181.295 31.9672i −1.32332 0.233337i −0.533045 0.846087i \(-0.678952\pi\)
−0.790277 + 0.612749i \(0.790064\pi\)
\(138\) 77.4974 99.1277i 0.561575 0.718316i
\(139\) −228.486 83.1623i −1.64379 0.598290i −0.656092 0.754681i \(-0.727792\pi\)
−0.987695 + 0.156391i \(0.950014\pi\)
\(140\) 92.4907 + 110.226i 0.660648 + 0.787329i
\(141\) 10.3413 + 48.7276i 0.0733426 + 0.345586i
\(142\) −67.5683 + 24.5929i −0.475833 + 0.173189i
\(143\) −44.0665 25.4418i −0.308157 0.177915i
\(144\) 20.1121 + 29.8581i 0.139667 + 0.207348i
\(145\) −46.3758 80.3253i −0.319833 0.553968i
\(146\) −89.5318 + 106.700i −0.613232 + 0.730821i
\(147\) −52.0482 + 32.5005i −0.354069 + 0.221092i
\(148\) −8.05203 45.6653i −0.0544056 0.308550i
\(149\) 141.886 25.0183i 0.952255 0.167908i 0.324123 0.946015i \(-0.394931\pi\)
0.628132 + 0.778107i \(0.283820\pi\)
\(150\) −98.7030 + 185.492i −0.658020 + 1.23661i
\(151\) −77.8368 65.3129i −0.515476 0.432535i 0.347575 0.937652i \(-0.387005\pi\)
−0.863051 + 0.505117i \(0.831449\pi\)
\(152\) −18.8453 + 10.8803i −0.123982 + 0.0715810i
\(153\) 85.0783 21.1554i 0.556068 0.138270i
\(154\) 99.1872 171.797i 0.644073 1.11557i
\(155\) −33.9398 93.2488i −0.218966 0.601605i
\(156\) 5.61063 17.2492i 0.0359656 0.110572i
\(157\) −237.118 + 198.965i −1.51030 + 1.26730i −0.647143 + 0.762369i \(0.724036\pi\)
−0.863162 + 0.504927i \(0.831519\pi\)
\(158\) 39.2508 107.841i 0.248423 0.682535i
\(159\) −31.5259 + 223.805i −0.198276 + 1.40758i
\(160\) 8.48002 48.0926i 0.0530001 0.300579i
\(161\) 247.162i 1.53517i
\(162\) −85.0313 76.7572i −0.524885 0.473810i
\(163\) 160.056 0.981937 0.490969 0.871177i \(-0.336643\pi\)
0.490969 + 0.871177i \(0.336643\pi\)
\(164\) −33.4527 5.89862i −0.203980 0.0359672i
\(165\) 431.647 + 60.8030i 2.61604 + 0.368503i
\(166\) 21.4381 + 7.80282i 0.129145 + 0.0470050i
\(167\) 160.019 + 190.703i 0.958197 + 1.14193i 0.989804 + 0.142434i \(0.0454929\pi\)
−0.0316076 + 0.999500i \(0.510063\pi\)
\(168\) 67.2476 + 21.8735i 0.400283 + 0.130200i
\(169\) 150.220 54.6756i 0.888875 0.323524i
\(170\) −102.992 59.4622i −0.605833 0.349778i
\(171\) 49.8388 48.0680i 0.291455 0.281100i
\(172\) 23.6124 + 40.8979i 0.137281 + 0.237778i
\(173\) 43.4383 51.7678i 0.251088 0.299236i −0.625747 0.780026i \(-0.715206\pi\)
0.876836 + 0.480790i \(0.159650\pi\)
\(174\) −40.2409 21.4128i −0.231270 0.123062i
\(175\) 71.6714 + 406.469i 0.409551 + 2.32268i
\(176\) −66.3031 + 11.6910i −0.376722 + 0.0664262i
\(177\) 95.6575 + 153.192i 0.540438 + 0.865489i
\(178\) −17.5334 14.7123i −0.0985024 0.0826533i
\(179\) 203.717 117.616i 1.13808 0.657073i 0.192128 0.981370i \(-0.438461\pi\)
0.945955 + 0.324297i \(0.105128\pi\)
\(180\) 10.7416 + 155.019i 0.0596756 + 0.861215i
\(181\) −108.916 + 188.647i −0.601744 + 1.04225i 0.390813 + 0.920470i \(0.372194\pi\)
−0.992557 + 0.121781i \(0.961140\pi\)
\(182\) −12.1863 33.4815i −0.0669576 0.183965i
\(183\) −100.255 + 21.2767i −0.547840 + 0.116266i
\(184\) −64.2588 + 53.9195i −0.349233 + 0.293041i
\(185\) 68.4556 188.080i 0.370030 1.01665i
\(186\) −38.4208 30.0372i −0.206564 0.161490i
\(187\) −28.4706 + 161.465i −0.152249 + 0.863448i
\(188\) 33.2086i 0.176642i
\(189\) −224.452 15.9089i −1.18758 0.0841739i
\(190\) −93.9276 −0.494356
\(191\) 253.418 + 44.6844i 1.32679 + 0.233950i 0.791735 0.610864i \(-0.209178\pi\)
0.535060 + 0.844814i \(0.320289\pi\)
\(192\) −8.98353 22.2552i −0.0467892 0.115913i
\(193\) 72.0472 + 26.2230i 0.373302 + 0.135871i 0.521856 0.853034i \(-0.325240\pi\)
−0.148554 + 0.988904i \(0.547462\pi\)
\(194\) 120.622 + 143.752i 0.621765 + 0.740990i
\(195\) 58.2004 52.3706i 0.298464 0.268567i
\(196\) 38.4410 13.9914i 0.196127 0.0713845i
\(197\) −211.300 121.994i −1.07259 0.619260i −0.143702 0.989621i \(-0.545901\pi\)
−0.928888 + 0.370361i \(0.879234\pi\)
\(198\) 195.764 87.0115i 0.988705 0.439452i
\(199\) −41.0539 71.1075i −0.206301 0.357324i 0.744245 0.667906i \(-0.232809\pi\)
−0.950547 + 0.310582i \(0.899476\pi\)
\(200\) 90.0408 107.307i 0.450204 0.536533i
\(201\) −3.90445 112.830i −0.0194251 0.561344i
\(202\) 3.73817 + 21.2002i 0.0185058 + 0.104952i
\(203\) −88.1800 + 15.5485i −0.434384 + 0.0765936i
\(204\) −58.4111 + 2.02130i −0.286329 + 0.00990832i
\(205\) −112.320 94.2474i −0.547901 0.459743i
\(206\) 46.3597 26.7658i 0.225047 0.129931i
\(207\) 157.026 215.841i 0.758580 1.04271i
\(208\) −6.04625 + 10.4724i −0.0290685 + 0.0503481i
\(209\) 44.2895 + 121.684i 0.211911 + 0.582221i
\(210\) 204.172 + 226.900i 0.972246 + 1.08047i
\(211\) 44.0427 36.9562i 0.208733 0.175148i −0.532427 0.846476i \(-0.678720\pi\)
0.741161 + 0.671328i \(0.234276\pi\)
\(212\) 51.5344 141.590i 0.243087 0.667876i
\(213\) −141.444 + 57.0952i −0.664057 + 0.268052i
\(214\) 29.1399 165.260i 0.136168 0.772245i
\(215\) 203.841i 0.948098i
\(216\) 44.8292 + 61.8251i 0.207542 + 0.286227i
\(217\) −95.7975 −0.441463
\(218\) −286.979 50.6022i −1.31642 0.232120i
\(219\) −181.984 + 232.778i −0.830978 + 1.06291i
\(220\) −273.080 99.3930i −1.24127 0.451786i
\(221\) 18.9290 + 22.5587i 0.0856516 + 0.102076i
\(222\) −20.4209 96.2221i −0.0919860 0.433433i
\(223\) −217.997 + 79.3444i −0.977565 + 0.355805i −0.780893 0.624665i \(-0.785236\pi\)
−0.196672 + 0.980469i \(0.563013\pi\)
\(224\) −40.8276 23.5718i −0.182266 0.105231i
\(225\) −195.647 + 400.494i −0.869542 + 1.77997i
\(226\) 50.2253 + 86.9928i 0.222236 + 0.384924i
\(227\) 137.899 164.342i 0.607485 0.723973i −0.371379 0.928481i \(-0.621115\pi\)
0.978865 + 0.204508i \(0.0655595\pi\)
\(228\) −39.1547 + 24.4494i −0.171731 + 0.107234i
\(229\) −68.6623 389.403i −0.299835 1.70045i −0.646871 0.762599i \(-0.723923\pi\)
0.347036 0.937852i \(-0.387188\pi\)
\(230\) −356.576 + 62.8739i −1.55033 + 0.273365i
\(231\) 197.678 371.496i 0.855750 1.60821i
\(232\) 23.2792 + 19.5336i 0.100342 + 0.0841966i
\(233\) 82.9298 47.8796i 0.355922 0.205492i −0.311368 0.950289i \(-0.600787\pi\)
0.667290 + 0.744798i \(0.267454\pi\)
\(234\) 10.6294 36.9808i 0.0454246 0.158038i
\(235\) 71.6708 124.138i 0.304982 0.528245i
\(236\) −41.1803 113.142i −0.174493 0.479415i
\(237\) 75.3020 231.507i 0.317730 0.976823i
\(238\) −87.9471 + 73.7964i −0.369526 + 0.310069i
\(239\) −30.1617 + 82.8687i −0.126200 + 0.346731i −0.986662 0.162784i \(-0.947953\pi\)
0.860462 + 0.509514i \(0.170175\pi\)
\(240\) 14.4498 102.581i 0.0602076 0.427420i
\(241\) −66.8780 + 379.284i −0.277502 + 1.57379i 0.453399 + 0.891308i \(0.350211\pi\)
−0.730901 + 0.682484i \(0.760900\pi\)
\(242\) 229.525i 0.948449i
\(243\) −185.902 156.491i −0.765029 0.643996i
\(244\) 68.3251 0.280021
\(245\) 173.893 + 30.6620i 0.709767 + 0.125151i
\(246\) −71.3542 10.0512i −0.290058 0.0408584i
\(247\) 21.8559 + 7.95489i 0.0884854 + 0.0322060i
\(248\) 20.8986 + 24.9060i 0.0842687 + 0.100428i
\(249\) 46.0223 + 14.9696i 0.184828 + 0.0601189i
\(250\) 281.363 102.408i 1.12545 0.409631i
\(251\) −126.850 73.2368i −0.505378 0.291780i 0.225554 0.974231i \(-0.427581\pi\)
−0.730932 + 0.682451i \(0.760914\pi\)
\(252\) 144.173 + 41.4395i 0.572115 + 0.164442i
\(253\) 249.589 + 432.301i 0.986518 + 1.70870i
\(254\) 34.7883 41.4591i 0.136962 0.163225i
\(255\) −222.710 118.507i −0.873371 0.464734i
\(256\) 2.77837 + 15.7569i 0.0108530 + 0.0615505i
\(257\) 204.456 36.0511i 0.795548 0.140277i 0.238921 0.971039i \(-0.423206\pi\)
0.556627 + 0.830762i \(0.312095\pi\)
\(258\) 53.0599 + 84.9733i 0.205659 + 0.329354i
\(259\) −148.016 124.200i −0.571489 0.479536i
\(260\) −45.2031 + 26.0980i −0.173858 + 0.100377i
\(261\) −86.8838 42.4440i −0.332888 0.162621i
\(262\) 154.098 266.905i 0.588160 1.01872i
\(263\) −11.3833 31.2753i −0.0432825 0.118918i 0.916168 0.400794i \(-0.131266\pi\)
−0.959451 + 0.281876i \(0.909043\pi\)
\(264\) −139.708 + 29.6498i −0.529198 + 0.112310i
\(265\) 498.221 418.057i 1.88008 1.57757i
\(266\) −31.0129 + 85.2071i −0.116590 + 0.320328i
\(267\) −38.2511 29.9045i −0.143263 0.112002i
\(268\) −13.0697 + 74.1217i −0.0487674 + 0.276574i
\(269\) 399.099i 1.48364i 0.670599 + 0.741820i \(0.266037\pi\)
−0.670599 + 0.741820i \(0.733963\pi\)
\(270\) 34.1455 + 327.860i 0.126465 + 1.21430i
\(271\) −83.9974 −0.309954 −0.154977 0.987918i \(-0.549530\pi\)
−0.154977 + 0.987918i \(0.549530\pi\)
\(272\) 38.3721 + 6.76604i 0.141074 + 0.0248751i
\(273\) −28.2919 70.0886i −0.103633 0.256735i
\(274\) 244.645 + 89.0434i 0.892864 + 0.324976i
\(275\) −535.817 638.562i −1.94843 2.32204i
\(276\) −132.276 + 119.026i −0.479262 + 0.431255i
\(277\) −168.403 + 61.2936i −0.607953 + 0.221277i −0.627607 0.778530i \(-0.715966\pi\)
0.0196546 + 0.999807i \(0.493743\pi\)
\(278\) 297.797 + 171.933i 1.07121 + 0.618465i
\(279\) −83.6578 60.8617i −0.299849 0.218142i
\(280\) −101.746 176.228i −0.363377 0.629387i
\(281\) −298.873 + 356.183i −1.06361 + 1.26756i −0.101513 + 0.994834i \(0.532368\pi\)
−0.962093 + 0.272722i \(0.912076\pi\)
\(282\) −2.43631 70.4039i −0.00863938 0.249659i
\(283\) 45.4847 + 257.956i 0.160723 + 0.911507i 0.953365 + 0.301819i \(0.0975939\pi\)
−0.792642 + 0.609687i \(0.791295\pi\)
\(284\) 100.144 17.6580i 0.352619 0.0621762i
\(285\) −199.131 + 6.89088i −0.698707 + 0.0241785i
\(286\) 55.1248 + 46.2552i 0.192744 + 0.161731i
\(287\) −122.583 + 70.7732i −0.427118 + 0.246596i
\(288\) −20.6783 46.5232i −0.0717996 0.161539i
\(289\) −97.0563 + 168.107i −0.335835 + 0.581683i
\(290\) 44.8630 + 123.260i 0.154700 + 0.425035i
\(291\) 266.272 + 295.913i 0.915023 + 1.01688i
\(292\) 150.896 126.617i 0.516769 0.433620i
\(293\) −33.5970 + 92.3071i −0.114666 + 0.315041i −0.983729 0.179660i \(-0.942500\pi\)
0.869063 + 0.494701i \(0.164722\pi\)
\(294\) 80.4703 32.4826i 0.273709 0.110485i
\(295\) 90.2463 511.812i 0.305920 1.73496i
\(296\) 65.5768i 0.221543i
\(297\) 408.645 198.831i 1.37591 0.669464i
\(298\) −203.753 −0.683733
\(299\) 88.2960 + 15.5690i 0.295304 + 0.0520701i
\(300\) 183.019 234.101i 0.610063 0.780337i
\(301\) 184.916 + 67.3039i 0.614339 + 0.223601i
\(302\) 92.3663 + 110.078i 0.305849 + 0.364496i
\(303\) 9.48045 + 44.6713i 0.0312886 + 0.147430i
\(304\) 28.9183 10.5254i 0.0951259 0.0346230i
\(305\) 255.407 + 147.459i 0.837400 + 0.483473i
\(306\) −123.686 + 8.57051i −0.404203 + 0.0280082i
\(307\) −246.426 426.822i −0.802690 1.39030i −0.917840 0.396952i \(-0.870068\pi\)
0.115150 0.993348i \(-0.463265\pi\)
\(308\) −180.330 + 214.909i −0.585487 + 0.697757i
\(309\) 96.3214 60.1460i 0.311720 0.194647i
\(310\) 24.3693 + 138.205i 0.0786106 + 0.445823i
\(311\) −16.6486 + 2.93559i −0.0535324 + 0.00943921i −0.200350 0.979724i \(-0.564208\pi\)
0.146818 + 0.989164i \(0.453097\pi\)
\(312\) −12.0501 + 22.6456i −0.0386220 + 0.0725821i
\(313\) 319.525 + 268.113i 1.02085 + 0.856591i 0.989734 0.142925i \(-0.0456507\pi\)
0.0311120 + 0.999516i \(0.490095\pi\)
\(314\) 379.102 218.875i 1.20733 0.697053i
\(315\) 449.500 + 466.060i 1.42699 + 1.47956i
\(316\) −81.1487 + 140.554i −0.256800 + 0.444790i
\(317\) 155.193 + 426.388i 0.489567 + 1.34507i 0.901074 + 0.433666i \(0.142780\pi\)
−0.411507 + 0.911407i \(0.634997\pi\)
\(318\) 98.8681 303.958i 0.310906 0.955844i
\(319\) 138.531 116.241i 0.434265 0.364392i
\(320\) −23.6207 + 64.8975i −0.0738148 + 0.202805i
\(321\) 49.6539 352.498i 0.154685 1.09813i
\(322\) −60.6970 + 344.230i −0.188500 + 1.06904i
\(323\) 74.9429i 0.232021i
\(324\) 99.5759 + 127.784i 0.307333 + 0.394394i
\(325\) −149.721 −0.460680
\(326\) −222.914 39.3058i −0.683786 0.120570i
\(327\) −612.123 86.2254i −1.87194 0.263686i
\(328\) 45.1420 + 16.4303i 0.137628 + 0.0500925i
\(329\) −88.9481 106.004i −0.270359 0.322201i
\(330\) −586.235 190.684i −1.77647 0.577830i
\(331\) 220.616 80.2978i 0.666515 0.242591i 0.0134681 0.999909i \(-0.495713\pi\)
0.653046 + 0.757318i \(0.273491\pi\)
\(332\) −27.9412 16.1319i −0.0841604 0.0485900i
\(333\) −50.3526 202.498i −0.151209 0.608101i
\(334\) −176.031 304.894i −0.527038 0.912857i
\(335\) −208.825 + 248.868i −0.623360 + 0.742891i
\(336\) −88.2860 46.9783i −0.262756 0.139816i
\(337\) −55.0894 312.428i −0.163470 0.927085i −0.950628 0.310333i \(-0.899559\pi\)
0.787158 0.616752i \(-0.211552\pi\)
\(338\) −222.643 + 39.2579i −0.658706 + 0.116148i
\(339\) 112.862 + 180.744i 0.332927 + 0.533169i
\(340\) 128.837 + 108.107i 0.378932 + 0.317961i
\(341\) 167.555 96.7381i 0.491365 0.283689i
\(342\) −81.2163 + 54.7065i −0.237475 + 0.159961i
\(343\) −118.950 + 206.027i −0.346793 + 0.600662i
\(344\) −22.8421 62.7583i −0.0664016 0.182437i
\(345\) −751.346 + 159.456i −2.17782 + 0.462190i
\(346\) −73.2107 + 61.4310i −0.211592 + 0.177546i
\(347\) −15.0965 + 41.4774i −0.0435059 + 0.119531i −0.959543 0.281562i \(-0.909147\pi\)
0.916037 + 0.401093i \(0.131370\pi\)
\(348\) 50.7862 + 39.7044i 0.145937 + 0.114093i
\(349\) 57.3986 325.523i 0.164466 0.932732i −0.785148 0.619309i \(-0.787413\pi\)
0.949614 0.313423i \(-0.101476\pi\)
\(350\) 583.701i 1.66772i
\(351\) 19.8217 79.1810i 0.0564721 0.225587i
\(352\) 95.2132 0.270492
\(353\) −466.298 82.2209i −1.32096 0.232920i −0.531673 0.846949i \(-0.678437\pi\)
−0.789283 + 0.614029i \(0.789548\pi\)
\(354\) −95.6048 236.845i −0.270070 0.669055i
\(355\) 412.458 + 150.123i 1.16185 + 0.422880i
\(356\) 20.8063 + 24.7960i 0.0584447 + 0.0696517i
\(357\) −181.038 + 162.904i −0.507111 + 0.456315i
\(358\) −312.606 + 113.779i −0.873201 + 0.317819i
\(359\) 378.055 + 218.270i 1.05308 + 0.607994i 0.923509 0.383576i \(-0.125308\pi\)
0.129568 + 0.991571i \(0.458641\pi\)
\(360\) 23.1087 218.537i 0.0641908 0.607047i
\(361\) 150.905 + 261.375i 0.418018 + 0.724029i
\(362\) 198.017 235.988i 0.547009 0.651899i
\(363\) 16.8388 + 486.604i 0.0463878 + 1.34051i
\(364\) 8.74994 + 49.6234i 0.0240383 + 0.136328i
\(365\) 837.333 147.644i 2.29406 0.404505i
\(366\) 144.853 5.01258i 0.395772 0.0136956i
\(367\) 365.154 + 306.401i 0.994970 + 0.834879i 0.986280 0.165083i \(-0.0527893\pi\)
0.00869048 + 0.999962i \(0.497234\pi\)
\(368\) 102.736 59.3149i 0.279175 0.161182i
\(369\) −152.012 16.0742i −0.411957 0.0435614i
\(370\) −141.528 + 245.134i −0.382508 + 0.662523i
\(371\) −214.742 589.998i −0.578818 1.59029i
\(372\) 46.1334 + 51.2688i 0.124014 + 0.137819i
\(373\) −282.763 + 237.266i −0.758077 + 0.636102i −0.937625 0.347647i \(-0.886981\pi\)
0.179549 + 0.983749i \(0.442536\pi\)
\(374\) 79.3036 217.885i 0.212042 0.582580i
\(375\) 588.991 237.752i 1.57064 0.634004i
\(376\) −8.15522 + 46.2506i −0.0216894 + 0.123007i
\(377\) 32.4807i 0.0861558i
\(378\) 308.694 + 77.2768i 0.816652 + 0.204436i
\(379\) −216.903 −0.572304 −0.286152 0.958184i \(-0.592376\pi\)
−0.286152 + 0.958184i \(0.592376\pi\)
\(380\) 130.816 + 23.0663i 0.344252 + 0.0607009i
\(381\) 70.7115 90.4477i 0.185594 0.237396i
\(382\) −341.969 124.466i −0.895206 0.325828i
\(383\) −346.686 413.164i −0.905185 1.07876i −0.996555 0.0829400i \(-0.973569\pi\)
0.0913699 0.995817i \(-0.470875\pi\)
\(384\) 7.04628 + 33.2017i 0.0183497 + 0.0864626i
\(385\) −1137.91 + 414.166i −2.95561 + 1.07576i
\(386\) −93.9025 54.2146i −0.243271 0.140452i
\(387\) 118.724 + 176.255i 0.306780 + 0.455439i
\(388\) −132.692 229.830i −0.341990 0.592344i
\(389\) 94.9161 113.117i 0.244000 0.290788i −0.630120 0.776498i \(-0.716994\pi\)
0.874120 + 0.485710i \(0.161439\pi\)
\(390\) −93.9183 + 58.6454i −0.240816 + 0.150373i
\(391\) −50.1658 284.504i −0.128301 0.727633i
\(392\) −56.9738 + 10.0460i −0.145341 + 0.0256276i
\(393\) 307.114 577.158i 0.781461 1.46860i
\(394\) 264.325 + 221.795i 0.670875 + 0.562931i
\(395\) −606.686 + 350.270i −1.53591 + 0.886760i
\(396\) −294.013 + 73.1086i −0.742458 + 0.184618i
\(397\) 251.308 435.278i 0.633017 1.09642i −0.353915 0.935278i \(-0.615150\pi\)
0.986932 0.161139i \(-0.0515169\pi\)
\(398\) 39.7147 + 109.115i 0.0997857 + 0.274159i
\(399\) −59.4978 + 182.919i −0.149117 + 0.458443i
\(400\) −151.754 + 127.337i −0.379386 + 0.318342i
\(401\) 79.1589 217.487i 0.197404 0.542362i −0.801011 0.598650i \(-0.795704\pi\)
0.998415 + 0.0562876i \(0.0179264\pi\)
\(402\) −22.2705 + 158.101i −0.0553993 + 0.393285i
\(403\) 6.03437 34.2226i 0.0149736 0.0849196i
\(404\) 30.4442i 0.0753569i
\(405\) 96.4433 + 692.574i 0.238132 + 1.71006i
\(406\) 126.629 0.311894
\(407\) 384.307 + 67.7638i 0.944244 + 0.166496i
\(408\) 81.8472 + 11.5292i 0.200606 + 0.0282579i
\(409\) −423.279 154.061i −1.03491 0.376677i −0.231963 0.972725i \(-0.574515\pi\)
−0.802949 + 0.596048i \(0.796737\pi\)
\(410\) 133.286 + 158.844i 0.325088 + 0.387424i
\(411\) 525.192 + 170.828i 1.27784 + 0.415641i
\(412\) −71.1396 + 25.8927i −0.172669 + 0.0628463i
\(413\) −434.497 250.857i −1.05205 0.607402i
\(414\) −271.700 + 262.046i −0.656280 + 0.632962i
\(415\) −69.6317 120.606i −0.167787 0.290616i
\(416\) 10.9926 13.1004i 0.0264244 0.0314914i
\(417\) 643.959 + 342.660i 1.54427 + 0.821726i
\(418\) −31.8005 180.350i −0.0760777 0.431458i
\(419\) −324.142 + 57.1549i −0.773608 + 0.136408i −0.546497 0.837461i \(-0.684039\pi\)
−0.227111 + 0.973869i \(0.572928\pi\)
\(420\) −228.635 366.149i −0.544368 0.871783i
\(421\) −156.740 131.520i −0.372303 0.312399i 0.437369 0.899282i \(-0.355910\pi\)
−0.809672 + 0.586883i \(0.800355\pi\)
\(422\) −70.4151 + 40.6542i −0.166860 + 0.0963369i
\(423\) −10.3302 149.081i −0.0244213 0.352438i
\(424\) −106.544 + 184.540i −0.251284 + 0.435237i
\(425\) 165.000 + 453.333i 0.388234 + 1.06666i
\(426\) 211.014 44.7829i 0.495339 0.105124i
\(427\) 218.099 183.006i 0.510770 0.428587i
\(428\) −81.1678 + 223.007i −0.189645 + 0.521044i
\(429\) 120.261 + 94.0192i 0.280328 + 0.219159i
\(430\) 50.0584 283.895i 0.116415 0.660222i
\(431\) 5.85402i 0.0135824i −0.999977 0.00679120i \(-0.997838\pi\)
0.999977 0.00679120i \(-0.00216172\pi\)
\(432\) −47.2521 97.1146i −0.109380 0.224802i
\(433\) 233.310 0.538821 0.269411 0.963025i \(-0.413171\pi\)
0.269411 + 0.963025i \(0.413171\pi\)
\(434\) 133.420 + 23.5255i 0.307419 + 0.0542063i
\(435\) 104.155 + 258.026i 0.239436 + 0.593164i
\(436\) 387.257 + 140.950i 0.888205 + 0.323280i
\(437\) −146.665 174.789i −0.335619 0.399975i
\(438\) 310.619 279.505i 0.709176 0.638140i
\(439\) 126.662 46.1012i 0.288524 0.105014i −0.193704 0.981060i \(-0.562050\pi\)
0.482227 + 0.876046i \(0.339828\pi\)
\(440\) 355.918 + 205.489i 0.808904 + 0.467021i
\(441\) 168.218 74.7683i 0.381447 0.169543i
\(442\) −20.8231 36.0666i −0.0471110 0.0815987i
\(443\) 18.4121 21.9426i 0.0415622 0.0495319i −0.744863 0.667218i \(-0.767485\pi\)
0.786425 + 0.617686i \(0.211930\pi\)
\(444\) 4.81096 + 139.026i 0.0108355 + 0.313122i
\(445\) 24.2616 + 137.594i 0.0545205 + 0.309201i
\(446\) 323.096 56.9705i 0.724430 0.127737i
\(447\) −431.966 + 14.9480i −0.966367 + 0.0334408i
\(448\) 51.0731 + 42.8555i 0.114003 + 0.0956595i
\(449\) 430.226 248.391i 0.958188 0.553210i 0.0625728 0.998040i \(-0.480069\pi\)
0.895615 + 0.444831i \(0.146736\pi\)
\(450\) 370.835 509.733i 0.824077 1.13274i
\(451\) 142.936 247.573i 0.316932 0.548942i
\(452\) −48.5869 133.491i −0.107493 0.295335i
\(453\) 203.897 + 226.594i 0.450104 + 0.500209i
\(454\) −232.414 + 195.019i −0.511926 + 0.429557i
\(455\) −74.3889 + 204.382i −0.163492 + 0.449191i
\(456\) 60.5360 24.4359i 0.132754 0.0535875i
\(457\) −80.5387 + 456.758i −0.176234 + 0.999470i 0.760477 + 0.649365i \(0.224965\pi\)
−0.936710 + 0.350105i \(0.886146\pi\)
\(458\) 559.195i 1.22095i
\(459\) −261.592 + 27.2440i −0.569918 + 0.0593551i
\(460\) 512.054 1.11316
\(461\) −262.335 46.2568i −0.569057 0.100340i −0.118286 0.992980i \(-0.537740\pi\)
−0.450771 + 0.892640i \(0.648851\pi\)
\(462\) −366.543 + 468.848i −0.793382 + 1.01482i
\(463\) −224.935 81.8697i −0.485821 0.176824i 0.0874848 0.996166i \(-0.472117\pi\)
−0.573306 + 0.819341i \(0.694339\pi\)
\(464\) −27.6247 32.9218i −0.0595360 0.0709522i
\(465\) 61.8033 + 291.214i 0.132910 + 0.626266i
\(466\) −127.257 + 46.3177i −0.273083 + 0.0993942i
\(467\) −184.565 106.559i −0.395215 0.228177i 0.289202 0.957268i \(-0.406610\pi\)
−0.684417 + 0.729091i \(0.739943\pi\)
\(468\) −23.8854 + 48.8939i −0.0510371 + 0.104474i
\(469\) 156.813 + 271.609i 0.334357 + 0.579123i
\(470\) −130.303 + 155.289i −0.277241 + 0.330403i
\(471\) 787.658 491.838i 1.67231 1.04424i
\(472\) 29.5681 + 167.689i 0.0626442 + 0.355273i
\(473\) −391.394 + 69.0132i −0.827470 + 0.145905i
\(474\) −161.728 + 303.934i −0.341198 + 0.641212i
\(475\) 291.882 + 244.918i 0.614489 + 0.515617i
\(476\) 140.609 81.1807i 0.295397 0.170548i
\(477\) 187.306 651.660i 0.392675 1.36616i
\(478\) 62.3576 108.007i 0.130455 0.225955i
\(479\) 136.882 + 376.079i 0.285765 + 0.785134i 0.996647 + 0.0818220i \(0.0260739\pi\)
−0.710882 + 0.703312i \(0.751704\pi\)
\(480\) −45.3161 + 139.319i −0.0944085 + 0.290248i
\(481\) 53.6927 45.0535i 0.111627 0.0936664i
\(482\) 186.286 511.816i 0.386485 1.06186i
\(483\) −103.427 + 734.238i −0.214134 + 1.52016i
\(484\) 56.3657 319.666i 0.116458 0.660466i
\(485\) 1145.51i 2.36187i
\(486\) 220.481 + 263.603i 0.453664 + 0.542392i
\(487\) −323.676 −0.664632 −0.332316 0.943168i \(-0.607830\pi\)
−0.332316 + 0.943168i \(0.607830\pi\)
\(488\) −95.1583 16.7790i −0.194997 0.0343832i
\(489\) −475.473 66.9765i −0.972338 0.136966i
\(490\) −234.656 85.4077i −0.478889 0.174301i
\(491\) 589.862 + 702.970i 1.20135 + 1.43171i 0.873392 + 0.487018i \(0.161915\pi\)
0.327956 + 0.944693i \(0.393640\pi\)
\(492\) 96.9088 + 31.5214i 0.196969 + 0.0640679i
\(493\) −98.3467 + 35.7953i −0.199486 + 0.0726070i
\(494\) −28.4858 16.4463i −0.0576635 0.0332921i
\(495\) −1256.84 361.252i −2.53907 0.729801i
\(496\) −22.9898 39.8195i −0.0463504 0.0802813i
\(497\) 272.369 324.597i 0.548027 0.653113i
\(498\) −60.4204 32.1505i −0.121326 0.0645593i
\(499\) −37.5201 212.787i −0.0751906 0.426427i −0.999045 0.0436840i \(-0.986091\pi\)
0.923855 0.382743i \(-0.125021\pi\)
\(500\) −417.011 + 73.5303i −0.834022 + 0.147061i
\(501\) −395.562 633.477i −0.789546 1.26443i
\(502\) 158.682 + 133.150i 0.316100 + 0.265240i
\(503\) 31.3557 18.1032i 0.0623373 0.0359905i −0.468507 0.883460i \(-0.655208\pi\)
0.530845 + 0.847469i \(0.321875\pi\)
\(504\) −190.617 93.1193i −0.378209 0.184761i
\(505\) 65.7046 113.804i 0.130108 0.225354i
\(506\) −241.447 663.371i −0.477169 1.31101i
\(507\) −469.134 + 99.5626i −0.925313 + 0.196376i
\(508\) −58.6321 + 49.1982i −0.115417 + 0.0968468i
\(509\) −79.8138 + 219.287i −0.156805 + 0.430818i −0.993072 0.117503i \(-0.962511\pi\)
0.836267 + 0.548322i \(0.184733\pi\)
\(510\) 281.072 + 219.740i 0.551121 + 0.430863i
\(511\) 142.532 808.342i 0.278929 1.58188i
\(512\) 22.6274i 0.0441942i
\(513\) −168.169 + 121.939i −0.327815 + 0.237698i
\(514\) −293.605 −0.571216
\(515\) −321.809 56.7437i −0.624873 0.110182i
\(516\) −53.0307 131.375i −0.102773 0.254603i
\(517\) 262.620 + 95.5860i 0.507970 + 0.184886i
\(518\) 175.645 + 209.326i 0.339083 + 0.404104i
\(519\) −150.704 + 135.608i −0.290373 + 0.261287i
\(520\) 69.3647 25.2467i 0.133394 0.0485513i
\(521\) −119.806 69.1700i −0.229954 0.132764i 0.380597 0.924741i \(-0.375719\pi\)
−0.610551 + 0.791977i \(0.709052\pi\)
\(522\) 110.582 + 80.4495i 0.211844 + 0.154118i
\(523\) 98.4346 + 170.494i 0.188212 + 0.325992i 0.944654 0.328068i \(-0.106398\pi\)
−0.756442 + 0.654060i \(0.773064\pi\)
\(524\) −280.162 + 333.884i −0.534660 + 0.637183i
\(525\) −42.8225 1237.48i −0.0815667 2.35710i
\(526\) 8.17338 + 46.3535i 0.0155387 + 0.0881246i
\(527\) −110.271 + 19.4437i −0.209243 + 0.0368951i
\(528\) 201.857 6.98519i 0.382305 0.0132295i
\(529\) −268.547 225.338i −0.507651 0.425969i
\(530\) −796.551 + 459.889i −1.50293 + 0.867715i
\(531\) −220.063 495.111i −0.414431 0.932412i
\(532\) 64.1173 111.054i 0.120521 0.208749i
\(533\) −17.5613 48.2494i −0.0329481 0.0905242i
\(534\) 45.9296 + 51.0424i 0.0860105 + 0.0955850i
\(535\) −784.708 + 658.448i −1.46674 + 1.23074i
\(536\) 36.4050 100.022i 0.0679197 0.186608i
\(537\) −654.394 + 264.152i −1.21861 + 0.491903i
\(538\) 98.0090 555.837i 0.182173 1.03315i
\(539\) 344.271i 0.638722i
\(540\) 32.9589 465.005i 0.0610350 0.861120i
\(541\) −136.735 −0.252745 −0.126373 0.991983i \(-0.540334\pi\)
−0.126373 + 0.991983i \(0.540334\pi\)
\(542\) 116.986 + 20.6277i 0.215841 + 0.0380585i
\(543\) 402.493 514.833i 0.741240 0.948127i
\(544\) −51.7803 18.8465i −0.0951844 0.0346443i
\(545\) 1143.41 + 1362.67i 2.09801 + 2.50031i
\(546\) 22.1909 + 104.562i 0.0406426 + 0.191506i
\(547\) 625.697 227.735i 1.14387 0.416335i 0.300561 0.953763i \(-0.402826\pi\)
0.843310 + 0.537428i \(0.180604\pi\)
\(548\) −318.857 184.092i −0.581855 0.335934i
\(549\) 306.727 21.2539i 0.558702 0.0387138i
\(550\) 589.433 + 1020.93i 1.07170 + 1.85623i
\(551\) −53.1330 + 63.3214i −0.0964300 + 0.114921i
\(552\) 213.455 133.288i 0.386694 0.241463i
\(553\) 117.436 + 666.011i 0.212361 + 1.20436i
\(554\) 249.592 44.0098i 0.450527 0.0794400i
\(555\) −282.063 + 530.079i −0.508221 + 0.955097i
\(556\) −372.528 312.588i −0.670014 0.562208i
\(557\) −943.861 + 544.939i −1.69454 + 0.978346i −0.743784 + 0.668420i \(0.766971\pi\)
−0.950761 + 0.309926i \(0.899696\pi\)
\(558\) 101.566 + 105.308i 0.182019 + 0.188724i
\(559\) −35.6916 + 61.8197i −0.0638490 + 0.110590i
\(560\) 98.4265 + 270.425i 0.175762 + 0.482901i
\(561\) 152.143 467.745i 0.271199 0.833770i
\(562\) 503.719 422.671i 0.896298 0.752083i
\(563\) 209.400 575.323i 0.371937 1.02189i −0.602675 0.797987i \(-0.705898\pi\)
0.974612 0.223901i \(-0.0718793\pi\)
\(564\) −13.8964 + 98.6519i −0.0246390 + 0.174915i
\(565\) 106.478 603.866i 0.188457 1.06879i
\(566\) 370.433i 0.654475i
\(567\) 660.117 + 141.184i 1.16423 + 0.249001i
\(568\) −143.809 −0.253186
\(569\) 491.784 + 86.7148i 0.864295 + 0.152399i 0.588184 0.808727i \(-0.299843\pi\)
0.276111 + 0.961126i \(0.410954\pi\)
\(570\) 279.028 + 39.3047i 0.489523 + 0.0689556i
\(571\) 284.552 + 103.569i 0.498341 + 0.181381i 0.578947 0.815365i \(-0.303464\pi\)
−0.0806069 + 0.996746i \(0.525686\pi\)
\(572\) −65.4147 77.9582i −0.114361 0.136291i
\(573\) −734.123 238.787i −1.28119 0.416732i
\(574\) 188.105 68.4645i 0.327708 0.119276i
\(575\) 1272.01 + 734.397i 2.21220 + 1.27721i
\(576\) 17.3743 + 69.8723i 0.0301637 + 0.121306i
\(577\) −18.5614 32.1493i −0.0321688 0.0557181i 0.849493 0.527600i \(-0.176908\pi\)
−0.881662 + 0.471882i \(0.843575\pi\)
\(578\) 176.456 210.292i 0.305287 0.363827i
\(579\) −203.055 108.049i −0.350700 0.186613i
\(580\) −32.2123 182.685i −0.0555385 0.314974i
\(581\) −132.399 + 23.3455i −0.227881 + 0.0401817i
\(582\) −298.175 477.516i −0.512329 0.820474i
\(583\) 971.386 + 815.090i 1.66619 + 1.39810i
\(584\) −241.252 + 139.287i −0.413102 + 0.238505i
\(585\) −194.809 + 131.222i −0.333007 + 0.224310i
\(586\) 69.4599 120.308i 0.118532 0.205304i
\(587\) −299.988 824.210i −0.511053 1.40411i −0.880141 0.474712i \(-0.842552\pi\)
0.369088 0.929394i \(-0.379670\pi\)
\(588\) −120.050 + 25.4779i −0.204167 + 0.0433297i
\(589\) −67.7464 + 56.8459i −0.115019 + 0.0965126i
\(590\) −251.377 + 690.653i −0.426063 + 1.17060i
\(591\) 576.654 + 450.825i 0.975726 + 0.762817i
\(592\) 16.1041 91.3307i 0.0272028 0.154275i
\(593\) 284.591i 0.479917i 0.970783 + 0.239958i \(0.0771338\pi\)
−0.970783 + 0.239958i \(0.922866\pi\)
\(594\) −617.960 + 176.564i −1.04034 + 0.297246i
\(595\) 700.817 1.17784
\(596\) 283.772 + 50.0367i 0.476127 + 0.0839541i
\(597\) 92.2024 + 228.416i 0.154443 + 0.382607i
\(598\) −119.149 43.3667i −0.199246 0.0725195i
\(599\) −211.516 252.075i −0.353115 0.420827i 0.560022 0.828477i \(-0.310793\pi\)
−0.913138 + 0.407651i \(0.866348\pi\)
\(600\) −312.385 + 281.094i −0.520642 + 0.468490i
\(601\) −6.64685 + 2.41926i −0.0110597 + 0.00402538i −0.347544 0.937664i \(-0.612984\pi\)
0.336484 + 0.941689i \(0.390762\pi\)
\(602\) −241.010 139.147i −0.400348 0.231141i
\(603\) −35.6158 + 336.815i −0.0590643 + 0.558566i
\(604\) −101.609 175.992i −0.168226 0.291377i
\(605\) 900.604 1073.30i 1.48860 1.77405i
\(606\) −2.23350 64.5432i −0.00368564 0.106507i
\(607\) 83.8924 + 475.778i 0.138208 + 0.783818i 0.972572 + 0.232603i \(0.0747244\pi\)
−0.834363 + 0.551215i \(0.814165\pi\)
\(608\) −42.8601 + 7.55739i −0.0704936 + 0.0124299i
\(609\) 268.460 9.28998i 0.440821 0.0152545i
\(610\) −319.500 268.092i −0.523771 0.439496i
\(611\) 43.4718 25.0984i 0.0711485 0.0410776i
\(612\) 174.366 + 18.4379i 0.284912 + 0.0301273i
\(613\) −287.932 + 498.713i −0.469710 + 0.813562i −0.999400 0.0346296i \(-0.988975\pi\)
0.529690 + 0.848191i \(0.322308\pi\)
\(614\) 238.387 + 654.963i 0.388253 + 1.06672i
\(615\) 294.226 + 326.979i 0.478417 + 0.531673i
\(616\) 303.927 255.025i 0.493389 0.414002i
\(617\) −239.991 + 659.369i −0.388964 + 1.06867i 0.578505 + 0.815679i \(0.303636\pi\)
−0.967469 + 0.252991i \(0.918586\pi\)
\(618\) −148.920 + 60.1129i −0.240971 + 0.0972700i
\(619\) 78.3389 444.282i 0.126557 0.717741i −0.853814 0.520579i \(-0.825716\pi\)
0.980371 0.197162i \(-0.0631726\pi\)
\(620\) 198.467i 0.320107i
\(621\) −556.793 + 575.485i −0.896608 + 0.926707i
\(622\) 23.9079 0.0384371
\(623\) 132.830 + 23.4216i 0.213211 + 0.0375949i
\(624\) 22.3437 28.5800i 0.0358072 0.0458013i
\(625\) −554.064 201.663i −0.886502 0.322660i
\(626\) −379.169 451.876i −0.605701 0.721847i
\(627\) −80.6498 380.017i −0.128628 0.606088i
\(628\) −581.736 + 211.735i −0.926331 + 0.337157i
\(629\) −195.587 112.922i −0.310949 0.179527i
\(630\) −511.579 759.481i −0.812030 1.20553i
\(631\) 283.716 + 491.411i 0.449630 + 0.778782i 0.998362 0.0572166i \(-0.0182226\pi\)
−0.548732 + 0.835998i \(0.684889\pi\)
\(632\) 147.535 175.825i 0.233441 0.278204i
\(633\) −146.301 + 91.3548i −0.231123 + 0.144320i
\(634\) −111.431 631.954i −0.175758 0.996773i
\(635\) −325.353 + 57.3685i −0.512367 + 0.0903441i
\(636\) −212.341 + 399.052i −0.333870 + 0.627440i
\(637\) 47.3684 + 39.7468i 0.0743616 + 0.0623968i
\(638\) −221.482 + 127.872i −0.347150 + 0.200427i
\(639\) 444.076 110.423i 0.694954 0.172806i
\(640\) 48.8345 84.5839i 0.0763039 0.132162i
\(641\) 50.9735 + 140.049i 0.0795219 + 0.218485i 0.973082 0.230459i \(-0.0740227\pi\)
−0.893560 + 0.448943i \(0.851800\pi\)
\(642\) −155.719 + 478.741i −0.242554 + 0.745702i
\(643\) −20.8996 + 17.5368i −0.0325032 + 0.0272734i −0.658895 0.752235i \(-0.728976\pi\)
0.626391 + 0.779509i \(0.284531\pi\)
\(644\) 169.069 464.513i 0.262529 0.721294i
\(645\) 85.2988 605.545i 0.132246 0.938830i
\(646\) −18.4042 + 104.375i −0.0284894 + 0.161571i
\(647\) 263.970i 0.407991i −0.978972 0.203996i \(-0.934607\pi\)
0.978972 0.203996i \(-0.0653929\pi\)
\(648\) −107.302 202.421i −0.165589 0.312378i
\(649\) 1013.28 1.56129
\(650\) 208.521 + 36.7679i 0.320801 + 0.0565659i
\(651\) 284.583 + 40.0871i 0.437147 + 0.0615778i
\(652\) 300.806 + 109.485i 0.461360 + 0.167921i
\(653\) −538.345 641.575i −0.824418 0.982503i 0.175580 0.984465i \(-0.443820\pi\)
−0.999998 + 0.00196193i \(0.999375\pi\)
\(654\) 831.346 + 270.411i 1.27117 + 0.413472i
\(655\) −1767.87 + 643.450i −2.69903 + 0.982367i
\(656\) −58.8357 33.9688i −0.0896885 0.0517817i
\(657\) 638.023 615.353i 0.971115 0.936611i
\(658\) 97.8485 + 169.479i 0.148706 + 0.257566i
\(659\) −477.726 + 569.332i −0.724926 + 0.863933i −0.995100 0.0988784i \(-0.968475\pi\)
0.270173 + 0.962812i \(0.412919\pi\)
\(660\) 769.639 + 409.536i 1.16612 + 0.620509i
\(661\) 46.6386 + 264.501i 0.0705577 + 0.400152i 0.999548 + 0.0300495i \(0.00956649\pi\)
−0.928991 + 0.370103i \(0.879322\pi\)
\(662\) −326.978 + 57.6550i −0.493924 + 0.0870922i
\(663\) −46.7920 74.9355i −0.0705762 0.113025i
\(664\) 34.9530 + 29.3290i 0.0526400 + 0.0441702i
\(665\) 479.355 276.756i 0.720835 0.416174i
\(666\) 20.3990 + 294.390i 0.0306291 + 0.442027i
\(667\) −159.321 + 275.952i −0.238862 + 0.413722i
\(668\) 170.289 + 467.864i 0.254923 + 0.700395i
\(669\) 680.800 144.484i 1.01764 0.215970i
\(670\) 351.953 295.324i 0.525303 0.440782i
\(671\) −196.664 + 540.329i −0.293090 + 0.805259i
\(672\) 111.422 + 87.1089i 0.165806 + 0.129626i
\(673\) 114.573 649.776i 0.170242 0.965492i −0.773251 0.634100i \(-0.781371\pi\)
0.943493 0.331392i \(-0.107518\pi\)
\(674\) 448.656i 0.665661i
\(675\) 748.793 1107.87i 1.10932 1.64128i
\(676\) 319.721 0.472961
\(677\) 251.116 + 44.2786i 0.370925 + 0.0654041i 0.356004 0.934485i \(-0.384139\pi\)
0.0149216 + 0.999889i \(0.495250\pi\)
\(678\) −112.800 279.444i −0.166372 0.412159i
\(679\) −1039.15 378.221i −1.53042 0.557026i
\(680\) −152.886 182.203i −0.224833 0.267945i
\(681\) −478.423 + 430.501i −0.702531 + 0.632160i
\(682\) −257.116 + 93.5824i −0.377002 + 0.137218i
\(683\) −376.413 217.322i −0.551117 0.318187i 0.198456 0.980110i \(-0.436407\pi\)
−0.749572 + 0.661923i \(0.769741\pi\)
\(684\) 126.547 56.2466i 0.185010 0.0822318i
\(685\) −794.615 1376.31i −1.16002 2.00922i
\(686\) 216.260 257.729i 0.315248 0.375698i
\(687\) 41.0246 + 1185.52i 0.0597156 + 1.72565i
\(688\) 16.4010 + 93.0147i 0.0238387 + 0.135196i
\(689\) 224.297 39.5496i 0.325540 0.0574015i
\(690\) 1085.58 37.5662i 1.57330 0.0544437i
\(691\) −1022.63 858.086i −1.47992 1.24180i −0.906266 0.422707i \(-0.861080\pi\)
−0.573657 0.819096i \(-0.694476\pi\)
\(692\) 117.049 67.5780i 0.169145 0.0976561i
\(693\) −742.693 + 1020.87i −1.07171 + 1.47312i
\(694\) 31.2112 54.0594i 0.0449729 0.0778954i
\(695\) −717.924 1972.48i −1.03298 2.83810i
\(696\) −60.9810 67.7693i −0.0876164 0.0973697i
\(697\) −126.738 + 106.346i −0.181834 + 0.152577i
\(698\) −159.881 + 439.270i −0.229056 + 0.629327i
\(699\) −266.393 + 107.532i −0.381106 + 0.153837i
\(700\) −143.343 + 812.938i −0.204775 + 1.16134i
\(701\) 1001.61i 1.42883i 0.699722 + 0.714415i \(0.253307\pi\)
−0.699722 + 0.714415i \(0.746693\pi\)
\(702\) −47.0512 + 105.410i −0.0670245 + 0.150157i
\(703\) −178.374 −0.253733
\(704\) −132.606 23.3820i −0.188361 0.0332131i
\(705\) −264.857 + 338.781i −0.375683 + 0.480540i
\(706\) 629.235 + 229.023i 0.891267 + 0.324395i
\(707\) −81.5437 97.1800i −0.115338 0.137454i
\(708\) 74.9881 + 353.340i 0.105915 + 0.499067i
\(709\) 720.055 262.078i 1.01559 0.369645i 0.220014 0.975497i \(-0.429390\pi\)
0.795578 + 0.605852i \(0.207167\pi\)
\(710\) −537.576 310.370i −0.757149 0.437140i
\(711\) −320.574 + 656.221i −0.450877 + 0.922955i
\(712\) −22.8883 39.6436i −0.0321464 0.0556792i
\(713\) −219.132 + 261.152i −0.307339 + 0.366272i
\(714\) 292.143 182.423i 0.409163 0.255494i
\(715\) −76.2782 432.595i −0.106683 0.605028i
\(716\) 463.317 81.6953i 0.647090 0.114100i
\(717\) 124.278 233.554i 0.173330 0.325738i
\(718\) −472.926 396.832i −0.658671 0.552691i
\(719\) 544.595 314.422i 0.757434 0.437305i −0.0709399 0.997481i \(-0.522600\pi\)
0.828374 + 0.560176i \(0.189267\pi\)
\(720\) −85.8514 + 298.688i −0.119238 + 0.414844i
\(721\) −157.730 + 273.196i −0.218765 + 0.378913i
\(722\) −145.982 401.082i −0.202191 0.555516i
\(723\) 357.387 1098.74i 0.494311 1.51970i
\(724\) −333.737 + 280.038i −0.460962 + 0.386793i
\(725\) 181.990 500.015i 0.251021 0.689675i
\(726\) 96.0463 681.843i 0.132295 0.939177i
\(727\) −116.145 + 658.690i −0.159759 + 0.906039i 0.794546 + 0.607204i \(0.207709\pi\)
−0.954305 + 0.298835i \(0.903402\pi\)
\(728\) 71.2606i 0.0978855i
\(729\) 486.769 + 542.676i 0.667722 + 0.744411i
\(730\) −1202.44 −1.64717
\(731\) 226.514 + 39.9406i 0.309869 + 0.0546383i
\(732\) −202.971 28.5911i −0.277283 0.0390589i
\(733\) −104.288 37.9578i −0.142276 0.0517842i 0.269901 0.962888i \(-0.413009\pi\)
−0.412177 + 0.911104i \(0.635231\pi\)
\(734\) −433.316 516.406i −0.590349 0.703550i
\(735\) −503.748 163.853i −0.685371 0.222930i
\(736\) −157.650 + 57.3800i −0.214199 + 0.0779619i
\(737\) −548.551 316.706i −0.744302 0.429723i
\(738\) 207.764 + 59.7174i 0.281523 + 0.0809179i
\(739\) −231.298 400.619i −0.312987 0.542110i 0.666020 0.745934i \(-0.267996\pi\)
−0.979008 + 0.203824i \(0.934663\pi\)
\(740\) 257.309 306.649i 0.347715 0.414390i
\(741\) −61.5979 32.7771i −0.0831280 0.0442336i
\(742\) 154.188 + 874.442i 0.207800 + 1.17849i
\(743\) 952.218 167.902i 1.28159 0.225978i 0.508932 0.860807i \(-0.330040\pi\)
0.772653 + 0.634829i \(0.218929\pi\)
\(744\) −51.6609 82.7328i −0.0694367 0.111200i
\(745\) 952.783 + 799.480i 1.27890 + 1.07313i
\(746\) 452.078 261.007i 0.606003 0.349876i
\(747\) −130.453 63.7282i −0.174636 0.0853121i
\(748\) −163.956 + 283.979i −0.219192 + 0.379652i
\(749\) 338.223 + 929.259i 0.451566 + 1.24067i
\(750\) −878.690 + 186.481i −1.17159 + 0.248642i
\(751\) −805.112 + 675.569i −1.07205 + 0.899560i −0.995237 0.0974855i \(-0.968920\pi\)
−0.0768166 + 0.997045i \(0.524476\pi\)
\(752\) 22.7160 62.4118i 0.0302075 0.0829944i
\(753\) 346.183 + 270.644i 0.459739 + 0.359421i
\(754\) −7.97648 + 45.2368i −0.0105789 + 0.0599958i
\(755\) 877.168i 1.16181i
\(756\) −410.950 183.433i −0.543585 0.242637i
\(757\) −266.724 −0.352343 −0.176172 0.984359i \(-0.556371\pi\)
−0.176172 + 0.984359i \(0.556371\pi\)
\(758\) 302.087 + 53.2662i 0.398532 + 0.0702720i
\(759\) −560.548 1388.67i −0.738535 1.82960i
\(760\) −176.526 64.2503i −0.232271 0.0845399i
\(761\) −0.229396 0.273383i −0.000301440 0.000359242i 0.765894 0.642967i \(-0.222297\pi\)
−0.766195 + 0.642608i \(0.777852\pi\)
\(762\) −120.694 + 108.604i −0.158391 + 0.142525i
\(763\) 1613.68 587.333i 2.11492 0.769768i
\(764\) 445.704 + 257.327i 0.583382 + 0.336816i
\(765\) 612.007 + 445.240i 0.800010 + 0.582013i
\(766\) 381.376 + 660.563i 0.497880 + 0.862353i