Properties

Label 54.3.f.a.23.5
Level $54$
Weight $3$
Character 54.23
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 23.5
Character \(\chi\) \(=\) 54.23
Dual form 54.3.f.a.47.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.483690 - 1.32893i) q^{2} +(0.320982 + 2.98278i) q^{3} +(-1.53209 - 1.28558i) q^{4} +(5.90332 + 1.04091i) q^{5} +(4.11915 + 1.01618i) q^{6} +(5.59840 - 4.69762i) q^{7} +(-2.44949 + 1.41421i) q^{8} +(-8.79394 + 1.91484i) q^{9} +O(q^{10})\) \(q+(0.483690 - 1.32893i) q^{2} +(0.320982 + 2.98278i) q^{3} +(-1.53209 - 1.28558i) q^{4} +(5.90332 + 1.04091i) q^{5} +(4.11915 + 1.01618i) q^{6} +(5.59840 - 4.69762i) q^{7} +(-2.44949 + 1.41421i) q^{8} +(-8.79394 + 1.91484i) q^{9} +(4.23867 - 7.34160i) q^{10} +(-20.3832 + 3.59412i) q^{11} +(3.34281 - 4.98253i) q^{12} +(6.40830 - 2.33243i) q^{13} +(-3.53490 - 9.71205i) q^{14} +(-1.20996 + 17.9424i) q^{15} +(0.694593 + 3.93923i) q^{16} +(1.96510 + 1.13455i) q^{17} +(-1.70886 + 12.6127i) q^{18} +(-12.1634 - 21.0675i) q^{19} +(-7.70624 - 9.18394i) q^{20} +(15.8089 + 15.1909i) q^{21} +(-5.08285 + 28.8263i) q^{22} +(-15.5320 + 18.5103i) q^{23} +(-5.00453 - 6.85235i) q^{24} +(10.2734 + 3.73921i) q^{25} -9.64433i q^{26} +(-8.53423 - 25.6158i) q^{27} -14.6164 q^{28} +(6.32777 - 17.3854i) q^{29} +(23.2589 + 10.2865i) q^{30} +(16.6469 + 13.9684i) q^{31} +(5.57091 + 0.982302i) q^{32} +(-17.2631 - 59.6451i) q^{33} +(2.45823 - 2.06270i) q^{34} +(37.9390 - 21.9041i) q^{35} +(15.9348 + 8.37157i) q^{36} +(22.3832 - 38.7688i) q^{37} +(-33.8805 + 5.97405i) q^{38} +(9.01408 + 18.3659i) q^{39} +(-15.9322 + 5.79885i) q^{40} +(17.5398 + 48.1902i) q^{41} +(27.8343 - 13.6612i) q^{42} +(6.41470 + 36.3796i) q^{43} +(35.8494 + 20.6977i) q^{44} +(-53.9066 + 2.15015i) q^{45} +(17.0861 + 29.5941i) q^{46} +(8.15595 + 9.71989i) q^{47} +(-11.5269 + 3.33624i) q^{48} +(0.765740 - 4.34273i) q^{49} +(9.93826 - 11.8440i) q^{50} +(-2.75335 + 6.22562i) q^{51} +(-12.8166 - 4.66486i) q^{52} -17.7730i q^{53} +(-38.1694 - 1.04871i) q^{54} -124.070 q^{55} +(-7.06980 + 19.4241i) q^{56} +(58.9356 - 43.0429i) q^{57} +(-20.0432 - 16.8183i) q^{58} +(64.9049 + 11.4445i) q^{59} +(24.9201 - 25.9339i) q^{60} +(32.3438 - 27.1396i) q^{61} +(26.6150 - 15.3662i) q^{62} +(-40.2369 + 52.0306i) q^{63} +(4.00000 - 6.92820i) q^{64} +(40.2581 - 7.09859i) q^{65} +(-87.6139 - 5.90830i) q^{66} +(-111.190 + 40.4700i) q^{67} +(-1.55216 - 4.26451i) q^{68} +(-60.1976 - 40.3870i) q^{69} +(-10.7582 - 61.0129i) q^{70} +(-46.1702 - 26.6564i) q^{71} +(18.8327 - 17.1269i) q^{72} +(33.8569 + 58.6419i) q^{73} +(-40.6944 - 48.4976i) q^{74} +(-7.85565 + 31.8434i) q^{75} +(-8.44858 + 47.9143i) q^{76} +(-97.2298 + 115.874i) q^{77} +(28.7669 - 3.09566i) q^{78} +(104.610 + 38.0750i) q^{79} +23.9776i q^{80} +(73.6668 - 33.6779i) q^{81} +72.5250 q^{82} +(8.63542 - 23.7256i) q^{83} +(-4.69160 - 43.5975i) q^{84} +(10.4196 + 8.74311i) q^{85} +(51.4485 + 9.07175i) q^{86} +(53.8879 + 13.2939i) q^{87} +(44.8457 - 37.6300i) q^{88} +(-35.4447 + 20.4640i) q^{89} +(-23.2167 + 72.6779i) q^{90} +(24.9194 - 43.1616i) q^{91} +(47.5927 - 8.39188i) q^{92} +(-36.3214 + 54.1378i) q^{93} +(16.8620 - 6.13725i) q^{94} +(-49.8747 - 137.030i) q^{95} +(-1.14183 + 16.9321i) q^{96} +(7.02010 + 39.8130i) q^{97} +(-5.40078 - 3.11814i) q^{98} +(172.367 - 70.6370i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.483690 1.32893i 0.241845 0.664463i
\(3\) 0.320982 + 2.98278i 0.106994 + 0.994260i
\(4\) −1.53209 1.28558i −0.383022 0.321394i
\(5\) 5.90332 + 1.04091i 1.18066 + 0.208183i 0.729324 0.684169i \(-0.239835\pi\)
0.451341 + 0.892352i \(0.350946\pi\)
\(6\) 4.11915 + 1.01618i 0.686525 + 0.169363i
\(7\) 5.59840 4.69762i 0.799772 0.671088i −0.148371 0.988932i \(-0.547403\pi\)
0.948143 + 0.317844i \(0.102959\pi\)
\(8\) −2.44949 + 1.41421i −0.306186 + 0.176777i
\(9\) −8.79394 + 1.91484i −0.977105 + 0.212760i
\(10\) 4.23867 7.34160i 0.423867 0.734160i
\(11\) −20.3832 + 3.59412i −1.85302 + 0.326738i −0.985369 0.170433i \(-0.945483\pi\)
−0.867653 + 0.497170i \(0.834372\pi\)
\(12\) 3.34281 4.98253i 0.278568 0.415211i
\(13\) 6.40830 2.33243i 0.492946 0.179418i −0.0835725 0.996502i \(-0.526633\pi\)
0.576519 + 0.817084i \(0.304411\pi\)
\(14\) −3.53490 9.71205i −0.252493 0.693718i
\(15\) −1.20996 + 17.9424i −0.0806639 + 1.19616i
\(16\) 0.694593 + 3.93923i 0.0434120 + 0.246202i
\(17\) 1.96510 + 1.13455i 0.115594 + 0.0667382i 0.556682 0.830725i \(-0.312074\pi\)
−0.441088 + 0.897464i \(0.645407\pi\)
\(18\) −1.70886 + 12.6127i −0.0949367 + 0.700705i
\(19\) −12.1634 21.0675i −0.640176 1.10882i −0.985393 0.170295i \(-0.945528\pi\)
0.345217 0.938523i \(-0.387805\pi\)
\(20\) −7.70624 9.18394i −0.385312 0.459197i
\(21\) 15.8089 + 15.1909i 0.752807 + 0.723378i
\(22\) −5.08285 + 28.8263i −0.231039 + 1.31028i
\(23\) −15.5320 + 18.5103i −0.675303 + 0.804795i −0.989495 0.144564i \(-0.953822\pi\)
0.314192 + 0.949359i \(0.398266\pi\)
\(24\) −5.00453 6.85235i −0.208522 0.285515i
\(25\) 10.2734 + 3.73921i 0.410935 + 0.149568i
\(26\) 9.64433i 0.370936i
\(27\) −8.53423 25.6158i −0.316083 0.948732i
\(28\) −14.6164 −0.522014
\(29\) 6.32777 17.3854i 0.218199 0.599497i −0.781503 0.623901i \(-0.785547\pi\)
0.999702 + 0.0244045i \(0.00776896\pi\)
\(30\) 23.2589 + 10.2865i 0.775297 + 0.342884i
\(31\) 16.6469 + 13.9684i 0.536998 + 0.450595i 0.870510 0.492151i \(-0.163789\pi\)
−0.333512 + 0.942746i \(0.608234\pi\)
\(32\) 5.57091 + 0.982302i 0.174091 + 0.0306970i
\(33\) −17.2631 59.6451i −0.523124 1.80743i
\(34\) 2.45823 2.06270i 0.0723009 0.0606677i
\(35\) 37.9390 21.9041i 1.08397 0.625831i
\(36\) 15.9348 + 8.37157i 0.442632 + 0.232544i
\(37\) 22.3832 38.7688i 0.604951 1.04781i −0.387109 0.922034i \(-0.626526\pi\)
0.992059 0.125771i \(-0.0401405\pi\)
\(38\) −33.8805 + 5.97405i −0.891592 + 0.157212i
\(39\) 9.01408 + 18.3659i 0.231130 + 0.470920i
\(40\) −15.9322 + 5.79885i −0.398305 + 0.144971i
\(41\) 17.5398 + 48.1902i 0.427800 + 1.17537i 0.947145 + 0.320806i \(0.103954\pi\)
−0.519345 + 0.854565i \(0.673824\pi\)
\(42\) 27.8343 13.6612i 0.662721 0.325267i
\(43\) 6.41470 + 36.3796i 0.149179 + 0.846036i 0.963916 + 0.266206i \(0.0857701\pi\)
−0.814737 + 0.579830i \(0.803119\pi\)
\(44\) 35.8494 + 20.6977i 0.814760 + 0.470402i
\(45\) −53.9066 + 2.15015i −1.19793 + 0.0477812i
\(46\) 17.0861 + 29.5941i 0.371438 + 0.643350i
\(47\) 8.15595 + 9.71989i 0.173531 + 0.206806i 0.845799 0.533502i \(-0.179124\pi\)
−0.672268 + 0.740308i \(0.734680\pi\)
\(48\) −11.5269 + 3.33624i −0.240144 + 0.0695050i
\(49\) 0.765740 4.34273i 0.0156273 0.0886271i
\(50\) 9.93826 11.8440i 0.198765 0.236879i
\(51\) −2.75335 + 6.22562i −0.0539873 + 0.122071i
\(52\) −12.8166 4.66486i −0.246473 0.0897089i
\(53\) 17.7730i 0.335339i −0.985843 0.167670i \(-0.946376\pi\)
0.985843 0.167670i \(-0.0536242\pi\)
\(54\) −38.1694 1.04871i −0.706840 0.0194206i
\(55\) −124.070 −2.25582
\(56\) −7.06980 + 19.4241i −0.126246 + 0.346859i
\(57\) 58.9356 43.0429i 1.03396 0.755139i
\(58\) −20.0432 16.8183i −0.345573 0.289970i
\(59\) 64.9049 + 11.4445i 1.10008 + 0.193974i 0.694080 0.719897i \(-0.255811\pi\)
0.406003 + 0.913872i \(0.366922\pi\)
\(60\) 24.9201 25.9339i 0.415335 0.432231i
\(61\) 32.3438 27.1396i 0.530226 0.444912i −0.337954 0.941163i \(-0.609735\pi\)
0.868179 + 0.496251i \(0.165290\pi\)
\(62\) 26.6150 15.3662i 0.429274 0.247841i
\(63\) −40.2369 + 52.0306i −0.638680 + 0.825882i
\(64\) 4.00000 6.92820i 0.0625000 0.108253i
\(65\) 40.2581 7.09859i 0.619356 0.109209i
\(66\) −87.6139 5.90830i −1.32748 0.0895197i
\(67\) −111.190 + 40.4700i −1.65956 + 0.604030i −0.990293 0.138993i \(-0.955613\pi\)
−0.669266 + 0.743023i \(0.733391\pi\)
\(68\) −1.55216 4.26451i −0.0228258 0.0627134i
\(69\) −60.1976 40.3870i −0.872429 0.585319i
\(70\) −10.7582 61.0129i −0.153689 0.871613i
\(71\) −46.1702 26.6564i −0.650284 0.375442i 0.138281 0.990393i \(-0.455842\pi\)
−0.788565 + 0.614951i \(0.789176\pi\)
\(72\) 18.8327 17.1269i 0.261565 0.237873i
\(73\) 33.8569 + 58.6419i 0.463793 + 0.803314i 0.999146 0.0413148i \(-0.0131546\pi\)
−0.535353 + 0.844629i \(0.679821\pi\)
\(74\) −40.6944 48.4976i −0.549924 0.655374i
\(75\) −7.85565 + 31.8434i −0.104742 + 0.424579i
\(76\) −8.44858 + 47.9143i −0.111165 + 0.630451i
\(77\) −97.2298 + 115.874i −1.26273 + 1.50486i
\(78\) 28.7669 3.09566i 0.368807 0.0396879i
\(79\) 104.610 + 38.0750i 1.32418 + 0.481962i 0.904795 0.425846i \(-0.140024\pi\)
0.419385 + 0.907809i \(0.362246\pi\)
\(80\) 23.9776i 0.299719i
\(81\) 73.6668 33.6779i 0.909467 0.415777i
\(82\) 72.5250 0.884452
\(83\) 8.63542 23.7256i 0.104041 0.285851i −0.876739 0.480966i \(-0.840286\pi\)
0.980780 + 0.195115i \(0.0625081\pi\)
\(84\) −4.69160 43.5975i −0.0558524 0.519017i
\(85\) 10.4196 + 8.74311i 0.122584 + 0.102860i
\(86\) 51.4485 + 9.07175i 0.598238 + 0.105486i
\(87\) 53.8879 + 13.2939i 0.619401 + 0.152804i
\(88\) 44.8457 37.6300i 0.509610 0.427614i
\(89\) −35.4447 + 20.4640i −0.398254 + 0.229932i −0.685731 0.727855i \(-0.740517\pi\)
0.287476 + 0.957788i \(0.407184\pi\)
\(90\) −23.2167 + 72.6779i −0.257963 + 0.807533i
\(91\) 24.9194 43.1616i 0.273839 0.474304i
\(92\) 47.5927 8.39188i 0.517312 0.0912161i
\(93\) −36.3214 + 54.1378i −0.390553 + 0.582127i
\(94\) 16.8620 6.13725i 0.179383 0.0652899i
\(95\) −49.8747 137.030i −0.524996 1.44242i
\(96\) −1.14183 + 16.9321i −0.0118940 + 0.176376i
\(97\) 7.02010 + 39.8130i 0.0723722 + 0.410443i 0.999374 + 0.0353855i \(0.0112659\pi\)
−0.927002 + 0.375057i \(0.877623\pi\)
\(98\) −5.40078 3.11814i −0.0551100 0.0318178i
\(99\) 172.367 70.6370i 1.74108 0.713505i
\(100\) −10.9327 18.9360i −0.109327 0.189360i
\(101\) 7.45688 + 8.88677i 0.0738305 + 0.0879878i 0.801695 0.597733i \(-0.203932\pi\)
−0.727865 + 0.685721i \(0.759487\pi\)
\(102\) 6.94163 + 6.67027i 0.0680552 + 0.0653948i
\(103\) 21.6451 122.756i 0.210147 1.19180i −0.678985 0.734152i \(-0.737580\pi\)
0.889132 0.457650i \(-0.151309\pi\)
\(104\) −12.3985 + 14.7760i −0.119216 + 0.142077i
\(105\) 77.5128 + 106.133i 0.738217 + 1.01079i
\(106\) −23.6190 8.59660i −0.222820 0.0811000i
\(107\) 142.548i 1.33223i −0.745850 0.666113i \(-0.767957\pi\)
0.745850 0.666113i \(-0.232043\pi\)
\(108\) −19.8558 + 50.2170i −0.183850 + 0.464972i
\(109\) −119.276 −1.09427 −0.547137 0.837043i \(-0.684282\pi\)
−0.547137 + 0.837043i \(0.684282\pi\)
\(110\) −60.0114 + 164.880i −0.545558 + 1.49891i
\(111\) 122.823 + 54.3200i 1.10652 + 0.489369i
\(112\) 22.3936 + 18.7905i 0.199943 + 0.167772i
\(113\) −102.092 18.0016i −0.903471 0.159306i −0.297434 0.954743i \(-0.596131\pi\)
−0.606037 + 0.795436i \(0.707242\pi\)
\(114\) −28.6943 99.1405i −0.251704 0.869653i
\(115\) −110.958 + 93.1047i −0.964851 + 0.809606i
\(116\) −32.0450 + 18.5012i −0.276250 + 0.159493i
\(117\) −51.8880 + 32.7821i −0.443487 + 0.280189i
\(118\) 46.6027 80.7183i 0.394938 0.684053i
\(119\) 16.3311 2.87961i 0.137236 0.0241984i
\(120\) −22.4106 45.6609i −0.186755 0.380508i
\(121\) 288.856 105.135i 2.38724 0.868885i
\(122\) −20.4222 56.1096i −0.167395 0.459915i
\(123\) −138.111 + 67.7855i −1.12285 + 0.551102i
\(124\) −7.54711 42.8018i −0.0608638 0.345176i
\(125\) −73.0275 42.1624i −0.584220 0.337299i
\(126\) 49.6827 + 78.6385i 0.394307 + 0.624115i
\(127\) 109.770 + 190.127i 0.864329 + 1.49706i 0.867712 + 0.497067i \(0.165590\pi\)
−0.00338367 + 0.999994i \(0.501077\pi\)
\(128\) −7.27231 8.66680i −0.0568149 0.0677094i
\(129\) −106.453 + 30.8108i −0.825219 + 0.238844i
\(130\) 10.0389 56.9336i 0.0772225 0.437951i
\(131\) 83.9745 100.077i 0.641027 0.763946i −0.343505 0.939151i \(-0.611614\pi\)
0.984532 + 0.175205i \(0.0560587\pi\)
\(132\) −50.2296 + 113.575i −0.380527 + 0.860413i
\(133\) −167.063 60.8058i −1.25611 0.457187i
\(134\) 167.339i 1.24880i
\(135\) −23.7165 160.101i −0.175678 1.18594i
\(136\) −6.41798 −0.0471911
\(137\) 26.4097 72.5602i 0.192772 0.529636i −0.805220 0.592976i \(-0.797953\pi\)
0.997992 + 0.0633396i \(0.0201751\pi\)
\(138\) −82.7882 + 60.4634i −0.599915 + 0.438140i
\(139\) −81.8517 68.6818i −0.588861 0.494113i 0.298982 0.954259i \(-0.403353\pi\)
−0.887844 + 0.460145i \(0.847797\pi\)
\(140\) −86.2852 15.2144i −0.616323 0.108674i
\(141\) −26.3744 + 27.4473i −0.187052 + 0.194662i
\(142\) −57.7564 + 48.4633i −0.406735 + 0.341291i
\(143\) −122.239 + 70.5747i −0.854818 + 0.493529i
\(144\) −13.6512 33.3113i −0.0947999 0.231329i
\(145\) 55.4516 96.0450i 0.382425 0.662379i
\(146\) 94.3070 16.6289i 0.645938 0.113896i
\(147\) 13.1992 + 0.890096i 0.0897903 + 0.00605507i
\(148\) −84.1332 + 30.6220i −0.568468 + 0.206905i
\(149\) 53.0524 + 145.760i 0.356056 + 0.978257i 0.980384 + 0.197095i \(0.0631506\pi\)
−0.624328 + 0.781162i \(0.714627\pi\)
\(150\) 38.5179 + 25.8419i 0.256786 + 0.172279i
\(151\) −26.9250 152.699i −0.178311 1.01125i −0.934252 0.356614i \(-0.883931\pi\)
0.755940 0.654641i \(-0.227180\pi\)
\(152\) 59.5880 + 34.4032i 0.392026 + 0.226337i
\(153\) −19.4534 6.21432i −0.127147 0.0406165i
\(154\) 106.959 + 185.258i 0.694538 + 1.20298i
\(155\) 83.7323 + 99.7883i 0.540208 + 0.643795i
\(156\) 9.80035 39.7264i 0.0628228 0.254657i
\(157\) −21.0948 + 119.634i −0.134362 + 0.762003i 0.840941 + 0.541128i \(0.182002\pi\)
−0.975302 + 0.220875i \(0.929109\pi\)
\(158\) 101.198 120.603i 0.640492 0.763309i
\(159\) 53.0128 5.70480i 0.333414 0.0358793i
\(160\) 31.8644 + 11.5977i 0.199153 + 0.0724856i
\(161\) 176.591i 1.09684i
\(162\) −9.12361 114.187i −0.0563186 0.704860i
\(163\) −66.9033 −0.410450 −0.205225 0.978715i \(-0.565793\pi\)
−0.205225 + 0.978715i \(0.565793\pi\)
\(164\) 35.0796 96.3804i 0.213900 0.587685i
\(165\) −39.8242 370.073i −0.241359 2.24287i
\(166\) −27.3527 22.9517i −0.164776 0.138263i
\(167\) −7.14238 1.25939i −0.0427687 0.00754128i 0.152223 0.988346i \(-0.451357\pi\)
−0.194992 + 0.980805i \(0.562468\pi\)
\(168\) −60.2071 14.8528i −0.358375 0.0884098i
\(169\) −93.8354 + 78.7373i −0.555239 + 0.465901i
\(170\) 16.6588 9.61798i 0.0979931 0.0565763i
\(171\) 147.305 + 161.976i 0.861431 + 0.947228i
\(172\) 36.9408 63.9833i 0.214772 0.371996i
\(173\) −71.4004 + 12.5898i −0.412719 + 0.0727735i −0.376153 0.926558i \(-0.622753\pi\)
−0.0365665 + 0.999331i \(0.511642\pi\)
\(174\) 43.7317 65.1829i 0.251332 0.374615i
\(175\) 75.0799 27.3268i 0.429028 0.156153i
\(176\) −28.3161 77.7979i −0.160887 0.442033i
\(177\) −13.3031 + 197.270i −0.0751586 + 1.11452i
\(178\) 10.0509 + 57.0015i 0.0564658 + 0.320233i
\(179\) 219.366 + 126.651i 1.22551 + 0.707547i 0.966087 0.258218i \(-0.0831352\pi\)
0.259420 + 0.965765i \(0.416469\pi\)
\(180\) 85.3539 + 66.0068i 0.474189 + 0.366705i
\(181\) 19.4150 + 33.6278i 0.107265 + 0.185789i 0.914662 0.404221i \(-0.132457\pi\)
−0.807396 + 0.590010i \(0.799124\pi\)
\(182\) −45.3054 53.9928i −0.248931 0.296664i
\(183\) 91.3333 + 87.7630i 0.499089 + 0.479579i
\(184\) 11.8679 67.3063i 0.0644995 0.365795i
\(185\) 172.490 205.566i 0.932379 1.11117i
\(186\) 54.3768 + 74.4544i 0.292348 + 0.400292i
\(187\) −44.1328 16.0630i −0.236004 0.0858985i
\(188\) 25.3768i 0.134983i
\(189\) −168.111 103.317i −0.889477 0.546649i
\(190\) −206.226 −1.08540
\(191\) 67.8767 186.490i 0.355375 0.976385i −0.625238 0.780434i \(-0.714998\pi\)
0.980614 0.195951i \(-0.0627795\pi\)
\(192\) 21.9492 + 9.70729i 0.114319 + 0.0505588i
\(193\) 43.6611 + 36.6360i 0.226223 + 0.189824i 0.748853 0.662736i \(-0.230605\pi\)
−0.522630 + 0.852560i \(0.675049\pi\)
\(194\) 56.3040 + 9.92792i 0.290227 + 0.0511748i
\(195\) 34.0957 + 117.803i 0.174850 + 0.604116i
\(196\) −6.75608 + 5.66903i −0.0344698 + 0.0289236i
\(197\) −64.8251 + 37.4268i −0.329061 + 0.189984i −0.655424 0.755261i \(-0.727510\pi\)
0.326363 + 0.945245i \(0.394177\pi\)
\(198\) −10.4993 263.229i −0.0530269 1.32944i
\(199\) −65.2158 + 112.957i −0.327717 + 0.567623i −0.982059 0.188576i \(-0.939613\pi\)
0.654341 + 0.756200i \(0.272946\pi\)
\(200\) −30.4526 + 5.36961i −0.152263 + 0.0268481i
\(201\) −156.403 318.666i −0.778126 1.58540i
\(202\) 15.4167 5.61121i 0.0763201 0.0277783i
\(203\) −46.2446 127.056i −0.227806 0.625891i
\(204\) 12.2219 5.99857i 0.0599112 0.0294048i
\(205\) 53.3812 + 302.740i 0.260396 + 1.47678i
\(206\) −152.664 88.1404i −0.741085 0.427866i
\(207\) 101.143 192.520i 0.488614 0.930046i
\(208\) 13.6391 + 23.6237i 0.0655728 + 0.113575i
\(209\) 323.648 + 385.708i 1.54855 + 1.84549i
\(210\) 178.535 51.6734i 0.850166 0.246064i
\(211\) 5.49032 31.1372i 0.0260205 0.147570i −0.969030 0.246945i \(-0.920573\pi\)
0.995050 + 0.0993753i \(0.0316844\pi\)
\(212\) −22.8485 + 27.2298i −0.107776 + 0.128442i
\(213\) 64.6902 146.272i 0.303710 0.686721i
\(214\) −189.436 68.9491i −0.885215 0.322192i
\(215\) 221.437i 1.02994i
\(216\) 57.1307 + 50.6763i 0.264494 + 0.234613i
\(217\) 158.815 0.731865
\(218\) −57.6925 + 158.509i −0.264644 + 0.727105i
\(219\) −164.048 + 119.811i −0.749079 + 0.547081i
\(220\) 190.086 + 159.501i 0.864029 + 0.725006i
\(221\) 15.2392 + 2.68708i 0.0689557 + 0.0121587i
\(222\) 131.596 136.949i 0.592773 0.616888i
\(223\) 78.1769 65.5982i 0.350569 0.294162i −0.450449 0.892802i \(-0.648736\pi\)
0.801019 + 0.598639i \(0.204292\pi\)
\(224\) 35.8027 20.6707i 0.159833 0.0922799i
\(225\) −97.5035 13.2105i −0.433349 0.0587133i
\(226\) −73.3037 + 126.966i −0.324353 + 0.561796i
\(227\) −253.309 + 44.6652i −1.11590 + 0.196763i −0.701039 0.713123i \(-0.747280\pi\)
−0.414859 + 0.909886i \(0.636169\pi\)
\(228\) −145.629 9.82062i −0.638726 0.0430729i
\(229\) −258.391 + 94.0468i −1.12835 + 0.410685i −0.837692 0.546143i \(-0.816095\pi\)
−0.290655 + 0.956828i \(0.593873\pi\)
\(230\) 70.0601 + 192.489i 0.304609 + 0.836907i
\(231\) −376.836 252.822i −1.63132 1.09447i
\(232\) 9.08687 + 51.5342i 0.0391675 + 0.222130i
\(233\) −223.311 128.928i −0.958414 0.553341i −0.0627296 0.998031i \(-0.519981\pi\)
−0.895685 + 0.444690i \(0.853314\pi\)
\(234\) 18.4673 + 84.8117i 0.0789202 + 0.362443i
\(235\) 38.0296 + 65.8693i 0.161828 + 0.280295i
\(236\) −84.7273 100.974i −0.359014 0.427856i
\(237\) −79.9913 + 324.251i −0.337516 + 1.36815i
\(238\) 4.07239 23.0957i 0.0171109 0.0970406i
\(239\) −80.0566 + 95.4078i −0.334965 + 0.399196i −0.907067 0.420987i \(-0.861684\pi\)
0.572102 + 0.820183i \(0.306128\pi\)
\(240\) −71.5198 + 7.69636i −0.297999 + 0.0320682i
\(241\) −61.5004 22.3843i −0.255188 0.0928809i 0.211258 0.977430i \(-0.432244\pi\)
−0.466447 + 0.884549i \(0.654466\pi\)
\(242\) 434.721i 1.79637i
\(243\) 124.100 + 208.922i 0.510698 + 0.859760i
\(244\) −84.4436 −0.346080
\(245\) 9.04081 24.8394i 0.0369013 0.101385i
\(246\) 23.2792 + 216.326i 0.0946310 + 0.879375i
\(247\) −127.085 106.637i −0.514514 0.431729i
\(248\) −60.5309 10.6732i −0.244076 0.0430372i
\(249\) 73.5401 + 18.1421i 0.295342 + 0.0728597i
\(250\) −91.3534 + 76.6546i −0.365413 + 0.306618i
\(251\) 202.528 116.930i 0.806884 0.465855i −0.0389884 0.999240i \(-0.512414\pi\)
0.845873 + 0.533385i \(0.179080\pi\)
\(252\) 128.536 27.9880i 0.510062 0.111063i
\(253\) 250.064 433.123i 0.988395 1.71195i
\(254\) 305.759 53.9135i 1.20378 0.212258i
\(255\) −22.7343 + 33.8859i −0.0891540 + 0.132886i
\(256\) −15.0351 + 5.47232i −0.0587308 + 0.0213763i
\(257\) 25.7075 + 70.6309i 0.100029 + 0.274828i 0.979606 0.200929i \(-0.0643962\pi\)
−0.879576 + 0.475758i \(0.842174\pi\)
\(258\) −10.5450 + 156.371i −0.0408721 + 0.606090i
\(259\) −56.8110 322.191i −0.219347 1.24398i
\(260\) −70.8048 40.8792i −0.272326 0.157228i
\(261\) −22.3558 + 165.003i −0.0856545 + 0.632195i
\(262\) −92.3773 160.002i −0.352585 0.610695i
\(263\) −97.3609 116.030i −0.370194 0.441180i 0.548500 0.836151i \(-0.315199\pi\)
−0.918694 + 0.394971i \(0.870755\pi\)
\(264\) 126.637 + 121.686i 0.479684 + 0.460933i
\(265\) 18.5001 104.920i 0.0698119 0.395923i
\(266\) −161.613 + 192.603i −0.607567 + 0.724070i
\(267\) −72.4166 99.1550i −0.271223 0.371367i
\(268\) 222.381 + 80.9400i 0.829780 + 0.302015i
\(269\) 170.868i 0.635198i −0.948225 0.317599i \(-0.897123\pi\)
0.948225 0.317599i \(-0.102877\pi\)
\(270\) −224.234 45.9219i −0.830498 0.170081i
\(271\) −8.46530 −0.0312373 −0.0156186 0.999878i \(-0.504972\pi\)
−0.0156186 + 0.999878i \(0.504972\pi\)
\(272\) −3.10431 + 8.52903i −0.0114129 + 0.0313567i
\(273\) 136.740 + 60.4749i 0.500880 + 0.221520i
\(274\) −83.6530 70.1932i −0.305303 0.256180i
\(275\) −222.844 39.2934i −0.810342 0.142885i
\(276\) 40.3075 + 139.265i 0.146042 + 0.504583i
\(277\) 382.880 321.274i 1.38224 1.15984i 0.413862 0.910340i \(-0.364180\pi\)
0.968376 0.249496i \(-0.0802649\pi\)
\(278\) −130.864 + 75.5542i −0.470733 + 0.271778i
\(279\) −173.140 90.9615i −0.620572 0.326027i
\(280\) −61.9541 + 107.308i −0.221265 + 0.383242i
\(281\) −68.9552 + 12.1587i −0.245392 + 0.0432693i −0.294991 0.955500i \(-0.595317\pi\)
0.0495990 + 0.998769i \(0.484206\pi\)
\(282\) 23.7185 + 48.3256i 0.0841080 + 0.171367i
\(283\) 33.6840 12.2600i 0.119025 0.0433214i −0.281821 0.959467i \(-0.590939\pi\)
0.400846 + 0.916145i \(0.368716\pi\)
\(284\) 36.4680 + 100.195i 0.128409 + 0.352800i
\(285\) 392.720 192.749i 1.37796 0.676313i
\(286\) 34.6628 + 196.583i 0.121199 + 0.687352i
\(287\) 324.574 + 187.393i 1.13092 + 0.652937i
\(288\) −50.8712 + 2.02908i −0.176636 + 0.00704542i
\(289\) −141.926 245.822i −0.491092 0.850596i
\(290\) −100.815 120.147i −0.347639 0.414300i
\(291\) −116.500 + 33.7187i −0.400343 + 0.115872i
\(292\) 23.5168 133.370i 0.0805369 0.456747i
\(293\) −21.9392 + 26.1461i −0.0748779 + 0.0892360i −0.802183 0.597078i \(-0.796328\pi\)
0.727305 + 0.686314i \(0.240773\pi\)
\(294\) 7.56718 17.1102i 0.0257387 0.0581980i
\(295\) 371.242 + 135.121i 1.25845 + 0.458037i
\(296\) 126.618i 0.427765i
\(297\) 266.021 + 491.459i 0.895695 + 1.65474i
\(298\) 219.366 0.736126
\(299\) −56.3596 + 154.847i −0.188494 + 0.517882i
\(300\) 52.9727 38.6880i 0.176576 0.128960i
\(301\) 206.809 + 173.534i 0.687074 + 0.576524i
\(302\) −215.950 38.0777i −0.715065 0.126085i
\(303\) −24.1137 + 25.0947i −0.0795833 + 0.0828209i
\(304\) 74.5414 62.5476i 0.245202 0.205749i
\(305\) 219.186 126.547i 0.718642 0.414908i
\(306\) −17.6678 + 22.8464i −0.0577379 + 0.0746614i
\(307\) −165.305 + 286.316i −0.538452 + 0.932627i 0.460535 + 0.887641i \(0.347657\pi\)
−0.998988 + 0.0449854i \(0.985676\pi\)
\(308\) 297.929 52.5330i 0.967303 0.170562i
\(309\) 373.101 + 25.1603i 1.20745 + 0.0814249i
\(310\) 173.112 63.0075i 0.558425 0.203250i
\(311\) 82.6437 + 227.062i 0.265735 + 0.730102i 0.998755 + 0.0498938i \(0.0158883\pi\)
−0.733019 + 0.680208i \(0.761889\pi\)
\(312\) −48.0532 32.2392i −0.154017 0.103331i
\(313\) −54.4006 308.521i −0.173804 0.985691i −0.939515 0.342507i \(-0.888724\pi\)
0.765712 0.643184i \(-0.222387\pi\)
\(314\) 148.782 + 85.8993i 0.473828 + 0.273565i
\(315\) −291.690 + 265.270i −0.926002 + 0.842128i
\(316\) −111.324 192.819i −0.352291 0.610186i
\(317\) −317.348 378.201i −1.00110 1.19306i −0.981147 0.193262i \(-0.938093\pi\)
−0.0199518 0.999801i \(-0.506351\pi\)
\(318\) 18.0605 73.2095i 0.0567940 0.230219i
\(319\) −66.4953 + 377.114i −0.208449 + 1.18217i
\(320\) 30.8250 36.7358i 0.0963280 0.114799i
\(321\) 425.190 45.7554i 1.32458 0.142540i
\(322\) 234.677 + 85.4154i 0.728810 + 0.265265i
\(323\) 55.1997i 0.170897i
\(324\) −156.160 43.1066i −0.481974 0.133045i
\(325\) 74.5564 0.229404
\(326\) −32.3604 + 88.9096i −0.0992651 + 0.272729i
\(327\) −38.2854 355.774i −0.117081 1.08799i
\(328\) −111.115 93.2364i −0.338765 0.284257i
\(329\) 91.3206 + 16.1023i 0.277570 + 0.0489431i
\(330\) −511.063 126.077i −1.54868 0.382052i
\(331\) 198.545 166.599i 0.599833 0.503320i −0.291559 0.956553i \(-0.594174\pi\)
0.891392 + 0.453233i \(0.149730\pi\)
\(332\) −43.7313 + 25.2483i −0.131721 + 0.0760491i
\(333\) −122.600 + 383.791i −0.368169 + 1.15252i
\(334\) −5.12833 + 8.88254i −0.0153543 + 0.0265944i
\(335\) −698.519 + 123.168i −2.08513 + 0.367665i
\(336\) −48.8599 + 72.8266i −0.145416 + 0.216746i
\(337\) −431.168 + 156.932i −1.27943 + 0.465675i −0.890244 0.455484i \(-0.849466\pi\)
−0.389187 + 0.921159i \(0.627244\pi\)
\(338\) 59.2488 + 162.785i 0.175292 + 0.481612i
\(339\) 20.9251 310.297i 0.0617259 0.915329i
\(340\) −4.72388 26.7905i −0.0138938 0.0787955i
\(341\) −389.523 224.891i −1.14230 0.659505i
\(342\) 286.504 117.411i 0.837730 0.343307i
\(343\) 162.937 + 282.216i 0.475036 + 0.822786i
\(344\) −67.1612 80.0396i −0.195236 0.232673i
\(345\) −313.326 301.078i −0.908192 0.872689i
\(346\) −17.8047 + 100.975i −0.0514587 + 0.291837i
\(347\) 173.848 207.184i 0.501002 0.597071i −0.454978 0.890503i \(-0.650353\pi\)
0.955980 + 0.293432i \(0.0947973\pi\)
\(348\) −65.4707 89.6445i −0.188134 0.257599i
\(349\) −314.152 114.342i −0.900148 0.327627i −0.149836 0.988711i \(-0.547875\pi\)
−0.750312 + 0.661084i \(0.770097\pi\)
\(350\) 112.993i 0.322838i
\(351\) −114.437 144.248i −0.326031 0.410963i
\(352\) −117.084 −0.332624
\(353\) 179.081 492.021i 0.507312 1.39383i −0.376688 0.926340i \(-0.622937\pi\)
0.884000 0.467487i \(-0.154841\pi\)
\(354\) 255.723 + 113.096i 0.722382 + 0.319482i
\(355\) −244.810 205.420i −0.689607 0.578649i
\(356\) 80.6123 + 14.2141i 0.226439 + 0.0399273i
\(357\) 13.8312 + 47.7877i 0.0387430 + 0.133859i
\(358\) 274.415 230.261i 0.766521 0.643188i
\(359\) −46.0527 + 26.5885i −0.128280 + 0.0740627i −0.562767 0.826616i \(-0.690263\pi\)
0.434487 + 0.900678i \(0.356930\pi\)
\(360\) 129.003 81.5023i 0.358342 0.226395i
\(361\) −115.394 + 199.869i −0.319652 + 0.553653i
\(362\) 54.0798 9.53572i 0.149392 0.0263418i
\(363\) 406.312 + 827.848i 1.11932 + 2.28057i
\(364\) −93.6662 + 34.0917i −0.257325 + 0.0936586i
\(365\) 138.827 + 381.424i 0.380348 + 1.04500i
\(366\) 160.807 78.9252i 0.439365 0.215643i
\(367\) 76.2686 + 432.541i 0.207816 + 1.17859i 0.892946 + 0.450164i \(0.148635\pi\)
−0.685129 + 0.728421i \(0.740254\pi\)
\(368\) −83.7047 48.3269i −0.227458 0.131323i
\(369\) −246.520 390.196i −0.668077 1.05744i
\(370\) −189.750 328.657i −0.512838 0.888261i
\(371\) −83.4906 99.5002i −0.225042 0.268195i
\(372\) 125.246 36.2500i 0.336682 0.0974462i
\(373\) −102.738 + 582.657i −0.275438 + 1.56208i 0.462131 + 0.886812i \(0.347085\pi\)
−0.737568 + 0.675272i \(0.764026\pi\)
\(374\) −42.6931 + 50.8797i −0.114153 + 0.136042i
\(375\) 102.321 231.358i 0.272855 0.616955i
\(376\) −33.7239 12.2745i −0.0896913 0.0326450i
\(377\) 126.170i 0.334668i
\(378\) −218.614 + 173.434i −0.578344 + 0.458820i
\(379\) 198.665 0.524183 0.262092 0.965043i \(-0.415588\pi\)
0.262092 + 0.965043i \(0.415588\pi\)
\(380\) −99.7493 + 274.059i −0.262498 + 0.721208i
\(381\) −531.872 + 388.446i −1.39599 + 1.01954i
\(382\) −215.000 180.406i −0.562826 0.472267i
\(383\) 31.8457 + 5.61525i 0.0831479 + 0.0146612i 0.215067 0.976599i \(-0.431003\pi\)
−0.131919 + 0.991260i \(0.542114\pi\)
\(384\) 23.5169 24.4736i 0.0612419 0.0637333i
\(385\) −694.594 + 582.833i −1.80414 + 1.51385i
\(386\) 69.8050 40.3019i 0.180842 0.104409i
\(387\) −126.071 307.637i −0.325766 0.794927i
\(388\) 40.4271 70.0219i 0.104194 0.180469i
\(389\) 215.378 37.9769i 0.553671 0.0976271i 0.110189 0.993911i \(-0.464854\pi\)
0.443482 + 0.896284i \(0.353743\pi\)
\(390\) 173.043 + 11.6692i 0.443699 + 0.0299211i
\(391\) −51.5227 + 18.7527i −0.131772 + 0.0479610i
\(392\) 4.26587 + 11.7204i 0.0108823 + 0.0298989i
\(393\) 325.462 + 218.355i 0.828147 + 0.555610i
\(394\) 18.3822 + 104.251i 0.0466553 + 0.264596i
\(395\) 577.915 + 333.659i 1.46308 + 0.844707i
\(396\) −354.891 113.368i −0.896188 0.286284i
\(397\) −264.698 458.471i −0.666746 1.15484i −0.978809 0.204777i \(-0.934353\pi\)
0.312062 0.950062i \(-0.398980\pi\)
\(398\) 118.567 + 141.303i 0.297908 + 0.355033i
\(399\) 127.746 517.828i 0.320166 1.29782i
\(400\) −7.59378 + 43.0665i −0.0189844 + 0.107666i
\(401\) −167.829 + 200.011i −0.418526 + 0.498780i −0.933576 0.358380i \(-0.883329\pi\)
0.515049 + 0.857161i \(0.327774\pi\)
\(402\) −499.135 + 53.7127i −1.24163 + 0.133614i
\(403\) 139.259 + 50.6862i 0.345556 + 0.125772i
\(404\) 23.2017i 0.0574299i
\(405\) 469.935 122.131i 1.16033 0.301557i
\(406\) −191.216 −0.470975
\(407\) −316.902 + 870.682i −0.778629 + 2.13927i
\(408\) −2.06006 19.1434i −0.00504916 0.0469202i
\(409\) 489.930 + 411.100i 1.19787 + 1.00513i 0.999688 + 0.0249695i \(0.00794888\pi\)
0.198184 + 0.980165i \(0.436496\pi\)
\(410\) 428.139 + 75.4924i 1.04424 + 0.184128i
\(411\) 224.908 + 55.4839i 0.547221 + 0.134997i
\(412\) −190.974 + 160.246i −0.463529 + 0.388947i
\(413\) 417.126 240.828i 1.00999 0.583118i
\(414\) −206.922 227.531i −0.499813 0.549593i
\(415\) 75.6740 131.071i 0.182347 0.315834i
\(416\) 37.9912 6.69888i 0.0913251 0.0161031i
\(417\) 178.590 266.191i 0.428272 0.638348i
\(418\) 669.123 243.541i 1.60077 0.582634i
\(419\) −244.237 671.034i −0.582904 1.60151i −0.783194 0.621778i \(-0.786411\pi\)
0.200290 0.979737i \(-0.435811\pi\)
\(420\) 17.6852 262.253i 0.0421077 0.624413i
\(421\) −12.1583 68.9530i −0.0288795 0.163784i 0.966957 0.254939i \(-0.0820553\pi\)
−0.995837 + 0.0911549i \(0.970944\pi\)
\(422\) −38.7234 22.3570i −0.0917616 0.0529786i
\(423\) −90.3350 69.8588i −0.213558 0.165151i
\(424\) 25.1348 + 43.5347i 0.0592801 + 0.102676i
\(425\) 15.9459 + 19.0036i 0.0375197 + 0.0447143i
\(426\) −163.094 156.719i −0.382850 0.367884i
\(427\) 53.5818 303.877i 0.125484 0.711656i
\(428\) −183.257 + 218.397i −0.428169 + 0.510272i
\(429\) −249.745 341.959i −0.582157 0.797106i
\(430\) 294.274 + 107.107i 0.684358 + 0.249086i
\(431\) 76.1177i 0.176607i 0.996094 + 0.0883036i \(0.0281446\pi\)
−0.996094 + 0.0883036i \(0.971855\pi\)
\(432\) 94.9786 51.4108i 0.219858 0.119007i
\(433\) 109.713 0.253380 0.126690 0.991942i \(-0.459565\pi\)
0.126690 + 0.991942i \(0.459565\pi\)
\(434\) 76.8170 211.053i 0.176998 0.486297i
\(435\) 304.280 + 134.571i 0.699494 + 0.309359i
\(436\) 182.741 + 153.338i 0.419131 + 0.351693i
\(437\) 578.887 + 102.073i 1.32468 + 0.233578i
\(438\) 79.8711 + 275.959i 0.182354 + 0.630044i
\(439\) 87.3258 73.2751i 0.198920 0.166914i −0.537887 0.843017i \(-0.680777\pi\)
0.736807 + 0.676103i \(0.236333\pi\)
\(440\) 303.908 175.461i 0.690701 0.398776i
\(441\) 1.58174 + 39.6559i 0.00358671 + 0.0899228i
\(442\) 10.9420 18.9521i 0.0247556 0.0428780i
\(443\) 170.087 29.9909i 0.383944 0.0676996i 0.0216549 0.999766i \(-0.493107\pi\)
0.362289 + 0.932066i \(0.381995\pi\)
\(444\) −118.344 241.122i −0.266540 0.543067i
\(445\) −230.542 + 83.9106i −0.518073 + 0.188563i
\(446\) −49.3618 135.621i −0.110677 0.304082i
\(447\) −417.742 + 205.030i −0.934545 + 0.458680i
\(448\) −10.1524 57.5773i −0.0226617 0.128521i
\(449\) 164.941 + 95.2288i 0.367352 + 0.212091i 0.672301 0.740278i \(-0.265306\pi\)
−0.304949 + 0.952369i \(0.598639\pi\)
\(450\) −64.7172 + 123.185i −0.143816 + 0.273745i
\(451\) −530.719 919.233i −1.17676 2.03821i
\(452\) 133.272 + 158.827i 0.294849 + 0.351388i
\(453\) 446.826 129.325i 0.986371 0.285486i
\(454\) −63.1661 + 358.233i −0.139132 + 0.789059i
\(455\) 192.035 228.858i 0.422054 0.502985i
\(456\) −83.4903 + 188.781i −0.183093 + 0.413993i
\(457\) −135.071 49.1618i −0.295560 0.107575i 0.189984 0.981787i \(-0.439156\pi\)
−0.485544 + 0.874212i \(0.661379\pi\)
\(458\) 388.872i 0.849066i
\(459\) 12.2918 60.0200i 0.0267794 0.130763i
\(460\) 289.690 0.629762
\(461\) 223.385 613.745i 0.484566 1.33133i −0.420974 0.907073i \(-0.638312\pi\)
0.905540 0.424261i \(-0.139466\pi\)
\(462\) −518.253 + 378.499i −1.12176 + 0.819263i
\(463\) 17.1769 + 14.4132i 0.0370992 + 0.0311299i 0.661149 0.750255i \(-0.270069\pi\)
−0.624050 + 0.781385i \(0.714514\pi\)
\(464\) 72.8804 + 12.8508i 0.157070 + 0.0276956i
\(465\) −270.770 + 281.785i −0.582301 + 0.605990i
\(466\) −279.349 + 234.402i −0.599462 + 0.503008i
\(467\) −413.326 + 238.634i −0.885065 + 0.510993i −0.872325 0.488926i \(-0.837389\pi\)
−0.0127402 + 0.999919i \(0.504055\pi\)
\(468\) 121.641 + 16.4808i 0.259916 + 0.0352154i
\(469\) −432.376 + 748.898i −0.921911 + 1.59680i
\(470\) 105.930 18.6783i 0.225383 0.0397411i
\(471\) −363.614 24.5206i −0.772004 0.0520606i
\(472\) −175.169 + 63.7563i −0.371120 + 0.135077i
\(473\) −261.505 718.478i −0.552864 1.51898i
\(474\) 392.214 + 263.139i 0.827456 + 0.555146i
\(475\) −46.1829 261.916i −0.0972272 0.551403i
\(476\) −28.7226 16.5830i −0.0603417 0.0348383i
\(477\) 34.0323 + 156.294i 0.0713466 + 0.327661i
\(478\) 88.0673 + 152.537i 0.184241 + 0.319115i
\(479\) 383.849 + 457.454i 0.801356 + 0.955019i 0.999685 0.0251168i \(-0.00799577\pi\)
−0.198329 + 0.980136i \(0.563551\pi\)
\(480\) −24.3655 + 98.7671i −0.0507614 + 0.205765i
\(481\) 53.0126 300.649i 0.110213 0.625051i
\(482\) −59.4942 + 70.9024i −0.123432 + 0.147100i
\(483\) −526.733 + 56.6826i −1.09054 + 0.117355i
\(484\) −577.712 210.270i −1.19362 0.434442i
\(485\) 242.336i 0.499662i
\(486\) 337.667 63.8658i 0.694789 0.131411i
\(487\) 758.948 1.55842 0.779208 0.626766i \(-0.215622\pi\)
0.779208 + 0.626766i \(0.215622\pi\)
\(488\) −40.8445 + 112.219i −0.0836977 + 0.229957i
\(489\) −21.4748 199.558i −0.0439157 0.408094i
\(490\) −28.6368 24.0291i −0.0584425 0.0490391i
\(491\) 258.651 + 45.6071i 0.526783 + 0.0928861i 0.430714 0.902489i \(-0.358262\pi\)
0.0960694 + 0.995375i \(0.469373\pi\)
\(492\) 298.741 + 73.6983i 0.607198 + 0.149793i
\(493\) 32.1593 26.9849i 0.0652319 0.0547360i
\(494\) −203.182 + 117.307i −0.411300 + 0.237464i
\(495\) 1091.06 237.574i 2.20417 0.479947i
\(496\) −43.4621 + 75.2785i −0.0876252 + 0.151771i
\(497\) −383.701 + 67.6568i −0.772033 + 0.136130i
\(498\) 59.6800 88.9543i 0.119839 0.178623i
\(499\) 85.4398 31.0975i 0.171222 0.0623197i −0.254987 0.966945i \(-0.582071\pi\)
0.426209 + 0.904625i \(0.359849\pi\)
\(500\) 57.6816 + 158.479i 0.115363 + 0.316958i
\(501\) 1.46392 21.7084i 0.00292199 0.0433301i
\(502\) −57.4301 325.702i −0.114403 0.648809i
\(503\) −368.263 212.617i −0.732134 0.422698i 0.0870685 0.996202i \(-0.472250\pi\)
−0.819202 + 0.573505i \(0.805583\pi\)
\(504\) 24.9774 184.352i 0.0495583 0.365778i
\(505\) 34.7700 + 60.2234i 0.0688515 + 0.119254i
\(506\) −454.636 541.814i −0.898490 1.07078i
\(507\) −264.975 254.617i −0.522634 0.502203i
\(508\) 76.2453 432.408i 0.150089 0.851198i
\(509\) −434.422 + 517.724i −0.853481 + 1.01714i 0.146130 + 0.989265i \(0.453318\pi\)
−0.999611 + 0.0278737i \(0.991126\pi\)
\(510\) 34.0355 + 46.6024i 0.0667362 + 0.0913772i
\(511\) 465.022 + 169.254i 0.910023 + 0.331221i
\(512\) 22.6274i 0.0441942i
\(513\) −435.856 + 491.369i −0.849622 + 0.957834i
\(514\) 106.298 0.206805
\(515\) 255.556 702.135i 0.496226 1.36337i
\(516\) 202.705 + 89.6487i 0.392840 + 0.173738i
\(517\) −201.179 168.809i −0.389128 0.326517i
\(518\) −455.647 80.3428i −0.879627 0.155102i
\(519\) −60.4709 208.931i −0.116514 0.402564i
\(520\) −88.5729 + 74.3215i −0.170333 + 0.142926i
\(521\) −677.597 + 391.211i −1.30057 + 0.750885i −0.980502 0.196509i \(-0.937039\pi\)
−0.320069 + 0.947394i \(0.603706\pi\)
\(522\) 208.463 + 109.519i 0.399355 + 0.209807i
\(523\) −342.909 + 593.936i −0.655658 + 1.13563i 0.326071 + 0.945345i \(0.394275\pi\)
−0.981729 + 0.190287i \(0.939058\pi\)
\(524\) −257.313 + 45.3712i −0.491055 + 0.0865863i
\(525\) 105.609 + 215.175i 0.201160 + 0.409858i
\(526\) −201.288 + 73.2629i −0.382677 + 0.139283i
\(527\) 16.8650 + 46.3362i 0.0320019 + 0.0879244i
\(528\) 222.965 109.432i 0.422282 0.207258i
\(529\) −9.52859 54.0393i −0.0180124 0.102154i
\(530\) −130.482 75.3338i −0.246192 0.142139i
\(531\) −592.684 + 23.6402i −1.11617 + 0.0445201i
\(532\) 177.784 + 307.931i 0.334181 + 0.578819i
\(533\) 224.801 + 267.907i 0.421765 + 0.502640i
\(534\) −166.797 + 48.2761i −0.312354 + 0.0904047i
\(535\) 148.381 841.508i 0.277347 1.57291i
\(536\) 215.127 256.378i 0.401356 0.478317i
\(537\) −307.359 + 694.972i −0.572363 + 1.29418i
\(538\) −227.071 82.6472i −0.422066 0.153619i
\(539\) 91.2710i 0.169334i
\(540\) −169.487 + 275.779i −0.313864 + 0.510702i
\(541\) 884.789 1.63547 0.817735 0.575595i \(-0.195229\pi\)
0.817735 + 0.575595i \(0.195229\pi\)
\(542\) −4.09458 + 11.2498i −0.00755457 + 0.0207560i
\(543\) −94.0725 + 68.7047i −0.173246 + 0.126528i
\(544\) 9.83292 + 8.25080i 0.0180752 + 0.0151669i
\(545\) −704.124 124.156i −1.29197 0.227809i
\(546\) 146.507 152.467i 0.268327 0.279243i
\(547\) 263.600 221.186i 0.481901 0.404363i −0.369212 0.929345i \(-0.620373\pi\)
0.851113 + 0.524982i \(0.175928\pi\)
\(548\) −133.744 + 77.2169i −0.244058 + 0.140907i
\(549\) −232.461 + 300.597i −0.423427 + 0.547536i
\(550\) −160.005 + 277.137i −0.290919 + 0.503886i
\(551\) −443.235 + 78.1542i −0.804419 + 0.141841i
\(552\) 204.569 + 13.7953i 0.370596 + 0.0249914i
\(553\) 764.512 278.260i 1.38248 0.503182i
\(554\) −241.755 664.216i −0.436381 1.19895i
\(555\) 668.523 + 448.517i 1.20455 + 0.808139i
\(556\) 37.1086 + 210.453i 0.0667420 + 0.378513i
\(557\) −274.575 158.526i −0.492953 0.284606i 0.232846 0.972514i \(-0.425196\pi\)
−0.725799 + 0.687907i \(0.758530\pi\)
\(558\) −204.627 + 186.093i −0.366715 + 0.333499i
\(559\) 125.960 + 218.169i 0.225331 + 0.390285i
\(560\) 112.637 + 134.236i 0.201138 + 0.239707i
\(561\) 33.7466 136.794i 0.0601544 0.243840i
\(562\) −17.1950 + 97.5174i −0.0305960 + 0.173519i
\(563\) 130.488 155.510i 0.231773 0.276216i −0.637605 0.770363i \(-0.720075\pi\)
0.869379 + 0.494147i \(0.164519\pi\)
\(564\) 75.6935 8.14550i 0.134208 0.0144424i
\(565\) −583.945 212.539i −1.03353 0.376174i
\(566\) 50.6935i 0.0895646i
\(567\) 254.210 534.601i 0.448343 0.942859i
\(568\) 150.791 0.265477
\(569\) −80.4994 + 221.170i −0.141475 + 0.388700i −0.990113 0.140275i \(-0.955201\pi\)
0.848637 + 0.528975i \(0.177424\pi\)
\(570\) −66.1948 615.126i −0.116131 1.07917i
\(571\) 50.2848 + 42.1940i 0.0880645 + 0.0738949i 0.685757 0.727830i \(-0.259471\pi\)
−0.597693 + 0.801725i \(0.703916\pi\)
\(572\) 278.010 + 49.0207i 0.486031 + 0.0857005i
\(573\) 578.044 + 142.601i 1.00880 + 0.248868i
\(574\) 406.024 340.695i 0.707359 0.593545i
\(575\) −228.780 + 132.086i −0.397878 + 0.229715i
\(576\) −21.9094 + 68.5856i −0.0380371 + 0.119072i
\(577\) 72.1281 124.930i 0.125005 0.216516i −0.796730 0.604336i \(-0.793439\pi\)
0.921735 + 0.387820i \(0.126772\pi\)
\(578\) −395.328 + 69.7069i −0.683958 + 0.120600i
\(579\) −95.2627 + 141.991i −0.164530 + 0.245235i
\(580\) −208.430 + 75.8622i −0.359362 + 0.130797i
\(581\) −63.1094 173.392i −0.108622 0.298436i
\(582\) −11.5402 + 171.129i −0.0198285 + 0.294036i
\(583\) 63.8781 + 362.271i 0.109568 + 0.621391i
\(584\) −165.864 95.7618i −0.284014 0.163976i
\(585\) −340.435 + 139.512i −0.581940 + 0.238483i
\(586\) 24.1345 + 41.8022i 0.0411852 + 0.0713348i
\(587\) 364.747 + 434.688i 0.621375 + 0.740526i 0.981306 0.192453i \(-0.0616444\pi\)
−0.359931 + 0.932979i \(0.617200\pi\)
\(588\) −19.0780 18.3322i −0.0324456 0.0311773i
\(589\) 91.7982 520.613i 0.155854 0.883894i
\(590\) 359.132 427.996i 0.608698 0.725418i
\(591\) −132.443 181.346i −0.224101 0.306845i
\(592\) 168.266 + 61.2440i 0.284234 + 0.103453i
\(593\) 174.635i 0.294494i 0.989100 + 0.147247i \(0.0470412\pi\)
−0.989100 + 0.147247i \(0.952959\pi\)
\(594\) 781.785 115.809i 1.31614 0.194965i
\(595\) 99.4051 0.167067
\(596\) 106.105 291.521i 0.178028 0.489128i
\(597\) −357.859 158.267i −0.599429 0.265104i
\(598\) 178.519 + 149.796i 0.298527 + 0.250494i
\(599\) −424.905 74.9222i −0.709357 0.125079i −0.192683 0.981261i \(-0.561719\pi\)
−0.516674 + 0.856182i \(0.672830\pi\)
\(600\) −25.7911 89.1098i −0.0429852 0.148516i
\(601\) −636.447 + 534.042i −1.05898 + 0.888589i −0.994009 0.109298i \(-0.965140\pi\)
−0.0649703 + 0.997887i \(0.520695\pi\)
\(602\) 330.645 190.898i 0.549244 0.317106i
\(603\) 900.309 568.802i 1.49305 0.943288i
\(604\) −155.055 + 268.563i −0.256714 + 0.444641i
\(605\) 1814.65 319.971i 2.99942 0.528878i
\(606\) 21.6855 + 44.1834i 0.0357846 + 0.0729099i
\(607\) 352.792 128.406i 0.581205 0.211541i −0.0346516 0.999399i \(-0.511032\pi\)
0.615857 + 0.787858i \(0.288810\pi\)
\(608\) −47.0663 129.314i −0.0774117 0.212687i
\(609\) 364.136 178.720i 0.597925 0.293465i
\(610\) −62.1537 352.491i −0.101891 0.577854i
\(611\) 74.9368 + 43.2648i 0.122646 + 0.0708098i
\(612\) 21.8154 + 34.5298i 0.0356461 + 0.0564212i
\(613\) 192.466 + 333.361i 0.313974 + 0.543820i 0.979219 0.202806i \(-0.0650060\pi\)
−0.665245 + 0.746626i \(0.731673\pi\)
\(614\) 300.537 + 358.166i 0.489474 + 0.583333i
\(615\) −885.871 + 256.398i −1.44044 + 0.416908i
\(616\) 74.2929 421.336i 0.120605 0.683987i
\(617\) −106.165 + 126.523i −0.172066 + 0.205061i −0.845185 0.534474i \(-0.820510\pi\)
0.673119 + 0.739534i \(0.264954\pi\)
\(618\) 213.901 483.653i 0.346118 0.782610i
\(619\) −449.740 163.692i −0.726560 0.264446i −0.0478519 0.998854i \(-0.515238\pi\)
−0.678708 + 0.734408i \(0.737460\pi\)
\(620\) 260.529i 0.420208i
\(621\) 606.708 + 239.892i 0.976986 + 0.386300i
\(622\) 341.722 0.549392
\(623\) −102.301 + 281.071i −0.164208 + 0.451157i
\(624\) −66.0863 + 48.2653i −0.105908 + 0.0773483i
\(625\) −596.591 500.599i −0.954545 0.800958i
\(626\) −436.315 76.9341i −0.696989 0.122898i
\(627\) −1046.60 + 1089.18i −1.66922 + 1.73712i
\(628\) 186.118 156.172i 0.296366 0.248681i
\(629\) 87.9703 50.7897i 0.139857 0.0807467i
\(630\) 211.437 + 515.943i 0.335614 + 0.818958i
\(631\) 124.618 215.844i 0.197493 0.342067i −0.750222 0.661186i \(-0.770053\pi\)
0.947715 + 0.319119i \(0.103387\pi\)
\(632\) −310.088 + 54.6769i −0.490645 + 0.0865140i
\(633\) 94.6376 + 6.38195i 0.149506 + 0.0100821i
\(634\) −656.099 + 238.801i −1.03486 + 0.376657i
\(635\) 450.100 + 1236.64i 0.708819 + 1.94746i
\(636\) −88.5543 59.4117i −0.139236 0.0934147i
\(637\) −5.22202 29.6155i −0.00819783 0.0464922i
\(638\) 468.993 + 270.773i 0.735099 + 0.424410i
\(639\) 457.060 + 146.006i 0.715274 + 0.228492i
\(640\) −33.9094 58.7328i −0.0529834 0.0917700i
\(641\) 144.405 + 172.096i 0.225282 + 0.268480i 0.866832 0.498601i \(-0.166153\pi\)
−0.641550 + 0.767081i \(0.721708\pi\)
\(642\) 144.854 587.177i 0.225630 0.914607i
\(643\) −63.2329 + 358.612i −0.0983404 + 0.557716i 0.895332 + 0.445399i \(0.146938\pi\)
−0.993672 + 0.112317i \(0.964173\pi\)
\(644\) 227.021 270.554i 0.352518 0.420114i
\(645\) −660.499 + 71.0774i −1.02403 + 0.110198i
\(646\) −73.3564 26.6995i −0.113555 0.0413305i
\(647\) 1200.78i 1.85593i −0.372671 0.927964i \(-0.621558\pi\)
0.372671 0.927964i \(-0.378442\pi\)
\(648\) −132.818 + 186.674i −0.204967 + 0.288078i
\(649\) −1364.11 −2.10186
\(650\) 36.0621 99.0799i 0.0554802 0.152431i
\(651\) 50.9767 + 473.709i 0.0783052 + 0.727664i
\(652\) 102.502 + 86.0092i 0.157211 + 0.131916i
\(653\) 626.194 + 110.415i 0.958949 + 0.169089i 0.631152 0.775659i \(-0.282583\pi\)
0.327797 + 0.944748i \(0.393694\pi\)
\(654\) −491.315 121.205i −0.751246 0.185329i
\(655\) 599.900 503.376i 0.915878 0.768513i
\(656\) −177.649 + 102.566i −0.270807 + 0.156350i
\(657\) −410.025 450.863i −0.624087 0.686245i
\(658\) 65.5696 113.570i 0.0996498 0.172599i
\(659\) 1147.84 202.395i 1.74179 0.307125i 0.789825 0.613332i \(-0.210171\pi\)
0.951965 + 0.306207i \(0.0990600\pi\)
\(660\) −414.743 + 618.182i −0.628398 + 0.936640i
\(661\) 904.893 329.354i 1.36898 0.498266i 0.450158 0.892949i \(-0.351368\pi\)
0.918818 + 0.394683i \(0.129145\pi\)
\(662\) −125.363 344.433i −0.189371 0.520292i
\(663\) −3.12346 + 46.3177i −0.00471111 + 0.0698608i
\(664\) 12.4007 + 70.3280i 0.0186758 + 0.105916i
\(665\) −922.931 532.854i −1.38787 0.801285i
\(666\) 450.729 + 348.562i 0.676770 + 0.523367i
\(667\) 223.526 + 387.159i 0.335122 + 0.580448i
\(668\) 9.32371 + 11.1116i 0.0139577 + 0.0166341i
\(669\) 220.758 + 212.129i 0.329983 + 0.317083i
\(670\) −174.185 + 987.855i −0.259978 + 1.47441i
\(671\) −561.728 + 669.441i −0.837150 + 0.997677i
\(672\) 73.1481 + 100.157i 0.108851 + 0.149043i
\(673\) 612.694 + 223.002i 0.910392 + 0.331355i 0.754409 0.656404i \(-0.227923\pi\)
0.155982 + 0.987760i \(0.450146\pi\)
\(674\) 648.897i 0.962755i
\(675\) 8.10715 295.072i 0.0120106 0.437143i
\(676\) 244.987 0.362407
\(677\) −258.040 + 708.958i −0.381152 + 1.04721i 0.589720 + 0.807608i \(0.299238\pi\)
−0.970872 + 0.239598i \(0.922984\pi\)
\(678\) −402.240 177.895i −0.593274 0.262382i
\(679\) 226.327 + 189.911i 0.333325 + 0.279693i
\(680\) −37.8874 6.68058i −0.0557168 0.00982438i
\(681\) −214.534 741.228i −0.315028 1.08844i
\(682\) −487.272 + 408.870i −0.714475 + 0.599516i
\(683\) −405.766 + 234.269i −0.594094 + 0.343000i −0.766715 0.641988i \(-0.778110\pi\)
0.172621 + 0.984988i \(0.444776\pi\)
\(684\) −17.4517 437.533i −0.0255142 0.639668i
\(685\) 231.434 400.856i 0.337860 0.585191i
\(686\) 453.855 80.0268i 0.661596 0.116657i
\(687\) −363.460 740.537i −0.529053 1.07793i
\(688\) −138.852 + 50.5380i −0.201820 + 0.0734563i
\(689\) −41.4542 113.895i −0.0601658 0.165304i
\(690\) −551.663 + 270.759i −0.799511 + 0.392405i
\(691\) 37.3428 + 211.781i 0.0540416 + 0.306485i 0.999833 0.0182903i \(-0.00582232\pi\)
−0.945791 + 0.324776i \(0.894711\pi\)
\(692\) 125.577 + 72.5019i 0.181470 + 0.104772i
\(693\) 633.154 1205.17i 0.913642 1.73906i
\(694\) −191.243 331.243i −0.275567 0.477296i
\(695\) −411.705 490.651i −0.592382 0.705973i
\(696\) −150.798 + 43.6457i −0.216664 + 0.0627093i
\(697\) −20.2068 + 114.598i −0.0289911 + 0.164416i
\(698\) −303.904 + 362.178i −0.435392 + 0.518880i
\(699\) 312.886 707.470i 0.447620 1.01212i
\(700\) −150.160 54.6537i −0.214514 0.0780767i
\(701\) 848.227i 1.21002i 0.796216 + 0.605012i \(0.206832\pi\)
−0.796216 + 0.605012i \(0.793168\pi\)
\(702\) −247.047 + 82.3070i −0.351919 + 0.117246i
\(703\) −1089.02 −1.54910
\(704\) −56.6322 + 155.596i −0.0804435 + 0.221017i
\(705\) −184.267 + 134.577i −0.261371 + 0.190889i
\(706\) −567.240 475.971i −0.803456 0.674180i
\(707\) 83.4932 + 14.7221i 0.118095 + 0.0208234i
\(708\) 273.988 285.134i 0.386988 0.402731i
\(709\) −63.9344 + 53.6473i −0.0901754 + 0.0756662i −0.686761 0.726883i \(-0.740968\pi\)
0.596586 + 0.802549i \(0.296524\pi\)
\(710\) −391.401 + 225.975i −0.551268 + 0.318275i
\(711\) −992.844 134.518i −1.39640 0.189195i
\(712\) 57.8809 100.253i 0.0812934 0.140804i
\(713\) −517.120 + 91.1822i −0.725273 + 0.127885i
\(714\) 70.1964 + 4.73374i 0.0983143 + 0.00662989i
\(715\) −795.078 + 289.385i −1.11200 + 0.404734i
\(716\) −173.269 476.052i −0.241995 0.664876i
\(717\) −310.277 208.167i −0.432744 0.290331i
\(718\) 13.0590 + 74.0612i 0.0181880 + 0.103149i
\(719\) 1032.07 + 595.867i 1.43543 + 0.828744i 0.997527 0.0702802i \(-0.0223893\pi\)
0.437899 + 0.899024i \(0.355723\pi\)
\(720\) −45.9131 210.857i −0.0637682 0.292857i
\(721\) −455.481 788.916i −0.631735 1.09420i
\(722\) 209.796 + 250.025i 0.290576 + 0.346295i
\(723\) 47.0269 190.627i 0.0650441 0.263661i
\(724\) 13.4855 76.4803i 0.0186264 0.105636i
\(725\) 130.015 154.946i 0.179331 0.213719i
\(726\) 1296.68 139.538i 1.78606 0.192201i
\(727\) −633.829 230.695i −0.871842 0.317325i −0.132929 0.991126i \(-0.542438\pi\)
−0.738913 + 0.673801i \(0.764661\pi\)
\(728\) 140.965i 0.193634i
\(729\) −583.334 + 437.222i −0.800184 + 0.599755i
\(730\) 574.034 0.786348
\(731\) −28.6689 + 78.7672i −0.0392188 + 0.107753i
\(732\) −27.1049 251.876i −0.0370285 0.344094i
\(733\) −149.604 125.532i −0.204098 0.171259i 0.535010 0.844846i \(-0.320308\pi\)
−0.739107 + 0.673588i \(0.764752\pi\)
\(734\) 611.705 + 107.860i 0.833386 + 0.146948i
\(735\) 76.9925 + 18.9937i 0.104752 + 0.0258418i
\(736\) −104.710 + 87.8621i −0.142269 + 0.119378i
\(737\) 2120.97 1224.54i 2.87784 1.66152i
\(738\) −637.781 + 138.874i −0.864202 + 0.188176i
\(739\) −718.905 + 1245.18i −0.972807 + 1.68495i −0.285818 + 0.958284i \(0.592265\pi\)
−0.686989 + 0.726668i \(0.741068\pi\)
\(740\) −528.540 + 93.1959i −0.714244 + 0.125940i
\(741\) 277.283 413.295i 0.374201 0.557753i
\(742\) −172.612 + 62.8256i −0.232631 + 0.0846707i
\(743\) −342.663 941.458i −0.461188 1.26710i −0.924593 0.380957i \(-0.875595\pi\)
0.463405 0.886147i \(-0.346628\pi\)
\(744\) 12.4066 183.976i 0.0166755 0.247280i
\(745\) 161.461 + 915.693i 0.216727 + 1.22912i
\(746\) 724.615 + 418.357i 0.971334 + 0.560800i
\(747\) −30.5087 + 225.177i −0.0408416 + 0.301442i
\(748\) 46.9651 + 81.3460i 0.0627876 + 0.108751i
\(749\) −669.637 798.043i −0.894042 1.06548i
\(750\) −257.966 247.882i −0.343955 0.330510i
\(751\) −129.904 + 736.724i −0.172975 + 0.980990i 0.767480 + 0.641073i \(0.221510\pi\)
−0.940455 + 0.339918i \(0.889601\pi\)
\(752\) −32.6238 + 38.8795i −0.0433827 + 0.0517015i
\(753\) 413.783 + 566.564i 0.549512 + 0.752409i
\(754\) −167.671 61.0271i −0.222375 0.0809378i
\(755\) 929.460i 1.23107i
\(756\) 124.740 + 374.410i 0.165000 + 0.495251i
\(757\) 788.946 1.04220 0.521100 0.853496i \(-0.325522\pi\)
0.521100 + 0.853496i \(0.325522\pi\)
\(758\) 96.0924 264.012i 0.126771 0.348300i
\(759\) 1372.18 + 606.861i 1.80788 + 0.799553i
\(760\) 315.956 + 265.119i 0.415732 + 0.348841i
\(761\) 512.126 + 90.3016i 0.672965 + 0.118662i 0.499680 0.866210i \(-0.333451\pi\)
0.173284 + 0.984872i \(0.444562\pi\)
\(762\) 258.955 + 894.706i 0.339836 + 1.17415i
\(763\) −667.754 + 560.312i −0.875170 + 0.734354i
\(764\) −343.739 + 198.458i −0.449921 + 0.259762i
\(765\) −108.371 56.9345i −0.141662 0.0744242i
\(766\) 22.8657 39.6045i 0.0298507 0.0517030i