Properties

Label 54.3.f.a.23.1
Level $54$
Weight $3$
Character 54.23
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 23.1
Character \(\chi\) \(=\) 54.23
Dual form 54.3.f.a.47.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.483690 + 1.32893i) q^{2} +(-2.93655 - 0.613727i) q^{3} +(-1.53209 - 1.28558i) q^{4} +(-7.71206 - 1.35984i) q^{5} +(2.23598 - 3.60561i) q^{6} +(-0.690206 + 0.579152i) q^{7} +(2.44949 - 1.41421i) q^{8} +(8.24668 + 3.60448i) q^{9} +O(q^{10})\) \(q+(-0.483690 + 1.32893i) q^{2} +(-2.93655 - 0.613727i) q^{3} +(-1.53209 - 1.28558i) q^{4} +(-7.71206 - 1.35984i) q^{5} +(2.23598 - 3.60561i) q^{6} +(-0.690206 + 0.579152i) q^{7} +(2.44949 - 1.41421i) q^{8} +(8.24668 + 3.60448i) q^{9} +(5.53738 - 9.59102i) q^{10} +(-15.2420 + 2.68757i) q^{11} +(3.71007 + 4.71544i) q^{12} +(-0.854187 + 0.310899i) q^{13} +(-0.435804 - 1.19736i) q^{14} +(21.8123 + 8.72635i) q^{15} +(0.694593 + 3.93923i) q^{16} +(10.6672 + 6.15869i) q^{17} +(-8.77892 + 9.21578i) q^{18} +(-5.40619 - 9.36379i) q^{19} +(10.0674 + 11.9978i) q^{20} +(2.38227 - 1.27711i) q^{21} +(3.80080 - 21.5554i) q^{22} +(-21.0966 + 25.1419i) q^{23} +(-8.06100 + 2.64959i) q^{24} +(34.1344 + 12.4239i) q^{25} -1.28553i q^{26} +(-22.0046 - 15.6460i) q^{27} +1.80200 q^{28} +(19.3495 - 53.1622i) q^{29} +(-22.1471 + 24.7661i) q^{30} +(-37.9518 - 31.8453i) q^{31} +(-5.57091 - 0.982302i) q^{32} +(46.4083 + 1.46222i) q^{33} +(-13.3440 + 11.1970i) q^{34} +(6.11047 - 3.52788i) q^{35} +(-8.00081 - 16.1241i) q^{36} +(-17.4417 + 30.2099i) q^{37} +(15.0587 - 2.65526i) q^{38} +(2.69917 - 0.388733i) q^{39} +(-20.8137 + 7.57558i) q^{40} +(-12.2490 - 33.6538i) q^{41} +(0.544909 + 3.78358i) q^{42} +(7.20864 + 40.8822i) q^{43} +(26.8072 + 15.4771i) q^{44} +(-58.6974 - 39.0122i) q^{45} +(-23.2075 - 40.1966i) q^{46} +(-15.9152 - 18.9670i) q^{47} +(0.377904 - 11.9940i) q^{48} +(-8.36779 + 47.4561i) q^{49} +(-33.0209 + 39.3528i) q^{50} +(-27.5449 - 24.6320i) q^{51} +(1.70837 + 0.621797i) q^{52} +50.3340i q^{53} +(31.4357 - 21.6747i) q^{54} +121.202 q^{55} +(-0.871609 + 2.39472i) q^{56} +(10.1287 + 30.8152i) q^{57} +(61.2895 + 51.4280i) q^{58} +(65.7126 + 11.5869i) q^{59} +(-22.2000 - 41.4109i) q^{60} +(-18.7893 + 15.7661i) q^{61} +(60.6770 - 35.0319i) q^{62} +(-7.77945 + 2.28824i) q^{63} +(4.00000 - 6.92820i) q^{64} +(7.01032 - 1.23611i) q^{65} +(-24.3904 + 60.9660i) q^{66} +(-61.2882 + 22.3071i) q^{67} +(-8.42558 - 23.1491i) q^{68} +(77.3814 - 60.8830i) q^{69} +(1.73272 + 9.82676i) q^{70} +(24.4496 + 14.1160i) q^{71} +(25.2977 - 2.83342i) q^{72} +(-10.7760 - 18.6646i) q^{73} +(-31.7104 - 37.7910i) q^{74} +(-92.6126 - 57.4327i) q^{75} +(-3.75510 + 21.2962i) q^{76} +(8.96360 - 10.6824i) q^{77} +(-0.788964 + 3.77503i) q^{78} +(-27.2240 - 9.90872i) q^{79} -31.3241i q^{80} +(55.0154 + 59.4500i) q^{81} +50.6481 q^{82} +(-0.0509121 + 0.139880i) q^{83} +(-5.29167 - 1.10594i) q^{84} +(-73.8910 - 62.0019i) q^{85} +(-57.8162 - 10.1946i) q^{86} +(-89.4477 + 144.238i) q^{87} +(-33.5343 + 28.1386i) q^{88} +(-79.3008 + 45.7843i) q^{89} +(80.2356 - 59.1347i) q^{90} +(0.409508 - 0.709288i) q^{91} +(64.6436 - 11.3984i) q^{92} +(91.9031 + 116.807i) q^{93} +(32.9038 - 11.9760i) q^{94} +(28.9595 + 79.5657i) q^{95} +(15.7564 + 6.30360i) q^{96} +(-17.4501 - 98.9646i) q^{97} +(-59.0182 - 34.0742i) q^{98} +(-135.383 - 32.7759i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.483690 + 1.32893i −0.241845 + 0.664463i
\(3\) −2.93655 0.613727i −0.978851 0.204576i
\(4\) −1.53209 1.28558i −0.383022 0.321394i
\(5\) −7.71206 1.35984i −1.54241 0.271969i −0.663216 0.748428i \(-0.730809\pi\)
−0.879197 + 0.476459i \(0.841920\pi\)
\(6\) 2.23598 3.60561i 0.372663 0.600935i
\(7\) −0.690206 + 0.579152i −0.0986009 + 0.0827360i −0.690756 0.723088i \(-0.742722\pi\)
0.592155 + 0.805824i \(0.298277\pi\)
\(8\) 2.44949 1.41421i 0.306186 0.176777i
\(9\) 8.24668 + 3.60448i 0.916298 + 0.400498i
\(10\) 5.53738 9.59102i 0.553738 0.959102i
\(11\) −15.2420 + 2.68757i −1.38564 + 0.244325i −0.816228 0.577730i \(-0.803938\pi\)
−0.569408 + 0.822055i \(0.692827\pi\)
\(12\) 3.71007 + 4.71544i 0.309172 + 0.392954i
\(13\) −0.854187 + 0.310899i −0.0657067 + 0.0239153i −0.374664 0.927160i \(-0.622242\pi\)
0.308958 + 0.951076i \(0.400020\pi\)
\(14\) −0.435804 1.19736i −0.0311289 0.0855259i
\(15\) 21.8123 + 8.72635i 1.45415 + 0.581757i
\(16\) 0.694593 + 3.93923i 0.0434120 + 0.246202i
\(17\) 10.6672 + 6.15869i 0.627480 + 0.362276i 0.779776 0.626059i \(-0.215333\pi\)
−0.152295 + 0.988335i \(0.548666\pi\)
\(18\) −8.77892 + 9.21578i −0.487718 + 0.511988i
\(19\) −5.40619 9.36379i −0.284536 0.492831i 0.687960 0.725748i \(-0.258506\pi\)
−0.972497 + 0.232917i \(0.925173\pi\)
\(20\) 10.0674 + 11.9978i 0.503369 + 0.599892i
\(21\) 2.38227 1.27711i 0.113441 0.0608148i
\(22\) 3.80080 21.5554i 0.172764 0.979792i
\(23\) −21.0966 + 25.1419i −0.917241 + 1.09313i 0.0781224 + 0.996944i \(0.475108\pi\)
−0.995364 + 0.0961819i \(0.969337\pi\)
\(24\) −8.06100 + 2.64959i −0.335875 + 0.110400i
\(25\) 34.1344 + 12.4239i 1.36538 + 0.496956i
\(26\) 1.28553i 0.0494435i
\(27\) −22.0046 15.6460i −0.814987 0.579480i
\(28\) 1.80200 0.0643571
\(29\) 19.3495 53.1622i 0.667222 1.83318i 0.126521 0.991964i \(-0.459619\pi\)
0.540701 0.841215i \(-0.318159\pi\)
\(30\) −22.1471 + 24.7661i −0.738235 + 0.825536i
\(31\) −37.9518 31.8453i −1.22425 1.02727i −0.998591 0.0530624i \(-0.983102\pi\)
−0.225660 0.974206i \(-0.572454\pi\)
\(32\) −5.57091 0.982302i −0.174091 0.0306970i
\(33\) 46.4083 + 1.46222i 1.40631 + 0.0443096i
\(34\) −13.3440 + 11.1970i −0.392472 + 0.329323i
\(35\) 6.11047 3.52788i 0.174585 0.100797i
\(36\) −8.00081 16.1241i −0.222245 0.447892i
\(37\) −17.4417 + 30.2099i −0.471398 + 0.816485i −0.999465 0.0327181i \(-0.989584\pi\)
0.528067 + 0.849203i \(0.322917\pi\)
\(38\) 15.0587 2.65526i 0.396282 0.0698751i
\(39\) 2.69917 0.388733i 0.0692095 0.00996751i
\(40\) −20.8137 + 7.57558i −0.520343 + 0.189389i
\(41\) −12.2490 33.6538i −0.298756 0.820824i −0.994709 0.102737i \(-0.967240\pi\)
0.695953 0.718087i \(-0.254982\pi\)
\(42\) 0.544909 + 3.78358i 0.0129740 + 0.0900853i
\(43\) 7.20864 + 40.8822i 0.167643 + 0.950750i 0.946298 + 0.323297i \(0.104791\pi\)
−0.778655 + 0.627453i \(0.784098\pi\)
\(44\) 26.8072 + 15.4771i 0.609254 + 0.351753i
\(45\) −58.6974 39.0122i −1.30439 0.866938i
\(46\) −23.2075 40.1966i −0.504512 0.873840i
\(47\) −15.9152 18.9670i −0.338622 0.403554i 0.569682 0.821865i \(-0.307067\pi\)
−0.908304 + 0.418311i \(0.862622\pi\)
\(48\) 0.377904 11.9940i 0.00787300 0.249876i
\(49\) −8.36779 + 47.4561i −0.170771 + 0.968492i
\(50\) −33.0209 + 39.3528i −0.660418 + 0.787056i
\(51\) −27.5449 24.6320i −0.540097 0.482981i
\(52\) 1.70837 + 0.621797i 0.0328533 + 0.0119576i
\(53\) 50.3340i 0.949699i 0.880067 + 0.474850i \(0.157498\pi\)
−0.880067 + 0.474850i \(0.842502\pi\)
\(54\) 31.4357 21.6747i 0.582143 0.401384i
\(55\) 121.202 2.20367
\(56\) −0.871609 + 2.39472i −0.0155644 + 0.0427629i
\(57\) 10.1287 + 30.8152i 0.177697 + 0.540617i
\(58\) 61.2895 + 51.4280i 1.05672 + 0.886689i
\(59\) 65.7126 + 11.5869i 1.11377 + 0.196388i 0.700105 0.714040i \(-0.253137\pi\)
0.413667 + 0.910428i \(0.364248\pi\)
\(60\) −22.2000 41.4109i −0.370000 0.690182i
\(61\) −18.7893 + 15.7661i −0.308021 + 0.258460i −0.783673 0.621173i \(-0.786656\pi\)
0.475653 + 0.879633i \(0.342212\pi\)
\(62\) 60.6770 35.0319i 0.978661 0.565030i
\(63\) −7.77945 + 2.28824i −0.123483 + 0.0363213i
\(64\) 4.00000 6.92820i 0.0625000 0.108253i
\(65\) 7.01032 1.23611i 0.107851 0.0190170i
\(66\) −24.3904 + 60.9660i −0.369551 + 0.923727i
\(67\) −61.2882 + 22.3071i −0.914750 + 0.332942i −0.756148 0.654401i \(-0.772921\pi\)
−0.158602 + 0.987343i \(0.550699\pi\)
\(68\) −8.42558 23.1491i −0.123906 0.340428i
\(69\) 77.3814 60.8830i 1.12147 0.882362i
\(70\) 1.73272 + 9.82676i 0.0247532 + 0.140382i
\(71\) 24.4496 + 14.1160i 0.344361 + 0.198817i 0.662199 0.749328i \(-0.269623\pi\)
−0.317838 + 0.948145i \(0.602957\pi\)
\(72\) 25.2977 2.83342i 0.351356 0.0393531i
\(73\) −10.7760 18.6646i −0.147617 0.255680i 0.782729 0.622362i \(-0.213827\pi\)
−0.930346 + 0.366682i \(0.880494\pi\)
\(74\) −31.7104 37.7910i −0.428519 0.510689i
\(75\) −92.6126 57.4327i −1.23483 0.765769i
\(76\) −3.75510 + 21.2962i −0.0494092 + 0.280213i
\(77\) 8.96360 10.6824i 0.116410 0.138732i
\(78\) −0.788964 + 3.77503i −0.0101149 + 0.0483978i
\(79\) −27.2240 9.90872i −0.344608 0.125427i 0.163918 0.986474i \(-0.447587\pi\)
−0.508525 + 0.861047i \(0.669809\pi\)
\(80\) 31.3241i 0.391552i
\(81\) 55.0154 + 59.4500i 0.679203 + 0.733951i
\(82\) 50.6481 0.617660
\(83\) −0.0509121 + 0.139880i −0.000613399 + 0.00168530i −0.939999 0.341177i \(-0.889174\pi\)
0.939386 + 0.342863i \(0.111397\pi\)
\(84\) −5.29167 1.10594i −0.0629960 0.0131659i
\(85\) −73.8910 62.0019i −0.869306 0.729434i
\(86\) −57.8162 10.1946i −0.672282 0.118541i
\(87\) −89.4477 + 144.238i −1.02813 + 1.65791i
\(88\) −33.5343 + 28.1386i −0.381071 + 0.319757i
\(89\) −79.3008 + 45.7843i −0.891020 + 0.514431i −0.874276 0.485429i \(-0.838663\pi\)
−0.0167439 + 0.999860i \(0.505330\pi\)
\(90\) 80.2356 59.1347i 0.891507 0.657052i
\(91\) 0.409508 0.709288i 0.00450008 0.00779437i
\(92\) 64.6436 11.3984i 0.702648 0.123896i
\(93\) 91.9031 + 116.807i 0.988205 + 1.25599i
\(94\) 32.9038 11.9760i 0.350041 0.127404i
\(95\) 28.9595 + 79.5657i 0.304837 + 0.837534i
\(96\) 15.7564 + 6.30360i 0.164129 + 0.0656625i
\(97\) −17.4501 98.9646i −0.179898 1.02025i −0.932337 0.361591i \(-0.882234\pi\)
0.752439 0.658662i \(-0.228877\pi\)
\(98\) −59.0182 34.0742i −0.602227 0.347696i
\(99\) −135.383 32.7759i −1.36751 0.331070i
\(100\) −36.3251 62.9169i −0.363251 0.629169i
\(101\) −67.8785 80.8944i −0.672064 0.800935i 0.316999 0.948426i \(-0.397325\pi\)
−0.989063 + 0.147491i \(0.952880\pi\)
\(102\) 46.0574 24.6909i 0.451543 0.242068i
\(103\) 15.1042 85.6604i 0.146643 0.831654i −0.819390 0.573236i \(-0.805688\pi\)
0.966033 0.258418i \(-0.0832011\pi\)
\(104\) −1.65265 + 1.96955i −0.0158908 + 0.0189379i
\(105\) −20.1089 + 6.60965i −0.191513 + 0.0629490i
\(106\) −66.8902 24.3461i −0.631040 0.229680i
\(107\) 24.5062i 0.229030i 0.993422 + 0.114515i \(0.0365313\pi\)
−0.993422 + 0.114515i \(0.963469\pi\)
\(108\) 13.5990 + 52.2596i 0.125917 + 0.483885i
\(109\) −33.5716 −0.307996 −0.153998 0.988071i \(-0.549215\pi\)
−0.153998 + 0.988071i \(0.549215\pi\)
\(110\) −58.6241 + 161.068i −0.532946 + 1.46426i
\(111\) 69.7591 78.0086i 0.628461 0.702780i
\(112\) −2.76082 2.31661i −0.0246502 0.0206840i
\(113\) 120.158 + 21.1870i 1.06334 + 0.187496i 0.677839 0.735211i \(-0.262917\pi\)
0.385503 + 0.922707i \(0.374028\pi\)
\(114\) −45.8503 1.44463i −0.402195 0.0126722i
\(115\) 196.887 165.208i 1.71206 1.43659i
\(116\) −97.9891 + 56.5740i −0.844733 + 0.487707i
\(117\) −8.16484 0.515020i −0.0697849 0.00440188i
\(118\) −47.1826 + 81.7227i −0.399853 + 0.692565i
\(119\) −10.9294 + 1.92714i −0.0918433 + 0.0161945i
\(120\) 65.7699 9.47214i 0.548083 0.0789345i
\(121\) 111.392 40.5435i 0.920598 0.335070i
\(122\) −11.8638 32.5954i −0.0972440 0.267176i
\(123\) 15.3155 + 106.344i 0.124517 + 0.864583i
\(124\) 17.2059 + 97.5797i 0.138758 + 0.786933i
\(125\) −76.8053 44.3435i −0.614442 0.354748i
\(126\) 0.721933 11.4451i 0.00572963 0.0908342i
\(127\) −52.2314 90.4674i −0.411271 0.712342i 0.583758 0.811927i \(-0.301582\pi\)
−0.995029 + 0.0995859i \(0.968248\pi\)
\(128\) 7.27231 + 8.66680i 0.0568149 + 0.0677094i
\(129\) 3.92197 124.477i 0.0304029 0.964938i
\(130\) −1.74812 + 9.91409i −0.0134471 + 0.0762622i
\(131\) −0.587532 + 0.700193i −0.00448497 + 0.00534498i −0.768282 0.640111i \(-0.778888\pi\)
0.763797 + 0.645456i \(0.223333\pi\)
\(132\) −69.2219 61.9016i −0.524408 0.468952i
\(133\) 9.15444 + 3.33194i 0.0688304 + 0.0250522i
\(134\) 92.2372i 0.688337i
\(135\) 148.425 + 150.585i 1.09944 + 1.11545i
\(136\) 34.8388 0.256168
\(137\) 4.80632 13.2053i 0.0350826 0.0963887i −0.920915 0.389764i \(-0.872556\pi\)
0.955997 + 0.293376i \(0.0947787\pi\)
\(138\) 43.4804 + 132.283i 0.315075 + 0.958569i
\(139\) 142.580 + 119.639i 1.02576 + 0.860714i 0.990340 0.138659i \(-0.0442792\pi\)
0.0354184 + 0.999373i \(0.488724\pi\)
\(140\) −13.8971 2.45044i −0.0992653 0.0175031i
\(141\) 35.0953 + 65.4653i 0.248903 + 0.464293i
\(142\) −30.5851 + 25.6640i −0.215388 + 0.180732i
\(143\) 12.1839 7.03440i 0.0852024 0.0491916i
\(144\) −8.47080 + 34.9892i −0.0588250 + 0.242981i
\(145\) −221.516 + 383.678i −1.52770 + 2.64605i
\(146\) 30.0162 5.29267i 0.205590 0.0362511i
\(147\) 53.6975 134.222i 0.365289 0.913074i
\(148\) 65.5594 23.8617i 0.442969 0.161227i
\(149\) −43.3633 119.140i −0.291029 0.799595i −0.995917 0.0902764i \(-0.971225\pi\)
0.704888 0.709319i \(-0.250997\pi\)
\(150\) 121.120 95.2957i 0.807463 0.635305i
\(151\) −23.8651 135.346i −0.158047 0.896331i −0.955947 0.293540i \(-0.905167\pi\)
0.797899 0.602791i \(-0.205945\pi\)
\(152\) −26.4848 15.2910i −0.174242 0.100599i
\(153\) 65.7698 + 89.2383i 0.429868 + 0.583257i
\(154\) 9.86052 + 17.0789i 0.0640294 + 0.110902i
\(155\) 249.382 + 297.202i 1.60891 + 1.91743i
\(156\) −4.63512 2.87442i −0.0297123 0.0184257i
\(157\) 4.03656 22.8925i 0.0257106 0.145812i −0.969250 0.246078i \(-0.920858\pi\)
0.994961 + 0.100266i \(0.0319693\pi\)
\(158\) 26.3359 31.3859i 0.166683 0.198645i
\(159\) 30.8914 147.809i 0.194285 0.929614i
\(160\) 41.6275 + 15.1512i 0.260172 + 0.0946947i
\(161\) 29.5712i 0.183672i
\(162\) −105.615 + 44.3561i −0.651945 + 0.273803i
\(163\) 157.977 0.969187 0.484593 0.874740i \(-0.338968\pi\)
0.484593 + 0.874740i \(0.338968\pi\)
\(164\) −24.4980 + 67.3076i −0.149378 + 0.410412i
\(165\) −355.916 74.3848i −2.15706 0.450817i
\(166\) −0.161264 0.135317i −0.000971472 0.000815162i
\(167\) −93.0755 16.4117i −0.557338 0.0982737i −0.112118 0.993695i \(-0.535763\pi\)
−0.445220 + 0.895421i \(0.646875\pi\)
\(168\) 4.02923 6.49731i 0.0239835 0.0386744i
\(169\) −128.829 + 108.100i −0.762299 + 0.639645i
\(170\) 118.136 68.2060i 0.694919 0.401212i
\(171\) −10.8315 96.7067i −0.0633420 0.565536i
\(172\) 41.5129 71.9025i 0.241354 0.418038i
\(173\) −286.053 + 50.4388i −1.65348 + 0.291554i −0.921097 0.389334i \(-0.872705\pi\)
−0.732388 + 0.680888i \(0.761594\pi\)
\(174\) −148.417 188.636i −0.852971 1.08411i
\(175\) −30.7551 + 11.1939i −0.175743 + 0.0639654i
\(176\) −21.1739 58.1749i −0.120307 0.330539i
\(177\) −185.857 74.3551i −1.05004 0.420085i
\(178\) −22.4870 127.530i −0.126332 0.716462i
\(179\) 9.64834 + 5.57047i 0.0539013 + 0.0311200i 0.526709 0.850046i \(-0.323426\pi\)
−0.472807 + 0.881166i \(0.656759\pi\)
\(180\) 39.7765 + 135.230i 0.220980 + 0.751278i
\(181\) −95.2763 165.023i −0.526389 0.911732i −0.999527 0.0307438i \(-0.990212\pi\)
0.473139 0.880988i \(-0.343121\pi\)
\(182\) 0.744517 + 0.887281i 0.00409075 + 0.00487517i
\(183\) 64.8517 34.7664i 0.354381 0.189980i
\(184\) −16.1198 + 91.4198i −0.0876075 + 0.496847i
\(185\) 175.592 209.263i 0.949148 1.13115i
\(186\) −199.681 + 65.6338i −1.07355 + 0.352870i
\(187\) −179.141 65.2019i −0.957972 0.348673i
\(188\) 49.5194i 0.263401i
\(189\) 24.2491 1.94509i 0.128302 0.0102915i
\(190\) −119.744 −0.630233
\(191\) 5.86380 16.1107i 0.0307005 0.0843490i −0.923395 0.383850i \(-0.874598\pi\)
0.954096 + 0.299501i \(0.0968202\pi\)
\(192\) −15.9982 + 17.8901i −0.0833241 + 0.0931777i
\(193\) 118.098 + 99.0962i 0.611908 + 0.513452i 0.895248 0.445568i \(-0.146998\pi\)
−0.283340 + 0.959019i \(0.591443\pi\)
\(194\) 139.957 + 24.6782i 0.721428 + 0.127207i
\(195\) −21.3448 0.672524i −0.109460 0.00344884i
\(196\) 73.8286 61.9496i 0.376677 0.316069i
\(197\) 107.213 61.8996i 0.544230 0.314211i −0.202561 0.979270i \(-0.564927\pi\)
0.746792 + 0.665058i \(0.231593\pi\)
\(198\) 109.040 164.061i 0.550708 0.828590i
\(199\) −117.239 + 203.063i −0.589139 + 1.02042i 0.405207 + 0.914225i \(0.367200\pi\)
−0.994345 + 0.106193i \(0.966134\pi\)
\(200\) 101.182 17.8411i 0.505910 0.0892055i
\(201\) 193.667 27.8917i 0.963515 0.138765i
\(202\) 140.335 51.0777i 0.694727 0.252860i
\(203\) 17.4339 + 47.8991i 0.0858811 + 0.235956i
\(204\) 10.5349 + 73.1496i 0.0516419 + 0.358576i
\(205\) 48.7010 + 276.197i 0.237566 + 1.34730i
\(206\) 106.531 + 61.5054i 0.517139 + 0.298570i
\(207\) −264.600 + 131.295i −1.27826 + 0.634275i
\(208\) −1.81801 3.14889i −0.00874045 0.0151389i
\(209\) 107.567 + 128.193i 0.514674 + 0.613365i
\(210\) 0.942714 29.9202i 0.00448912 0.142477i
\(211\) −9.24958 + 52.4570i −0.0438369 + 0.248611i −0.998850 0.0479537i \(-0.984730\pi\)
0.955013 + 0.296565i \(0.0958411\pi\)
\(212\) 64.7082 77.1162i 0.305227 0.363756i
\(213\) −63.1342 56.4577i −0.296405 0.265060i
\(214\) −32.5669 11.8534i −0.152182 0.0553896i
\(215\) 325.089i 1.51204i
\(216\) −76.0269 7.20535i −0.351976 0.0333581i
\(217\) 44.6378 0.205704
\(218\) 16.2382 44.6142i 0.0744873 0.204652i
\(219\) 20.1894 + 61.4233i 0.0921891 + 0.280472i
\(220\) −185.692 155.814i −0.844054 0.708246i
\(221\) −11.0265 1.94427i −0.0498936 0.00879759i
\(222\) 69.9259 + 130.437i 0.314982 + 0.587553i
\(223\) −45.9011 + 38.5156i −0.205835 + 0.172716i −0.739878 0.672742i \(-0.765117\pi\)
0.534043 + 0.845457i \(0.320672\pi\)
\(224\) 4.41398 2.54841i 0.0197053 0.0113768i
\(225\) 236.714 + 225.493i 1.05206 + 1.00219i
\(226\) −86.2750 + 149.433i −0.381748 + 0.661206i
\(227\) −62.7048 + 11.0565i −0.276232 + 0.0487072i −0.310048 0.950721i \(-0.600345\pi\)
0.0338157 + 0.999428i \(0.489234\pi\)
\(228\) 24.0971 60.2329i 0.105689 0.264179i
\(229\) −201.212 + 73.2350i −0.878653 + 0.319804i −0.741666 0.670769i \(-0.765964\pi\)
−0.136987 + 0.990573i \(0.543742\pi\)
\(230\) 124.317 + 341.558i 0.540508 + 1.48503i
\(231\) −32.8782 + 25.8682i −0.142330 + 0.111984i
\(232\) −27.7864 157.584i −0.119769 0.679243i
\(233\) −186.691 107.786i −0.801248 0.462601i 0.0426593 0.999090i \(-0.486417\pi\)
−0.843907 + 0.536489i \(0.819750\pi\)
\(234\) 4.63367 10.6014i 0.0198020 0.0453049i
\(235\) 96.9470 + 167.917i 0.412541 + 0.714541i
\(236\) −85.7817 102.231i −0.363482 0.433180i
\(237\) 73.8634 + 45.8056i 0.311660 + 0.193272i
\(238\) 2.72539 15.4564i 0.0114512 0.0649431i
\(239\) 26.8944 32.0515i 0.112529 0.134107i −0.706840 0.707374i \(-0.749880\pi\)
0.819369 + 0.573267i \(0.194324\pi\)
\(240\) −19.2245 + 91.9850i −0.0801019 + 0.383271i
\(241\) 421.281 + 153.334i 1.74805 + 0.636240i 0.999636 0.0269874i \(-0.00859139\pi\)
0.748418 + 0.663227i \(0.230814\pi\)
\(242\) 167.643i 0.692738i
\(243\) −125.070 208.342i −0.514690 0.857376i
\(244\) 49.0553 0.201046
\(245\) 129.066 354.606i 0.526800 1.44737i
\(246\) −148.731 31.0841i −0.604597 0.126358i
\(247\) 7.52908 + 6.31765i 0.0304821 + 0.0255775i
\(248\) −137.999 24.3329i −0.556446 0.0981164i
\(249\) 0.235354 0.379518i 0.000945197 0.00152417i
\(250\) 96.0792 80.6200i 0.384317 0.322480i
\(251\) −222.273 + 128.329i −0.885549 + 0.511272i −0.872484 0.488643i \(-0.837492\pi\)
−0.0130650 + 0.999915i \(0.504159\pi\)
\(252\) 14.8605 + 6.49528i 0.0589703 + 0.0257749i
\(253\) 253.983 439.911i 1.00388 1.73878i
\(254\) 145.488 25.6535i 0.572788 0.100998i
\(255\) 178.932 + 227.421i 0.701696 + 0.891846i
\(256\) −15.0351 + 5.47232i −0.0587308 + 0.0213763i
\(257\) 134.312 + 369.019i 0.522614 + 1.43587i 0.867600 + 0.497262i \(0.165661\pi\)
−0.344986 + 0.938608i \(0.612116\pi\)
\(258\) 163.524 + 65.4202i 0.633813 + 0.253567i
\(259\) −5.45776 30.9525i −0.0210724 0.119508i
\(260\) −12.3295 7.11846i −0.0474213 0.0273787i
\(261\) 351.191 368.667i 1.34556 1.41252i
\(262\) −0.646322 1.11946i −0.00246688 0.00427276i
\(263\) 78.9273 + 94.0619i 0.300104 + 0.357650i 0.894932 0.446203i \(-0.147224\pi\)
−0.594828 + 0.803853i \(0.702780\pi\)
\(264\) 115.745 62.0496i 0.438427 0.235036i
\(265\) 68.4465 388.179i 0.258289 1.46483i
\(266\) −8.85581 + 10.5539i −0.0332925 + 0.0396765i
\(267\) 260.970 85.7790i 0.977415 0.321270i
\(268\) 122.576 + 44.6142i 0.457375 + 0.166471i
\(269\) 392.295i 1.45835i 0.684329 + 0.729173i \(0.260095\pi\)
−0.684329 + 0.729173i \(0.739905\pi\)
\(270\) −271.909 + 124.409i −1.00707 + 0.460775i
\(271\) −43.9569 −0.162203 −0.0811013 0.996706i \(-0.525844\pi\)
−0.0811013 + 0.996706i \(0.525844\pi\)
\(272\) −16.8512 + 46.2982i −0.0619528 + 0.170214i
\(273\) −1.63785 + 1.83154i −0.00599945 + 0.00670892i
\(274\) 15.2240 + 12.7745i 0.0555622 + 0.0466222i
\(275\) −553.666 97.6263i −2.01333 0.355005i
\(276\) −196.825 6.20148i −0.713133 0.0224691i
\(277\) −253.346 + 212.582i −0.914606 + 0.767446i −0.972990 0.230849i \(-0.925850\pi\)
0.0583836 + 0.998294i \(0.481405\pi\)
\(278\) −227.956 + 131.611i −0.819987 + 0.473420i
\(279\) −198.190 399.415i −0.710359 1.43159i
\(280\) 9.97835 17.2830i 0.0356370 0.0617251i
\(281\) −252.252 + 44.4788i −0.897692 + 0.158287i −0.603410 0.797431i \(-0.706192\pi\)
−0.294282 + 0.955719i \(0.595081\pi\)
\(282\) −103.974 + 14.9742i −0.368701 + 0.0531001i
\(283\) 146.361 53.2711i 0.517177 0.188237i −0.0702267 0.997531i \(-0.522372\pi\)
0.587404 + 0.809294i \(0.300150\pi\)
\(284\) −19.3118 53.0588i −0.0679993 0.186827i
\(285\) −36.2096 251.422i −0.127051 0.882183i
\(286\) 3.45496 + 19.5940i 0.0120803 + 0.0685106i
\(287\) 27.9450 + 16.1340i 0.0973693 + 0.0562162i
\(288\) −42.4008 28.1810i −0.147225 0.0978507i
\(289\) −68.6411 118.890i −0.237512 0.411383i
\(290\) −402.734 479.960i −1.38874 1.65503i
\(291\) −9.49400 + 301.324i −0.0326254 + 1.03548i
\(292\) −7.48496 + 42.4493i −0.0256334 + 0.145374i
\(293\) −131.430 + 156.632i −0.448566 + 0.534580i −0.942183 0.335100i \(-0.891230\pi\)
0.493617 + 0.869679i \(0.335674\pi\)
\(294\) 152.398 + 136.282i 0.518360 + 0.463543i
\(295\) −491.023 178.718i −1.66448 0.605823i
\(296\) 98.6652i 0.333328i
\(297\) 377.444 + 179.336i 1.27086 + 0.603826i
\(298\) 179.302 0.601685
\(299\) 10.2038 28.0348i 0.0341265 0.0937618i
\(300\) 68.0567 + 207.052i 0.226856 + 0.690175i
\(301\) −28.6525 24.0423i −0.0951909 0.0798747i
\(302\) 191.408 + 33.7504i 0.633801 + 0.111756i
\(303\) 149.682 + 279.209i 0.493999 + 0.921483i
\(304\) 33.1310 27.8002i 0.108984 0.0914482i
\(305\) 166.343 96.0384i 0.545388 0.314880i
\(306\) −150.403 + 44.2395i −0.491514 + 0.144574i
\(307\) 284.956 493.559i 0.928196 1.60768i 0.141857 0.989887i \(-0.454693\pi\)
0.786339 0.617796i \(-0.211974\pi\)
\(308\) −27.4661 + 4.84301i −0.0891755 + 0.0157241i
\(309\) −96.9264 + 242.276i −0.313678 + 0.784066i
\(310\) −515.582 + 187.657i −1.66317 + 0.605344i
\(311\) −152.905 420.102i −0.491654 1.35081i −0.899165 0.437609i \(-0.855825\pi\)
0.407511 0.913200i \(-0.366397\pi\)
\(312\) 6.06184 4.76940i 0.0194290 0.0152865i
\(313\) −50.5690 286.791i −0.161562 0.916265i −0.952538 0.304418i \(-0.901538\pi\)
0.790976 0.611847i \(-0.209573\pi\)
\(314\) 28.4700 + 16.4371i 0.0906686 + 0.0523476i
\(315\) 63.1073 7.06823i 0.200340 0.0224388i
\(316\) 28.9712 + 50.1795i 0.0916809 + 0.158796i
\(317\) −216.870 258.455i −0.684131 0.815316i 0.306501 0.951870i \(-0.400842\pi\)
−0.990633 + 0.136554i \(0.956397\pi\)
\(318\) 181.485 + 112.546i 0.570707 + 0.353918i
\(319\) −152.047 + 862.300i −0.476636 + 2.70314i
\(320\) −40.2695 + 47.9914i −0.125842 + 0.149973i
\(321\) 15.0401 71.9636i 0.0468539 0.224186i
\(322\) 39.2979 + 14.3033i 0.122043 + 0.0444201i
\(323\) 133.180i 0.412322i
\(324\) −7.86107 161.809i −0.0242626 0.499411i
\(325\) −33.0197 −0.101599
\(326\) −76.4120 + 209.940i −0.234393 + 0.643989i
\(327\) 98.5848 + 20.6038i 0.301482 + 0.0630085i
\(328\) −77.5974 65.1120i −0.236577 0.198512i
\(329\) 21.9696 + 3.87383i 0.0667768 + 0.0117746i
\(330\) 271.005 437.006i 0.821226 1.32426i
\(331\) 116.755 97.9694i 0.352735 0.295980i −0.449152 0.893455i \(-0.648274\pi\)
0.801887 + 0.597475i \(0.203829\pi\)
\(332\) 0.257828 0.148857i 0.000776590 0.000448365i
\(333\) −252.727 + 186.263i −0.758941 + 0.559349i
\(334\) 66.8296 115.752i 0.200089 0.346564i
\(335\) 502.993 88.6912i 1.50147 0.264750i
\(336\) 6.68554 + 8.49723i 0.0198974 + 0.0252894i
\(337\) 219.421 79.8628i 0.651102 0.236982i 0.00471178 0.999989i \(-0.498500\pi\)
0.646390 + 0.763007i \(0.276278\pi\)
\(338\) −81.3439 223.490i −0.240662 0.661214i
\(339\) −339.846 135.961i −1.00250 0.401064i
\(340\) 33.4994 + 189.985i 0.0985278 + 0.558779i
\(341\) 664.047 + 383.388i 1.94735 + 1.12430i
\(342\) 133.755 + 32.3818i 0.391097 + 0.0946835i
\(343\) −43.7833 75.8349i −0.127648 0.221093i
\(344\) 75.4737 + 89.9461i 0.219400 + 0.261471i
\(345\) −679.561 + 364.307i −1.96974 + 1.05596i
\(346\) 71.3313 404.540i 0.206160 1.16919i
\(347\) −409.259 + 487.736i −1.17942 + 1.40558i −0.284899 + 0.958558i \(0.591960\pi\)
−0.894523 + 0.447022i \(0.852484\pi\)
\(348\) 322.471 105.994i 0.926641 0.304581i
\(349\) 268.471 + 97.7153i 0.769257 + 0.279987i 0.696686 0.717377i \(-0.254657\pi\)
0.0725714 + 0.997363i \(0.476879\pi\)
\(350\) 46.2857i 0.132245i
\(351\) 23.6604 + 6.52336i 0.0674085 + 0.0185851i
\(352\) 87.5518 0.248727
\(353\) −112.137 + 308.094i −0.317669 + 0.872788i 0.673381 + 0.739296i \(0.264841\pi\)
−0.991050 + 0.133492i \(0.957381\pi\)
\(354\) 188.710 211.026i 0.533078 0.596118i
\(355\) −169.361 142.111i −0.477074 0.400313i
\(356\) 180.355 + 31.8015i 0.506615 + 0.0893299i
\(357\) 33.2774 + 1.04849i 0.0932139 + 0.00293695i
\(358\) −12.0695 + 10.1276i −0.0337138 + 0.0282893i
\(359\) 484.455 279.700i 1.34946 0.779109i 0.361284 0.932456i \(-0.382339\pi\)
0.988172 + 0.153347i \(0.0490053\pi\)
\(360\) −198.950 12.5493i −0.552639 0.0348593i
\(361\) 122.046 211.390i 0.338078 0.585569i
\(362\) 265.388 46.7951i 0.733116 0.129268i
\(363\) −351.992 + 50.6936i −0.969675 + 0.139652i
\(364\) −1.53925 + 0.560239i −0.00422870 + 0.00153912i
\(365\) 57.7245 + 158.597i 0.158149 + 0.434511i
\(366\) 14.8339 + 102.999i 0.0405297 + 0.281419i
\(367\) 83.2991 + 472.413i 0.226973 + 1.28723i 0.858877 + 0.512182i \(0.171163\pi\)
−0.631904 + 0.775047i \(0.717726\pi\)
\(368\) −113.693 65.6408i −0.308949 0.178372i
\(369\) 20.2911 321.683i 0.0549894 0.871770i
\(370\) 193.163 + 334.568i 0.522061 + 0.904237i
\(371\) −29.1510 34.7409i −0.0785743 0.0936411i
\(372\) 9.36115 297.108i 0.0251644 0.798677i
\(373\) 59.7262 338.724i 0.160124 0.908107i −0.793827 0.608144i \(-0.791914\pi\)
0.953951 0.299964i \(-0.0969745\pi\)
\(374\) 173.297 206.527i 0.463361 0.552212i
\(375\) 198.328 + 177.355i 0.528874 + 0.472946i
\(376\) −65.8076 23.9520i −0.175020 0.0637022i
\(377\) 51.4262i 0.136409i
\(378\) −9.14417 + 33.1661i −0.0241909 + 0.0877410i
\(379\) −104.156 −0.274817 −0.137408 0.990514i \(-0.543877\pi\)
−0.137408 + 0.990514i \(0.543877\pi\)
\(380\) 57.9191 159.131i 0.152419 0.418767i
\(381\) 97.8579 + 297.718i 0.256845 + 0.781412i
\(382\) 18.5736 + 15.5851i 0.0486220 + 0.0407987i
\(383\) −63.8855 11.2647i −0.166803 0.0294118i 0.0896229 0.995976i \(-0.471434\pi\)
−0.256426 + 0.966564i \(0.582545\pi\)
\(384\) −16.0365 29.9137i −0.0417617 0.0779003i
\(385\) −83.6542 + 70.1942i −0.217284 + 0.182323i
\(386\) −188.814 + 109.012i −0.489156 + 0.282415i
\(387\) −87.9119 + 363.126i −0.227163 + 0.938310i
\(388\) −100.491 + 174.056i −0.258998 + 0.448598i
\(389\) 232.365 40.9722i 0.597339 0.105327i 0.133200 0.991089i \(-0.457475\pi\)
0.464139 + 0.885762i \(0.346364\pi\)
\(390\) 11.2180 28.0404i 0.0287641 0.0718984i
\(391\) −379.882 + 138.266i −0.971564 + 0.353620i
\(392\) 46.6163 + 128.077i 0.118919 + 0.326727i
\(393\) 2.15504 1.69557i 0.00548357 0.00431443i
\(394\) 30.4021 + 172.419i 0.0771627 + 0.437611i
\(395\) 196.479 + 113.437i 0.497415 + 0.287183i
\(396\) 165.283 + 224.261i 0.417381 + 0.566315i
\(397\) −2.59349 4.49206i −0.00653272 0.0113150i 0.862741 0.505647i \(-0.168746\pi\)
−0.869273 + 0.494332i \(0.835413\pi\)
\(398\) −213.149 254.021i −0.535550 0.638244i
\(399\) −24.8376 15.4027i −0.0622496 0.0386034i
\(400\) −25.2311 + 143.093i −0.0630778 + 0.357732i
\(401\) 103.381 123.205i 0.257808 0.307244i −0.621579 0.783352i \(-0.713508\pi\)
0.879387 + 0.476108i \(0.157953\pi\)
\(402\) −56.6085 + 270.859i −0.140817 + 0.673780i
\(403\) 42.3186 + 15.4027i 0.105009 + 0.0382201i
\(404\) 211.200i 0.522773i
\(405\) −343.440 533.295i −0.847999 1.31678i
\(406\) −72.0870 −0.177554
\(407\) 184.655 507.335i 0.453698 1.24652i
\(408\) −102.306 21.3815i −0.250750 0.0524057i
\(409\) −132.217 110.943i −0.323269 0.271255i 0.466682 0.884425i \(-0.345449\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(410\) −390.601 68.8736i −0.952686 0.167984i
\(411\) −22.2184 + 35.8282i −0.0540594 + 0.0871731i
\(412\) −133.264 + 111.822i −0.323456 + 0.271412i
\(413\) −52.0658 + 30.0602i −0.126067 + 0.0727850i
\(414\) −46.4971 415.140i −0.112312 1.00275i
\(415\) 0.582852 1.00953i 0.00140446 0.00243260i
\(416\) 5.06400 0.892920i 0.0121731 0.00214644i
\(417\) −345.269 438.832i −0.827984 1.05236i
\(418\) −222.388 + 80.9427i −0.532029 + 0.193643i
\(419\) 97.9330 + 269.069i 0.233730 + 0.642169i 1.00000 0.000350278i \(-0.000111497\pi\)
−0.766270 + 0.642519i \(0.777889\pi\)
\(420\) 39.3058 + 15.7249i 0.0935852 + 0.0374402i
\(421\) 117.029 + 663.704i 0.277979 + 1.57649i 0.729339 + 0.684153i \(0.239828\pi\)
−0.451360 + 0.892342i \(0.649061\pi\)
\(422\) −65.2375 37.6649i −0.154591 0.0892533i
\(423\) −62.8815 213.781i −0.148656 0.505393i
\(424\) 71.1831 + 123.293i 0.167885 + 0.290785i
\(425\) 287.602 + 342.751i 0.676711 + 0.806473i
\(426\) 105.566 56.5927i 0.247806 0.132847i
\(427\) 3.83752 21.7637i 0.00898717 0.0509688i
\(428\) 31.5045 37.5456i 0.0736087 0.0877234i
\(429\) −40.0960 + 13.1793i −0.0934639 + 0.0307209i
\(430\) 432.019 + 157.242i 1.00470 + 0.365679i
\(431\) 539.138i 1.25090i −0.780264 0.625450i \(-0.784915\pi\)
0.780264 0.625450i \(-0.215085\pi\)
\(432\) 46.3488 97.5489i 0.107289 0.225808i
\(433\) −802.991 −1.85448 −0.927241 0.374466i \(-0.877826\pi\)
−0.927241 + 0.374466i \(0.877826\pi\)
\(434\) −21.5908 + 59.3204i −0.0497485 + 0.136683i
\(435\) 885.968 990.739i 2.03671 2.27756i
\(436\) 51.4347 + 43.1588i 0.117969 + 0.0989881i
\(437\) 349.475 + 61.6219i 0.799715 + 0.141011i
\(438\) −91.3924 2.87956i −0.208658 0.00657433i
\(439\) −59.9232 + 50.2816i −0.136499 + 0.114537i −0.708481 0.705730i \(-0.750619\pi\)
0.571982 + 0.820266i \(0.306175\pi\)
\(440\) 296.883 171.405i 0.674733 0.389557i
\(441\) −240.061 + 361.194i −0.544356 + 0.819033i
\(442\) 7.91718 13.7130i 0.0179122 0.0310248i
\(443\) −537.994 + 94.8628i −1.21443 + 0.214137i −0.743928 0.668260i \(-0.767039\pi\)
−0.470505 + 0.882397i \(0.655928\pi\)
\(444\) −207.163 + 29.8355i −0.466584 + 0.0671970i
\(445\) 673.832 245.255i 1.51423 0.551134i
\(446\) −28.9825 79.6288i −0.0649832 0.178540i
\(447\) 54.2194 + 376.473i 0.121296 + 0.842222i
\(448\) 1.25166 + 7.09849i 0.00279388 + 0.0158449i
\(449\) −592.342 341.989i −1.31925 0.761667i −0.335639 0.941991i \(-0.608952\pi\)
−0.983607 + 0.180323i \(0.942286\pi\)
\(450\) −414.159 + 205.507i −0.920354 + 0.456681i
\(451\) 277.146 + 480.031i 0.614514 + 1.06437i
\(452\) −156.855 186.932i −0.347024 0.413567i
\(453\) −12.9842 + 412.097i −0.0286627 + 0.909707i
\(454\) 15.6363 88.6779i 0.0344412 0.195326i
\(455\) −4.12267 + 4.91321i −0.00906081 + 0.0107983i
\(456\) 68.3895 + 61.1573i 0.149977 + 0.134117i
\(457\) −80.6475 29.3533i −0.176472 0.0642304i 0.252273 0.967656i \(-0.418822\pi\)
−0.428745 + 0.903426i \(0.641044\pi\)
\(458\) 302.818i 0.661175i
\(459\) −138.368 302.418i −0.301456 0.658862i
\(460\) −514.035 −1.11747
\(461\) 1.94941 5.35597i 0.00422866 0.0116181i −0.937560 0.347823i \(-0.886921\pi\)
0.941789 + 0.336205i \(0.109143\pi\)
\(462\) −18.4741 56.2048i −0.0399873 0.121655i
\(463\) −247.066 207.313i −0.533620 0.447760i 0.335729 0.941959i \(-0.391017\pi\)
−0.869349 + 0.494198i \(0.835462\pi\)
\(464\) 222.858 + 39.2959i 0.480298 + 0.0846894i
\(465\) −549.922 1025.80i −1.18263 2.20602i
\(466\) 233.540 195.963i 0.501159 0.420522i
\(467\) 32.7859 18.9290i 0.0702054 0.0405331i −0.464486 0.885580i \(-0.653761\pi\)
0.534692 + 0.845047i \(0.320428\pi\)
\(468\) 11.8472 + 11.2856i 0.0253144 + 0.0241145i
\(469\) 29.3823 50.8917i 0.0626489 0.108511i
\(470\) −270.042 + 47.6157i −0.574557 + 0.101310i
\(471\) −25.9033 + 64.7476i −0.0549964 + 0.137468i
\(472\) 177.349 64.5496i 0.375739 0.136758i
\(473\) −219.748 603.753i −0.464584 1.27643i
\(474\) −96.5992 + 76.0034i −0.203796 + 0.160345i
\(475\) −68.2021 386.793i −0.143583 0.814302i
\(476\) 19.2222 + 11.0980i 0.0403828 + 0.0233150i
\(477\) −181.428 + 415.089i −0.380353 + 0.870207i
\(478\) 29.5855 + 51.2436i 0.0618944 + 0.107204i
\(479\) 461.346 + 549.811i 0.963145 + 1.14783i 0.988963 + 0.148164i \(0.0473365\pi\)
−0.0258182 + 0.999667i \(0.508219\pi\)
\(480\) −112.943 70.0400i −0.235297 0.145917i
\(481\) 5.50626 31.2275i 0.0114475 0.0649221i
\(482\) −407.538 + 485.685i −0.845515 + 1.00765i
\(483\) −18.1486 + 86.8373i −0.0375748 + 0.179787i
\(484\) −222.785 81.0870i −0.460299 0.167535i
\(485\) 786.950i 1.62258i
\(486\) 337.367 65.4352i 0.694170 0.134640i
\(487\) 52.1558 0.107096 0.0535480 0.998565i \(-0.482947\pi\)
0.0535480 + 0.998565i \(0.482947\pi\)
\(488\) −23.7275 + 65.1909i −0.0486220 + 0.133588i
\(489\) −463.909 96.9550i −0.948689 0.198272i
\(490\) 408.817 + 343.038i 0.834320 + 0.700078i
\(491\) 77.8114 + 13.7202i 0.158475 + 0.0279435i 0.252323 0.967643i \(-0.418806\pi\)
−0.0938475 + 0.995587i \(0.529917\pi\)
\(492\) 113.248 182.617i 0.230179 0.371173i
\(493\) 533.813 447.922i 1.08279 0.908565i
\(494\) −12.0374 + 6.94981i −0.0243673 + 0.0140685i
\(495\) 999.513 + 436.870i 2.01922 + 0.882565i
\(496\) 99.0851 171.620i 0.199768 0.346009i
\(497\) −25.0506 + 4.41709i −0.0504036 + 0.00888751i
\(498\) 0.390514 + 0.496337i 0.000784164 + 0.000996661i
\(499\) 27.9915 10.1881i 0.0560952 0.0204170i −0.313820 0.949482i \(-0.601609\pi\)
0.369915 + 0.929065i \(0.379387\pi\)
\(500\) 60.6655 + 166.677i 0.121331 + 0.333354i
\(501\) 263.249 + 105.317i 0.525446 + 0.210213i
\(502\) −63.0291 357.456i −0.125556 0.712063i
\(503\) −146.080 84.3394i −0.290418 0.167673i 0.347713 0.937601i \(-0.386959\pi\)
−0.638130 + 0.769928i \(0.720292\pi\)
\(504\) −15.8196 + 16.6068i −0.0313881 + 0.0329501i
\(505\) 413.479 + 716.167i 0.818771 + 1.41815i
\(506\) 461.760 + 550.305i 0.912570 + 1.08756i
\(507\) 444.656 238.376i 0.877033 0.470169i
\(508\) −36.2795 + 205.751i −0.0714164 + 0.405022i
\(509\) 223.993 266.945i 0.440066 0.524450i −0.499733 0.866180i \(-0.666568\pi\)
0.939798 + 0.341730i \(0.111013\pi\)
\(510\) −388.773 + 127.787i −0.762300 + 0.250563i
\(511\) 18.2474 + 6.64149i 0.0357091 + 0.0129971i
\(512\) 22.6274i 0.0441942i
\(513\) −27.5443 + 290.632i −0.0536925 + 0.566534i
\(514\) −555.364 −1.08047
\(515\) −232.970 + 640.079i −0.452368 + 1.24287i
\(516\) −166.033 + 185.668i −0.321770 + 0.359821i
\(517\) 293.555 + 246.322i 0.567805 + 0.476445i
\(518\) 43.7734 + 7.71843i 0.0845047 + 0.0149005i
\(519\) 870.965 + 27.4420i 1.67816 + 0.0528748i
\(520\) 15.4236 12.9419i 0.0296607 0.0248883i
\(521\) −95.9710 + 55.4089i −0.184205 + 0.106351i −0.589267 0.807938i \(-0.700583\pi\)
0.405062 + 0.914289i \(0.367250\pi\)
\(522\) 320.063 + 645.027i 0.613148 + 1.23568i
\(523\) 280.197 485.316i 0.535750 0.927946i −0.463377 0.886161i \(-0.653362\pi\)
0.999127 0.0417848i \(-0.0133044\pi\)
\(524\) 1.80030 0.317442i 0.00343569 0.000605805i
\(525\) 97.1840 13.9964i 0.185112 0.0266597i
\(526\) −163.178 + 59.3918i −0.310224 + 0.112912i
\(527\) −208.712 573.433i −0.396039 1.08811i
\(528\) 26.4749 + 183.829i 0.0501418 + 0.348161i
\(529\) −95.1903 539.851i −0.179944 1.02051i
\(530\) 482.755 + 278.719i 0.910858 + 0.525884i
\(531\) 500.146 + 332.413i 0.941894 + 0.626013i
\(532\) −9.74195 16.8736i −0.0183119 0.0317172i
\(533\) 20.9258 + 24.9384i 0.0392605 + 0.0467888i
\(534\) −12.2344 + 388.300i −0.0229109 + 0.727154i
\(535\) 33.3246 188.993i 0.0622889 0.353258i
\(536\) −118.578 + 141.316i −0.221227 + 0.263649i
\(537\) −24.9141 22.2794i −0.0463950 0.0414887i
\(538\) −521.331 189.749i −0.969018 0.352694i
\(539\) 745.814i 1.38370i
\(540\) −33.8114 421.522i −0.0626137 0.780596i
\(541\) −313.055 −0.578660 −0.289330 0.957229i \(-0.593433\pi\)
−0.289330 + 0.957229i \(0.593433\pi\)
\(542\) 21.2615 58.4155i 0.0392279 0.107778i
\(543\) 178.505 + 543.074i 0.328738 + 1.00014i
\(544\) −53.3762 44.7879i −0.0981179 0.0823307i
\(545\) 258.906 + 45.6522i 0.475057 + 0.0837654i
\(546\) −1.64176 3.06248i −0.00300689 0.00560893i
\(547\) −564.255 + 473.466i −1.03155 + 0.865569i −0.991034 0.133610i \(-0.957343\pi\)
−0.0405113 + 0.999179i \(0.512899\pi\)
\(548\) −24.3401 + 14.0527i −0.0444162 + 0.0256437i
\(549\) −211.778 + 62.2921i −0.385751 + 0.113465i
\(550\) 397.541 688.561i 0.722801 1.25193i
\(551\) −602.406 + 106.220i −1.09330 + 0.192778i
\(552\) 103.443 258.566i 0.187397 0.468417i
\(553\) 24.5288 8.92776i 0.0443559 0.0161442i
\(554\) −159.966 439.502i −0.288747 0.793325i
\(555\) −644.066 + 506.746i −1.16048 + 0.913055i
\(556\) −64.6407 366.596i −0.116260 0.659345i
\(557\) −552.604 319.046i −0.992108 0.572794i −0.0862045 0.996277i \(-0.527474\pi\)
−0.905904 + 0.423483i \(0.860807\pi\)
\(558\) 626.655 70.1875i 1.12304 0.125784i
\(559\) −18.8678 32.6799i −0.0337527 0.0584614i
\(560\) 18.1414 + 21.6201i 0.0323954 + 0.0386073i
\(561\) 486.040 + 301.412i 0.866381 + 0.537277i
\(562\) 62.9025 356.738i 0.111926 0.634764i
\(563\) 224.179 267.166i 0.398187 0.474541i −0.529279 0.848448i \(-0.677538\pi\)
0.927466 + 0.373907i \(0.121982\pi\)
\(564\) 30.3914 145.416i 0.0538854 0.257830i
\(565\) −897.852 326.791i −1.58912 0.578392i
\(566\) 220.270i 0.389169i
\(567\) −72.4026 9.17048i −0.127694 0.0161737i
\(568\) 79.8521 0.140585
\(569\) 187.157 514.209i 0.328922 0.903707i −0.659463 0.751737i \(-0.729216\pi\)
0.988385 0.151970i \(-0.0485616\pi\)
\(570\) 351.636 + 73.4903i 0.616905 + 0.128930i
\(571\) 534.384 + 448.402i 0.935874 + 0.785292i 0.976863 0.213868i \(-0.0686062\pi\)
−0.0409882 + 0.999160i \(0.513051\pi\)
\(572\) −27.7101 4.88605i −0.0484443 0.00854204i
\(573\) −27.1069 + 43.7110i −0.0473070 + 0.0762845i
\(574\) −34.9576 + 29.3329i −0.0609018 + 0.0511027i
\(575\) −1032.48 + 596.102i −1.79562 + 1.03670i
\(576\) 57.9593 42.7167i 0.100624 0.0741610i
\(577\) −193.884 + 335.816i −0.336020 + 0.582004i −0.983680 0.179925i \(-0.942414\pi\)
0.647660 + 0.761929i \(0.275748\pi\)
\(578\) 191.197 33.7131i 0.330790 0.0583272i
\(579\) −285.984 363.481i −0.493927 0.627774i
\(580\) 832.630 303.052i 1.43557 0.522504i
\(581\) −0.0458718 0.126032i −7.89532e−5 0.000216922i
\(582\) −395.845 158.364i −0.680147 0.272103i
\(583\) −135.276 767.191i −0.232035 1.31594i
\(584\) −52.7916 30.4792i −0.0903966 0.0521905i
\(585\) 62.2674 + 15.0748i 0.106440 + 0.0257688i
\(586\) −144.581 250.422i −0.246725 0.427341i
\(587\) −229.618 273.648i −0.391173 0.466181i 0.534135 0.845399i \(-0.320637\pi\)
−0.925307 + 0.379218i \(0.876193\pi\)
\(588\) −254.822 + 136.608i −0.433370 + 0.232326i
\(589\) −93.0185 + 527.534i −0.157926 + 0.895644i
\(590\) 475.005 566.089i 0.805094 0.959473i
\(591\) −352.827 + 115.972i −0.597000 + 0.196230i
\(592\) −131.119 47.7233i −0.221484 0.0806137i
\(593\) 828.411i 1.39698i 0.715618 + 0.698492i \(0.246145\pi\)
−0.715618 + 0.698492i \(0.753855\pi\)
\(594\) −420.891 + 414.852i −0.708570 + 0.698404i
\(595\) 86.9085 0.146065
\(596\) −86.7266 + 238.279i −0.145514 + 0.399798i
\(597\) 468.903 524.353i 0.785432 0.878314i
\(598\) 32.3207 + 27.1202i 0.0540479 + 0.0453516i
\(599\) 863.376 + 152.237i 1.44136 + 0.254151i 0.839026 0.544091i \(-0.183125\pi\)
0.602337 + 0.798242i \(0.294237\pi\)
\(600\) −308.076 9.70673i −0.513459 0.0161779i
\(601\) 627.682 526.688i 1.04440 0.876353i 0.0519035 0.998652i \(-0.483471\pi\)
0.992493 + 0.122299i \(0.0390267\pi\)
\(602\) 45.8093 26.4480i 0.0760952 0.0439336i
\(603\) −585.830 36.9529i −0.971525 0.0612817i
\(604\) −137.434 + 238.042i −0.227540 + 0.394110i
\(605\) −914.197 + 161.198i −1.51107 + 0.266442i
\(606\) −443.448 + 63.8651i −0.731763 + 0.105388i
\(607\) −544.372 + 198.135i −0.896823 + 0.326417i −0.748979 0.662594i \(-0.769456\pi\)
−0.147844 + 0.989011i \(0.547233\pi\)
\(608\) 20.9193 + 57.4754i 0.0344068 + 0.0945319i
\(609\) −21.7985 151.358i −0.0357938 0.248535i
\(610\) 47.1694 + 267.511i 0.0773268 + 0.438542i
\(611\) 19.4914 + 11.2534i 0.0319008 + 0.0184180i
\(612\) 13.9574 221.273i 0.0228063 0.361557i
\(613\) −163.781 283.677i −0.267179 0.462768i 0.700953 0.713207i \(-0.252758\pi\)
−0.968132 + 0.250439i \(0.919425\pi\)
\(614\) 518.073 + 617.415i 0.843766 + 1.00556i
\(615\) 26.4965 840.956i 0.0430837 1.36741i
\(616\) 6.84905 38.8429i 0.0111186 0.0630566i
\(617\) −685.484 + 816.928i −1.11099 + 1.32403i −0.170064 + 0.985433i \(0.554397\pi\)
−0.940931 + 0.338599i \(0.890047\pi\)
\(618\) −275.085 245.995i −0.445121 0.398049i
\(619\) 835.904 + 304.244i 1.35041 + 0.491509i 0.913076 0.407789i \(-0.133700\pi\)
0.437335 + 0.899299i \(0.355922\pi\)
\(620\) 775.938i 1.25151i
\(621\) 857.591 223.162i 1.38098 0.359360i
\(622\) 632.242 1.01647
\(623\) 28.2178 77.5278i 0.0452934 0.124443i
\(624\) 3.40613 + 10.3627i 0.00545855 + 0.0166068i
\(625\) −163.639 137.309i −0.261822 0.219695i
\(626\) 405.584 + 71.5153i 0.647897 + 0.114242i
\(627\) −237.200 442.463i −0.378310 0.705682i
\(628\) −35.6144 + 29.8840i −0.0567108 + 0.0475860i
\(629\) −372.107 + 214.836i −0.591585 + 0.341552i
\(630\) −21.1312 + 87.2837i −0.0335415 + 0.138546i
\(631\) −477.341 + 826.778i −0.756483 + 1.31027i 0.188151 + 0.982140i \(0.439750\pi\)
−0.944634 + 0.328126i \(0.893583\pi\)
\(632\) −80.6979 + 14.2292i −0.127687 + 0.0225146i
\(633\) 59.3561 148.366i 0.0937695 0.234385i
\(634\) 448.365 163.192i 0.707201 0.257400i
\(635\) 279.790 + 768.717i 0.440614 + 1.21058i
\(636\) −237.347 + 186.743i −0.373188 + 0.293621i
\(637\) −7.60638 43.1379i −0.0119409 0.0677205i
\(638\) −1072.39 619.145i −1.68086 0.970446i
\(639\) 150.747 + 204.538i 0.235911 + 0.320091i
\(640\) −44.2990 76.7281i −0.0692172 0.119888i
\(641\) −456.345 543.850i −0.711926 0.848440i 0.281894 0.959446i \(-0.409037\pi\)
−0.993820 + 0.111005i \(0.964593\pi\)
\(642\) 88.3596 + 54.7952i 0.137632 + 0.0853508i
\(643\) 8.61807 48.8755i 0.0134029 0.0760116i −0.977373 0.211525i \(-0.932157\pi\)
0.990776 + 0.135513i \(0.0432683\pi\)
\(644\) −38.0160 + 45.3057i −0.0590310 + 0.0703505i
\(645\) −199.516 + 954.641i −0.309327 + 1.48006i
\(646\) 176.987 + 64.4178i 0.273973 + 0.0997180i
\(647\) 918.622i 1.41982i −0.704294 0.709909i \(-0.748736\pi\)
0.704294 0.709909i \(-0.251264\pi\)
\(648\) 218.835 + 67.8186i 0.337708 + 0.104658i
\(649\) −1032.73 −1.59126
\(650\) 15.9713 43.8808i 0.0245712 0.0675089i
\(651\) −131.081 27.3954i −0.201354 0.0420821i
\(652\) −242.035 203.092i −0.371220 0.311491i
\(653\) 342.395 + 60.3734i 0.524341 + 0.0924555i 0.429552 0.903042i \(-0.358671\pi\)
0.0947886 + 0.995497i \(0.469782\pi\)
\(654\) −75.0653 + 121.046i −0.114779 + 0.185086i
\(655\) 5.48323 4.60098i 0.00837135 0.00702440i
\(656\) 124.062 71.6272i 0.189119 0.109188i
\(657\) −21.5902 192.763i −0.0328617 0.293399i
\(658\) −15.7745 + 27.3222i −0.0239734 + 0.0415231i
\(659\) 1263.48 222.786i 1.91728 0.338068i 0.918873 0.394554i \(-0.129101\pi\)
0.998403 + 0.0564864i \(0.0179898\pi\)
\(660\) 449.667 + 571.520i 0.681314 + 0.865940i
\(661\) −126.358 + 45.9904i −0.191161 + 0.0695770i −0.435827 0.900030i \(-0.643544\pi\)
0.244666 + 0.969608i \(0.421322\pi\)
\(662\) 73.7207 + 202.546i 0.111361 + 0.305961i
\(663\) 31.1866 + 12.4767i 0.0470386 + 0.0188185i
\(664\) 0.0731113 + 0.414635i 0.000110107 + 0.000624450i
\(665\) −66.0687 38.1448i −0.0993514 0.0573605i
\(666\) −125.289 425.950i −0.188121 0.639564i
\(667\) 928.391 + 1608.02i 1.39189 + 2.41083i
\(668\) 121.501 + 144.800i 0.181888 + 0.216766i
\(669\) 158.429 84.9324i 0.236815 0.126954i
\(670\) −125.428 + 711.339i −0.187206 + 1.06170i
\(671\) 244.013 290.804i 0.363656 0.433389i
\(672\) −14.5259 + 4.77457i −0.0216159 + 0.00710501i
\(673\) 522.659 + 190.232i 0.776610 + 0.282663i 0.699758 0.714380i \(-0.253291\pi\)
0.0768517 + 0.997043i \(0.475513\pi\)
\(674\) 330.223i 0.489946i
\(675\) −556.731 807.449i −0.824787 1.19622i
\(676\) 336.347 0.497555
\(677\) −116.809 + 320.931i −0.172540 + 0.474049i −0.995578 0.0939369i \(-0.970055\pi\)
0.823039 + 0.567985i \(0.192277\pi\)
\(678\) 345.062 385.868i 0.508941 0.569126i
\(679\) 69.3597 + 58.1997i 0.102150 + 0.0857138i
\(680\) −268.679 47.3754i −0.395116 0.0696697i
\(681\) 190.922 + 6.01548i 0.280355 + 0.00883331i
\(682\) −830.687 + 697.029i −1.21802 + 1.02204i
\(683\) 181.638 104.869i 0.265942 0.153542i −0.361100 0.932527i \(-0.617599\pi\)
0.627042 + 0.778985i \(0.284265\pi\)
\(684\) −107.729 + 162.088i −0.157498 + 0.236971i
\(685\) −55.0237 + 95.3039i −0.0803266 + 0.139130i
\(686\) 121.956 21.5042i 0.177779 0.0313473i
\(687\) 635.815 91.5695i 0.925494 0.133289i
\(688\) −156.038 + 56.7930i −0.226799 + 0.0825480i
\(689\) −15.6488 42.9947i −0.0227123 0.0624016i
\(690\) −155.440 1079.30i −0.225275 1.56420i
\(691\) −50.5894 286.907i −0.0732119 0.415205i −0.999283 0.0378567i \(-0.987947\pi\)
0.926071 0.377349i \(-0.123164\pi\)
\(692\) 503.101 + 290.466i 0.727025 + 0.419748i
\(693\) 112.424 55.7852i 0.162229 0.0804981i
\(694\) −450.211 779.788i −0.648719 1.12361i
\(695\) −936.899 1116.55i −1.34806 1.60655i
\(696\) −15.1176 + 479.808i −0.0217207 + 0.689380i
\(697\) 76.6014 434.428i 0.109902 0.623283i
\(698\) −259.713 + 309.514i −0.372082 + 0.443430i
\(699\) 482.076 + 431.096i 0.689665 + 0.616733i
\(700\) 61.5102 + 22.3879i 0.0878717 + 0.0319827i
\(701\) 445.528i 0.635560i 0.948164 + 0.317780i \(0.102937\pi\)
−0.948164 + 0.317780i \(0.897063\pi\)
\(702\) −20.1133 + 28.2876i −0.0286515 + 0.0402958i
\(703\) 377.173 0.536519
\(704\) −42.3479 + 116.350i −0.0601533 + 0.165270i
\(705\) −181.635 552.597i −0.257638 0.783825i
\(706\) −355.195 298.044i −0.503109 0.422158i
\(707\) 93.7003 + 16.5219i 0.132532 + 0.0233690i
\(708\) 189.161 + 352.852i 0.267176 + 0.498379i
\(709\) −112.307 + 94.2371i −0.158402 + 0.132915i −0.718544 0.695481i \(-0.755191\pi\)
0.560142 + 0.828397i \(0.310747\pi\)
\(710\) 270.773 156.331i 0.381371 0.220185i
\(711\) −188.792 179.842i −0.265530 0.252943i
\(712\) −129.498 + 224.296i −0.181879 + 0.315023i
\(713\) 1601.30 282.353i 2.24587 0.396007i
\(714\) −17.4893 + 43.7160i −0.0244948 + 0.0612269i
\(715\) −103.529 + 37.6815i −0.144796 + 0.0527014i
\(716\) −7.62086 20.9381i −0.0106437 0.0292432i
\(717\) −98.6477 + 77.6151i −0.137584 + 0.108250i
\(718\) 137.375 + 779.092i 0.191330 + 1.08509i
\(719\) 442.793 + 255.647i 0.615845 + 0.355559i 0.775250 0.631655i \(-0.217624\pi\)
−0.159404 + 0.987213i \(0.550957\pi\)
\(720\) 112.907 258.320i 0.156816 0.358778i
\(721\) 39.1853 + 67.8710i 0.0543486 + 0.0941345i
\(722\) 221.890 + 264.438i 0.307326 + 0.366257i
\(723\) −1143.01 708.824i −1.58092 0.980393i
\(724\) −66.1782 + 375.315i −0.0914064 + 0.518392i
\(725\) 1320.96 1574.26i 1.82202 2.17140i
\(726\) 102.887 492.291i 0.141717 0.678087i
\(727\) −233.836 85.1092i −0.321644 0.117069i 0.176152 0.984363i \(-0.443635\pi\)
−0.497796 + 0.867294i \(0.665857\pi\)
\(728\) 2.31653i 0.00318204i
\(729\) 239.408 + 688.567i 0.328406 + 0.944537i
\(730\) −238.684 −0.326964
\(731\) −174.885 + 480.493i −0.239241 + 0.657310i
\(732\) −144.053 30.1065i −0.196794 0.0411292i
\(733\) 645.868 + 541.947i 0.881129 + 0.739355i 0.966411 0.257002i \(-0.0827346\pi\)
−0.0852818 + 0.996357i \(0.527179\pi\)
\(734\) −668.092 117.803i −0.910208 0.160494i
\(735\) −596.640 + 962.107i −0.811755 + 1.30899i
\(736\) 142.224 119.340i 0.193239 0.162147i
\(737\) 874.202 504.721i 1.18616 0.684832i
\(738\) 417.679 + 182.560i 0.565960 + 0.247372i
\(739\) 339.638 588.271i 0.459592 0.796036i −0.539347 0.842083i \(-0.681329\pi\)
0.998939 + 0.0460469i \(0.0146624\pi\)
\(740\) −538.046 + 94.8721i −0.727090 + 0.128206i
\(741\) −18.2322 23.1729i −0.0246049 0.0312725i
\(742\) 60.2681 21.9358i 0.0812239 0.0295631i
\(743\) 215.273 + 591.458i 0.289735 + 0.796040i 0.996103 + 0.0881957i \(0.0281101\pi\)
−0.706368 + 0.707845i \(0.749668\pi\)
\(744\) 390.306 + 156.148i 0.524605 + 0.209877i
\(745\) 172.409 + 977.780i 0.231421 + 1.31246i
\(746\) 421.250 + 243.209i 0.564679 + 0.326017i
\(747\) −0.924050 + 0.970033i −0.00123701 + 0.00129857i
\(748\) 190.638 + 330.194i 0.254863 + 0.441436i
\(749\) −14.1928 16.9143i −0.0189490 0.0225825i
\(750\) −331.620 + 177.779i −0.442160 + 0.237038i
\(751\) 123.896 702.649i 0.164975 0.935618i −0.784116 0.620615i \(-0.786883\pi\)
0.949090 0.315004i \(-0.102006\pi\)
\(752\) 63.6609 75.8681i 0.0846555 0.100888i
\(753\) 731.475 240.431i 0.971414 0.319297i
\(754\) −68.3416 24.8743i −0.0906387 0.0329898i
\(755\) 1076.25i 1.42550i
\(756\) −39.6524 28.1940i −0.0524502 0.0372937i
\(757\) 1327.86 1.75411 0.877055 0.480390i \(-0.159505\pi\)
0.877055 + 0.480390i \(0.159505\pi\)
\(758\) 50.3790 138.415i 0.0664631 0.182606i
\(759\) −1015.82 + 1135.95i −1.33836 + 1.49663i
\(760\) 183.459 + 153.940i 0.241393 + 0.202553i
\(761\) −928.015 163.634i −1.21947 0.215025i −0.473371 0.880863i \(-0.656963\pi\)
−0.746096 + 0.665838i \(0.768074\pi\)
\(762\) −442.978 13.9572i −0.581336 0.0183165i
\(763\) 23.1713 19.4430i 0.0303687 0.0254824i
\(764\) −29.6953 + 17.1446i −0.0388682 + 0.0224406i
\(765\) −385.870 777.648i −0.504406 1.01653i
\(766\) 45.8707 79.4505i