Properties

Label 54.3.f.a.11.5
Level $54$
Weight $3$
Character 54.11
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 11.5
Character \(\chi\) \(=\) 54.11
Dual form 54.3.f.a.5.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.909039 - 1.08335i) q^{2} +(1.54884 - 2.56926i) q^{3} +(-0.347296 - 1.96962i) q^{4} +(-1.07911 + 2.96482i) q^{5} +(-1.37545 - 4.01349i) q^{6} +(-0.250410 + 1.42015i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(-4.20220 - 7.95874i) q^{9} +O(q^{10})\) \(q+(0.909039 - 1.08335i) q^{2} +(1.54884 - 2.56926i) q^{3} +(-0.347296 - 1.96962i) q^{4} +(-1.07911 + 2.96482i) q^{5} +(-1.37545 - 4.01349i) q^{6} +(-0.250410 + 1.42015i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(-4.20220 - 7.95874i) q^{9} +(2.23099 + 3.86419i) q^{10} +(6.39485 + 17.5697i) q^{11} +(-5.59836 - 2.15832i) q^{12} +(10.5936 - 8.88908i) q^{13} +(1.31088 + 1.56225i) q^{14} +(5.94604 + 7.36454i) q^{15} +(-3.75877 + 1.36808i) q^{16} +(-16.3520 + 9.44086i) q^{17} +(-12.4421 - 2.68235i) q^{18} +(-1.14343 + 1.98047i) q^{19} +(6.21434 + 1.09575i) q^{20} +(3.26088 + 2.84294i) q^{21} +(24.8473 + 9.04368i) q^{22} +(-26.5788 + 4.68656i) q^{23} +(-7.42735 + 4.10299i) q^{24} +(11.5254 + 9.67096i) q^{25} -19.5571i q^{26} +(-26.9566 - 1.53026i) q^{27} +2.88411 q^{28} +(17.2495 - 20.5571i) q^{29} +(13.3836 + 0.253009i) q^{30} +(-4.55767 - 25.8478i) q^{31} +(-1.93476 + 5.31570i) q^{32} +(55.0457 + 10.7826i) q^{33} +(-4.63689 + 26.2971i) q^{34} +(-3.94026 - 2.27491i) q^{35} +(-14.2162 + 11.0408i) q^{36} +(-33.8611 - 58.6492i) q^{37} +(1.10613 + 3.03906i) q^{38} +(-6.43059 - 40.9854i) q^{39} +(6.83616 - 5.73622i) q^{40} +(-13.0402 - 15.5407i) q^{41} +(6.04417 - 0.948327i) q^{42} +(-32.2609 + 11.7420i) q^{43} +(32.3847 - 18.6973i) q^{44} +(28.1309 - 3.87044i) q^{45} +(-19.0840 + 33.0544i) q^{46} +(46.4969 + 8.19866i) q^{47} +(-2.30677 + 11.7762i) q^{48} +(44.0908 + 16.0478i) q^{49} +(20.9541 - 3.69477i) q^{50} +(-1.07065 + 56.6350i) q^{51} +(-21.1872 - 17.7782i) q^{52} -49.0655i q^{53} +(-26.1624 + 27.8124i) q^{54} -58.9918 q^{55} +(2.62176 - 3.12450i) q^{56} +(3.31737 + 6.00520i) q^{57} +(-6.59012 - 37.3744i) q^{58} +(-13.0684 + 35.9050i) q^{59} +(12.4403 - 14.2691i) q^{60} +(-9.55898 + 54.2117i) q^{61} +(-32.1454 - 18.5591i) q^{62} +(12.3548 - 3.97479i) q^{63} +(4.00000 + 6.92820i) q^{64} +(14.9229 + 41.0004i) q^{65} +(61.7201 - 49.8320i) q^{66} +(-95.2638 + 79.9358i) q^{67} +(24.2739 + 28.9285i) q^{68} +(-29.1253 + 75.5466i) q^{69} +(-6.04638 + 2.20070i) q^{70} +(10.4669 - 6.04307i) q^{71} +(-0.962114 + 25.4377i) q^{72} +(37.3933 - 64.7671i) q^{73} +(-94.3187 - 16.6309i) q^{74} +(42.6982 - 14.6330i) q^{75} +(4.29788 + 1.56430i) q^{76} +(-26.5529 + 4.68199i) q^{77} +(-50.2472 - 30.2908i) q^{78} +(74.8249 + 62.7855i) q^{79} -12.6204i q^{80} +(-45.6831 + 66.8884i) q^{81} -28.6900 q^{82} +(81.1294 - 96.6863i) q^{83} +(4.46701 - 7.41002i) q^{84} +(-10.3449 - 58.6687i) q^{85} +(-16.6057 + 45.6238i) q^{86} +(-26.0999 - 76.1580i) q^{87} +(9.18320 - 52.0805i) q^{88} +(9.23832 + 5.33375i) q^{89} +(21.3790 - 33.9940i) q^{90} +(9.97104 + 17.2703i) q^{91} +(18.4614 + 50.7224i) q^{92} +(-73.4689 - 28.3243i) q^{93} +(51.1495 - 42.9196i) q^{94} +(-4.63788 - 5.52721i) q^{95} +(10.6608 + 13.2041i) q^{96} +(145.826 - 53.0765i) q^{97} +(57.4656 - 33.1778i) q^{98} +(112.960 - 124.726i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.909039 1.08335i 0.454519 0.541675i
\(3\) 1.54884 2.56926i 0.516279 0.856420i
\(4\) −0.347296 1.96962i −0.0868241 0.492404i
\(5\) −1.07911 + 2.96482i −0.215822 + 0.592965i −0.999606 0.0280680i \(-0.991064\pi\)
0.783784 + 0.621033i \(0.213287\pi\)
\(6\) −1.37545 4.01349i −0.229242 0.668915i
\(7\) −0.250410 + 1.42015i −0.0357728 + 0.202878i −0.997456 0.0712856i \(-0.977290\pi\)
0.961683 + 0.274163i \(0.0884009\pi\)
\(8\) −2.44949 1.41421i −0.306186 0.176777i
\(9\) −4.20220 7.95874i −0.466911 0.884304i
\(10\) 2.23099 + 3.86419i 0.223099 + 0.386419i
\(11\) 6.39485 + 17.5697i 0.581350 + 1.59725i 0.785876 + 0.618385i \(0.212213\pi\)
−0.204526 + 0.978861i \(0.565565\pi\)
\(12\) −5.59836 2.15832i −0.466530 0.179860i
\(13\) 10.5936 8.88908i 0.814891 0.683775i −0.136879 0.990588i \(-0.543707\pi\)
0.951770 + 0.306813i \(0.0992625\pi\)
\(14\) 1.31088 + 1.56225i 0.0936345 + 0.111589i
\(15\) 5.94604 + 7.36454i 0.396403 + 0.490970i
\(16\) −3.75877 + 1.36808i −0.234923 + 0.0855050i
\(17\) −16.3520 + 9.44086i −0.961885 + 0.555345i −0.896753 0.442532i \(-0.854080\pi\)
−0.0651325 + 0.997877i \(0.520747\pi\)
\(18\) −12.4421 2.68235i −0.691226 0.149019i
\(19\) −1.14343 + 1.98047i −0.0601804 + 0.104236i −0.894546 0.446976i \(-0.852501\pi\)
0.834366 + 0.551212i \(0.185834\pi\)
\(20\) 6.21434 + 1.09575i 0.310717 + 0.0547877i
\(21\) 3.26088 + 2.84294i 0.155280 + 0.135378i
\(22\) 24.8473 + 9.04368i 1.12942 + 0.411077i
\(23\) −26.5788 + 4.68656i −1.15560 + 0.203763i −0.718419 0.695610i \(-0.755134\pi\)
−0.437181 + 0.899374i \(0.644023\pi\)
\(24\) −7.42735 + 4.10299i −0.309473 + 0.170958i
\(25\) 11.5254 + 9.67096i 0.461016 + 0.386838i
\(26\) 19.5571i 0.752196i
\(27\) −26.9566 1.53026i −0.998393 0.0566762i
\(28\) 2.88411 0.103004
\(29\) 17.2495 20.5571i 0.594809 0.708865i −0.381714 0.924281i \(-0.624666\pi\)
0.976523 + 0.215415i \(0.0691105\pi\)
\(30\) 13.3836 + 0.253009i 0.446119 + 0.00843363i
\(31\) −4.55767 25.8478i −0.147022 0.833801i −0.965722 0.259580i \(-0.916416\pi\)
0.818700 0.574221i \(-0.194695\pi\)
\(32\) −1.93476 + 5.31570i −0.0604612 + 0.166116i
\(33\) 55.0457 + 10.7826i 1.66805 + 0.326745i
\(34\) −4.63689 + 26.2971i −0.136379 + 0.773444i
\(35\) −3.94026 2.27491i −0.112579 0.0649975i
\(36\) −14.2162 + 11.0408i −0.394896 + 0.306688i
\(37\) −33.8611 58.6492i −0.915166 1.58511i −0.806659 0.591018i \(-0.798726\pi\)
−0.108507 0.994096i \(-0.534607\pi\)
\(38\) 1.10613 + 3.03906i 0.0291086 + 0.0799753i
\(39\) −6.43059 40.9854i −0.164887 1.05091i
\(40\) 6.83616 5.73622i 0.170904 0.143405i
\(41\) −13.0402 15.5407i −0.318053 0.379041i 0.583204 0.812326i \(-0.301799\pi\)
−0.901257 + 0.433285i \(0.857354\pi\)
\(42\) 6.04417 0.948327i 0.143909 0.0225792i
\(43\) −32.2609 + 11.7420i −0.750254 + 0.273070i −0.688713 0.725034i \(-0.741824\pi\)
−0.0615413 + 0.998105i \(0.519602\pi\)
\(44\) 32.3847 18.6973i 0.736015 0.424938i
\(45\) 28.1309 3.87044i 0.625131 0.0860099i
\(46\) −19.0840 + 33.0544i −0.414869 + 0.718574i
\(47\) 46.4969 + 8.19866i 0.989296 + 0.174440i 0.644803 0.764349i \(-0.276940\pi\)
0.344494 + 0.938789i \(0.388051\pi\)
\(48\) −2.30677 + 11.7762i −0.0480578 + 0.245337i
\(49\) 44.0908 + 16.0478i 0.899813 + 0.327505i
\(50\) 20.9541 3.69477i 0.419081 0.0738954i
\(51\) −1.07065 + 56.6350i −0.0209932 + 1.11049i
\(52\) −21.1872 17.7782i −0.407446 0.341888i
\(53\) 49.0655i 0.925765i −0.886420 0.462882i \(-0.846815\pi\)
0.886420 0.462882i \(-0.153185\pi\)
\(54\) −26.1624 + 27.8124i −0.484489 + 0.515044i
\(55\) −58.9918 −1.07258
\(56\) 2.62176 3.12450i 0.0468172 0.0557946i
\(57\) 3.31737 + 6.00520i 0.0581995 + 0.105354i
\(58\) −6.59012 37.3744i −0.113623 0.644386i
\(59\) −13.0684 + 35.9050i −0.221498 + 0.608560i −0.999813 0.0193130i \(-0.993852\pi\)
0.778316 + 0.627873i \(0.216074\pi\)
\(60\) 12.4403 14.2691i 0.207338 0.237818i
\(61\) −9.55898 + 54.2117i −0.156705 + 0.888716i 0.800506 + 0.599324i \(0.204564\pi\)
−0.957211 + 0.289391i \(0.906547\pi\)
\(62\) −32.1454 18.5591i −0.518474 0.299341i
\(63\) 12.3548 3.97479i 0.196109 0.0630918i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) 14.9229 + 41.0004i 0.229583 + 0.630775i
\(66\) 61.7201 49.8320i 0.935152 0.755031i
\(67\) −95.2638 + 79.9358i −1.42185 + 1.19307i −0.471505 + 0.881863i \(0.656289\pi\)
−0.950342 + 0.311208i \(0.899266\pi\)
\(68\) 24.2739 + 28.9285i 0.356969 + 0.425419i
\(69\) −29.1253 + 75.5466i −0.422105 + 1.09488i
\(70\) −6.04638 + 2.20070i −0.0863768 + 0.0314386i
\(71\) 10.4669 6.04307i 0.147421 0.0851136i −0.424475 0.905440i \(-0.639541\pi\)
0.571896 + 0.820326i \(0.306208\pi\)
\(72\) −0.962114 + 25.4377i −0.0133627 + 0.353301i
\(73\) 37.3933 64.7671i 0.512237 0.887220i −0.487663 0.873032i \(-0.662150\pi\)
0.999899 0.0141878i \(-0.00451627\pi\)
\(74\) −94.3187 16.6309i −1.27458 0.224742i
\(75\) 42.6982 14.6330i 0.569309 0.195107i
\(76\) 4.29788 + 1.56430i 0.0565511 + 0.0205829i
\(77\) −26.5529 + 4.68199i −0.344842 + 0.0608050i
\(78\) −50.2472 30.2908i −0.644195 0.388343i
\(79\) 74.8249 + 62.7855i 0.947151 + 0.794754i 0.978815 0.204745i \(-0.0656364\pi\)
−0.0316647 + 0.999499i \(0.510081\pi\)
\(80\) 12.6204i 0.157755i
\(81\) −45.6831 + 66.8884i −0.563988 + 0.825783i
\(82\) −28.6900 −0.349879
\(83\) 81.1294 96.6863i 0.977463 1.16490i −0.00884154 0.999961i \(-0.502814\pi\)
0.986305 0.164934i \(-0.0527412\pi\)
\(84\) 4.46701 7.41002i 0.0531787 0.0882145i
\(85\) −10.3449 58.6687i −0.121704 0.690220i
\(86\) −16.6057 + 45.6238i −0.193090 + 0.530510i
\(87\) −26.0999 76.1580i −0.299999 0.875379i
\(88\) 9.18320 52.0805i 0.104355 0.591824i
\(89\) 9.23832 + 5.33375i 0.103801 + 0.0599298i 0.551002 0.834504i \(-0.314246\pi\)
−0.447201 + 0.894434i \(0.647579\pi\)
\(90\) 21.3790 33.9940i 0.237545 0.377711i
\(91\) 9.97104 + 17.2703i 0.109572 + 0.189784i
\(92\) 18.4614 + 50.7224i 0.200668 + 0.551330i
\(93\) −73.4689 28.3243i −0.789988 0.304562i
\(94\) 51.1495 42.9196i 0.544144 0.456591i
\(95\) −4.63788 5.52721i −0.0488198 0.0581811i
\(96\) 10.6608 + 13.2041i 0.111050 + 0.137542i
\(97\) 145.826 53.0765i 1.50337 0.547180i 0.546436 0.837501i \(-0.315984\pi\)
0.956929 + 0.290320i \(0.0937619\pi\)
\(98\) 57.4656 33.1778i 0.586384 0.338549i
\(99\) 112.960 124.726i 1.14101 1.25986i
\(100\) 15.0453 26.0593i 0.150453 0.260593i
\(101\) −98.5993 17.3857i −0.976231 0.172136i −0.337298 0.941398i \(-0.609513\pi\)
−0.638933 + 0.769262i \(0.720624\pi\)
\(102\) 60.3823 + 52.6434i 0.591984 + 0.516111i
\(103\) 121.218 + 44.1198i 1.17687 + 0.428347i 0.855097 0.518468i \(-0.173498\pi\)
0.321777 + 0.946815i \(0.395720\pi\)
\(104\) −38.5199 + 6.79210i −0.370384 + 0.0653087i
\(105\) −11.9477 + 6.60009i −0.113787 + 0.0628580i
\(106\) −53.1552 44.6025i −0.501464 0.420778i
\(107\) 106.516i 0.995473i 0.867328 + 0.497736i \(0.165835\pi\)
−0.867328 + 0.497736i \(0.834165\pi\)
\(108\) 6.34791 + 53.6256i 0.0587769 + 0.496533i
\(109\) 102.881 0.943865 0.471933 0.881635i \(-0.343557\pi\)
0.471933 + 0.881635i \(0.343557\pi\)
\(110\) −53.6259 + 63.9088i −0.487508 + 0.580989i
\(111\) −203.130 3.84007i −1.83000 0.0345952i
\(112\) −1.00164 5.68058i −0.00894321 0.0507195i
\(113\) 30.8936 84.8796i 0.273395 0.751147i −0.724678 0.689088i \(-0.758011\pi\)
0.998073 0.0620584i \(-0.0197665\pi\)
\(114\) 9.52135 + 1.86508i 0.0835207 + 0.0163604i
\(115\) 14.7866 83.8588i 0.128579 0.729207i
\(116\) −46.4802 26.8354i −0.400692 0.231340i
\(117\) −115.262 46.9579i −0.985147 0.401350i
\(118\) 27.0181 + 46.7967i 0.228967 + 0.396582i
\(119\) −9.31268 25.5864i −0.0782578 0.215011i
\(120\) −4.14973 26.4484i −0.0345811 0.220403i
\(121\) −175.109 + 146.934i −1.44718 + 1.21433i
\(122\) 50.0408 + 59.6362i 0.410170 + 0.488822i
\(123\) −60.1252 + 9.43362i −0.488823 + 0.0766961i
\(124\) −49.3274 + 17.9537i −0.397802 + 0.144788i
\(125\) −109.420 + 63.1735i −0.875358 + 0.505388i
\(126\) 6.92494 16.9979i 0.0549599 0.134904i
\(127\) −20.3684 + 35.2791i −0.160381 + 0.277788i −0.935005 0.354634i \(-0.884606\pi\)
0.774624 + 0.632422i \(0.217939\pi\)
\(128\) 11.1418 + 1.96460i 0.0870455 + 0.0153485i
\(129\) −19.7987 + 101.073i −0.153478 + 0.783513i
\(130\) 57.9833 + 21.1042i 0.446026 + 0.162340i
\(131\) 48.6358 8.57581i 0.371266 0.0654642i 0.0150977 0.999886i \(-0.495194\pi\)
0.356168 + 0.934422i \(0.384083\pi\)
\(132\) 2.12039 112.164i 0.0160636 0.849725i
\(133\) −2.52624 2.11976i −0.0189943 0.0159381i
\(134\) 175.869i 1.31245i
\(135\) 33.6260 78.2703i 0.249082 0.579780i
\(136\) 53.4056 0.392688
\(137\) −86.7066 + 103.333i −0.632895 + 0.754255i −0.983230 0.182369i \(-0.941623\pi\)
0.350335 + 0.936624i \(0.386068\pi\)
\(138\) 55.3674 + 100.228i 0.401213 + 0.726287i
\(139\) −13.8192 78.3726i −0.0994187 0.563832i −0.993303 0.115535i \(-0.963142\pi\)
0.893885 0.448297i \(-0.147969\pi\)
\(140\) −3.11226 + 8.55087i −0.0222304 + 0.0610776i
\(141\) 93.0807 106.764i 0.660147 0.757194i
\(142\) 2.96806 16.8327i 0.0209018 0.118540i
\(143\) 223.923 + 129.282i 1.56589 + 0.904069i
\(144\) 26.6833 + 24.1661i 0.185301 + 0.167820i
\(145\) 42.3342 + 73.3249i 0.291960 + 0.505689i
\(146\) −36.1735 99.3858i −0.247764 0.680725i
\(147\) 109.520 88.4255i 0.745037 0.601534i
\(148\) −103.757 + 87.0621i −0.701058 + 0.588257i
\(149\) −80.7384 96.2203i −0.541869 0.645774i 0.423737 0.905785i \(-0.360718\pi\)
−0.965606 + 0.260011i \(0.916274\pi\)
\(150\) 22.9617 59.5591i 0.153078 0.397060i
\(151\) −106.373 + 38.7167i −0.704459 + 0.256402i −0.669314 0.742980i \(-0.733412\pi\)
−0.0351455 + 0.999382i \(0.511189\pi\)
\(152\) 5.60163 3.23410i 0.0368528 0.0212770i
\(153\) 143.852 + 90.4693i 0.940208 + 0.591303i
\(154\) −19.0654 + 33.0222i −0.123801 + 0.214430i
\(155\) 81.5525 + 14.3799i 0.526145 + 0.0927736i
\(156\) −78.4922 + 26.8999i −0.503155 + 0.172435i
\(157\) −48.5338 17.6648i −0.309132 0.112515i 0.182796 0.983151i \(-0.441485\pi\)
−0.491928 + 0.870636i \(0.663708\pi\)
\(158\) 136.038 23.9871i 0.860997 0.151817i
\(159\) −126.062 75.9946i −0.792843 0.477953i
\(160\) −13.6723 11.4724i −0.0854520 0.0717027i
\(161\) 38.9193i 0.241735i
\(162\) 30.9359 + 110.295i 0.190962 + 0.680833i
\(163\) 1.04117 0.00638756 0.00319378 0.999995i \(-0.498983\pi\)
0.00319378 + 0.999995i \(0.498983\pi\)
\(164\) −26.0804 + 31.0814i −0.159027 + 0.189521i
\(165\) −91.3688 + 151.565i −0.553750 + 0.918578i
\(166\) −30.9953 175.783i −0.186719 1.05894i
\(167\) 79.8469 219.378i 0.478125 1.31364i −0.432957 0.901414i \(-0.642530\pi\)
0.911083 0.412224i \(-0.135248\pi\)
\(168\) −3.96696 11.5753i −0.0236128 0.0689008i
\(169\) 3.86190 21.9019i 0.0228515 0.129597i
\(170\) −72.9626 42.1250i −0.429192 0.247794i
\(171\) 20.5670 + 0.777893i 0.120275 + 0.00454908i
\(172\) 34.3313 + 59.4636i 0.199601 + 0.345719i
\(173\) −39.2036 107.711i −0.226611 0.622607i 0.773324 0.634011i \(-0.218592\pi\)
−0.999935 + 0.0114031i \(0.996370\pi\)
\(174\) −106.232 40.9552i −0.610526 0.235375i
\(175\) −16.6202 + 13.9460i −0.0949728 + 0.0796916i
\(176\) −48.0735 57.2918i −0.273145 0.325522i
\(177\) 72.0086 + 89.1872i 0.406828 + 0.503882i
\(178\) 14.1763 5.15976i 0.0796422 0.0289874i
\(179\) −156.103 + 90.1263i −0.872086 + 0.503499i −0.868041 0.496493i \(-0.834621\pi\)
−0.00404482 + 0.999992i \(0.501288\pi\)
\(180\) −17.3930 54.0629i −0.0966280 0.300349i
\(181\) 17.6283 30.5332i 0.0973941 0.168691i −0.813211 0.581969i \(-0.802283\pi\)
0.910605 + 0.413277i \(0.135616\pi\)
\(182\) 27.7739 + 4.89729i 0.152604 + 0.0269082i
\(183\) 124.479 + 108.525i 0.680211 + 0.593031i
\(184\) 71.7323 + 26.1084i 0.389849 + 0.141894i
\(185\) 210.424 37.1035i 1.13743 0.200559i
\(186\) −97.4712 + 53.8447i −0.524039 + 0.289488i
\(187\) −270.442 226.928i −1.44621 1.21352i
\(188\) 94.4284i 0.502279i
\(189\) 8.92339 37.8991i 0.0472137 0.200524i
\(190\) −10.2039 −0.0537048
\(191\) −13.7198 + 16.3506i −0.0718313 + 0.0856053i −0.800763 0.598981i \(-0.795573\pi\)
0.728932 + 0.684586i \(0.240017\pi\)
\(192\) 23.9957 + 0.453626i 0.124978 + 0.00236263i
\(193\) −22.8734 129.722i −0.118515 0.672133i −0.984950 0.172842i \(-0.944705\pi\)
0.866434 0.499291i \(-0.166406\pi\)
\(194\) 75.0615 206.230i 0.386915 1.06304i
\(195\) 128.454 + 25.1621i 0.658738 + 0.129037i
\(196\) 16.2953 92.4153i 0.0831394 0.471507i
\(197\) −26.6300 15.3748i −0.135177 0.0780447i 0.430886 0.902406i \(-0.358201\pi\)
−0.566064 + 0.824362i \(0.691534\pi\)
\(198\) −32.4370 235.757i −0.163823 1.19069i
\(199\) 122.692 + 212.509i 0.616545 + 1.06789i 0.990111 + 0.140283i \(0.0448013\pi\)
−0.373567 + 0.927603i \(0.621865\pi\)
\(200\) −14.5545 39.9883i −0.0727727 0.199941i
\(201\) 57.8277 + 368.565i 0.287700 + 1.83366i
\(202\) −108.465 + 91.0133i −0.536958 + 0.450561i
\(203\) 24.8746 + 29.6444i 0.122535 + 0.146032i
\(204\) 111.921 17.5604i 0.548633 0.0860802i
\(205\) 60.1472 21.8918i 0.293401 0.106789i
\(206\) 157.989 91.2150i 0.766937 0.442791i
\(207\) 148.988 + 191.840i 0.719751 + 0.926763i
\(208\) −27.6579 + 47.9049i −0.132971 + 0.230312i
\(209\) −42.1084 7.42485i −0.201476 0.0355256i
\(210\) −3.71069 + 18.9433i −0.0176699 + 0.0902060i
\(211\) −43.4786 15.8249i −0.206059 0.0749995i 0.236928 0.971527i \(-0.423859\pi\)
−0.442988 + 0.896528i \(0.646082\pi\)
\(212\) −96.6402 + 17.0403i −0.455850 + 0.0803787i
\(213\) 0.685323 36.2519i 0.00321748 0.170197i
\(214\) 115.394 + 96.8268i 0.539223 + 0.452462i
\(215\) 108.319i 0.503809i
\(216\) 63.8658 + 41.8707i 0.295675 + 0.193846i
\(217\) 37.8490 0.174419
\(218\) 93.5231 111.457i 0.429005 0.511269i
\(219\) −108.487 196.387i −0.495376 0.896743i
\(220\) 20.4876 + 116.191i 0.0931257 + 0.528142i
\(221\) −89.3063 + 245.367i −0.404101 + 1.11026i
\(222\) −188.814 + 216.571i −0.850512 + 0.975544i
\(223\) 9.89164 56.0983i 0.0443571 0.251562i −0.954564 0.298007i \(-0.903678\pi\)
0.998921 + 0.0464451i \(0.0147893\pi\)
\(224\) −7.06459 4.07874i −0.0315383 0.0182087i
\(225\) 28.5366 132.367i 0.126829 0.588297i
\(226\) −63.8708 110.627i −0.282614 0.489502i
\(227\) −29.6402 81.4359i −0.130574 0.358748i 0.857127 0.515105i \(-0.172247\pi\)
−0.987701 + 0.156357i \(0.950025\pi\)
\(228\) 10.6758 8.61953i 0.0468238 0.0378050i
\(229\) −99.4359 + 83.4366i −0.434218 + 0.364352i −0.833540 0.552458i \(-0.813690\pi\)
0.399322 + 0.916811i \(0.369245\pi\)
\(230\) −77.4069 92.2499i −0.336552 0.401087i
\(231\) −29.0969 + 75.4729i −0.125960 + 0.326722i
\(232\) −71.3245 + 25.9600i −0.307433 + 0.111897i
\(233\) −98.9330 + 57.1190i −0.424605 + 0.245146i −0.697046 0.717027i \(-0.745503\pi\)
0.272441 + 0.962173i \(0.412169\pi\)
\(234\) −155.650 + 82.1828i −0.665170 + 0.351208i
\(235\) −74.4828 + 129.008i −0.316948 + 0.548970i
\(236\) 75.2577 + 13.2700i 0.318889 + 0.0562287i
\(237\) 277.204 95.0000i 1.16964 0.400844i
\(238\) −36.1846 13.1701i −0.152036 0.0553366i
\(239\) −300.307 + 52.9523i −1.25652 + 0.221558i −0.761980 0.647600i \(-0.775773\pi\)
−0.494535 + 0.869158i \(0.664662\pi\)
\(240\) −32.4251 19.5470i −0.135105 0.0814457i
\(241\) 103.761 + 87.0654i 0.430542 + 0.361267i 0.832156 0.554542i \(-0.187106\pi\)
−0.401614 + 0.915809i \(0.631551\pi\)
\(242\) 323.273i 1.33584i
\(243\) 101.098 + 220.971i 0.416041 + 0.909346i
\(244\) 110.096 0.451213
\(245\) −95.1575 + 113.404i −0.388398 + 0.462875i
\(246\) −44.4363 + 73.7122i −0.180635 + 0.299643i
\(247\) 5.49159 + 31.1443i 0.0222332 + 0.126090i
\(248\) −25.3904 + 69.7595i −0.102381 + 0.281288i
\(249\) −122.756 358.194i −0.492996 1.43853i
\(250\) −31.0278 + 175.967i −0.124111 + 0.703869i
\(251\) 218.202 + 125.979i 0.869331 + 0.501909i 0.867126 0.498089i \(-0.165965\pi\)
0.00220530 + 0.999998i \(0.499298\pi\)
\(252\) −12.1196 22.9538i −0.0480936 0.0910867i
\(253\) −252.309 437.012i −0.997268 1.72732i
\(254\) 19.7040 + 54.1362i 0.0775746 + 0.213135i
\(255\) −166.758 64.2896i −0.653951 0.252116i
\(256\) 12.2567 10.2846i 0.0478778 0.0401742i
\(257\) 208.414 + 248.378i 0.810948 + 0.966450i 0.999879 0.0155401i \(-0.00494676\pi\)
−0.188931 + 0.981990i \(0.560502\pi\)
\(258\) 91.4999 + 113.328i 0.354651 + 0.439257i
\(259\) 91.7695 33.4014i 0.354323 0.128963i
\(260\) 75.5724 43.6317i 0.290663 0.167814i
\(261\) −236.094 50.8989i −0.904575 0.195015i
\(262\) 34.9213 60.4854i 0.133287 0.230860i
\(263\) −26.0438 4.59223i −0.0990259 0.0174609i 0.123916 0.992293i \(-0.460455\pi\)
−0.222942 + 0.974832i \(0.571566\pi\)
\(264\) −119.585 104.258i −0.452974 0.394918i
\(265\) 145.471 + 52.9470i 0.548946 + 0.199800i
\(266\) −4.59289 + 0.809851i −0.0172665 + 0.00304455i
\(267\) 28.0125 15.4745i 0.104916 0.0579571i
\(268\) 190.528 + 159.872i 0.710924 + 0.596536i
\(269\) 499.973i 1.85864i −0.369280 0.929318i \(-0.620396\pi\)
0.369280 0.929318i \(-0.379604\pi\)
\(270\) −54.2268 107.580i −0.200840 0.398443i
\(271\) −101.367 −0.374047 −0.187024 0.982355i \(-0.559884\pi\)
−0.187024 + 0.982355i \(0.559884\pi\)
\(272\) 48.5477 57.8569i 0.178484 0.212709i
\(273\) 59.8155 + 1.13078i 0.219105 + 0.00414205i
\(274\) 33.1261 + 187.867i 0.120898 + 0.685647i
\(275\) −96.2127 + 264.342i −0.349864 + 0.961244i
\(276\) 158.913 + 31.1285i 0.575771 + 0.112785i
\(277\) −9.93895 + 56.3666i −0.0358807 + 0.203489i −0.997478 0.0709742i \(-0.977389\pi\)
0.961597 + 0.274464i \(0.0885003\pi\)
\(278\) −97.4672 56.2727i −0.350601 0.202420i
\(279\) −186.564 + 144.891i −0.668688 + 0.519323i
\(280\) 6.43442 + 11.1447i 0.0229801 + 0.0398027i
\(281\) 41.8819 + 115.069i 0.149046 + 0.409500i 0.991638 0.129053i \(-0.0411936\pi\)
−0.842592 + 0.538552i \(0.818971\pi\)
\(282\) −31.0492 197.892i −0.110103 0.701745i
\(283\) 360.147 302.199i 1.27260 1.06784i 0.278384 0.960470i \(-0.410201\pi\)
0.994219 0.107371i \(-0.0342432\pi\)
\(284\) −15.5376 18.5170i −0.0547100 0.0652008i
\(285\) −21.3842 + 3.35517i −0.0750322 + 0.0117725i
\(286\) 343.612 125.065i 1.20144 0.437289i
\(287\) 25.3354 14.6274i 0.0882767 0.0509666i
\(288\) 50.4365 6.93941i 0.175127 0.0240952i
\(289\) 33.7597 58.4734i 0.116815 0.202330i
\(290\) 117.920 + 20.7925i 0.406621 + 0.0716982i
\(291\) 89.4943 456.873i 0.307541 1.57001i
\(292\) −140.553 51.1570i −0.481345 0.175195i
\(293\) 201.841 35.5901i 0.688879 0.121468i 0.181758 0.983343i \(-0.441821\pi\)
0.507120 + 0.861875i \(0.330710\pi\)
\(294\) 3.76258 199.031i 0.0127979 0.676977i
\(295\) −92.3500 77.4908i −0.313051 0.262681i
\(296\) 191.547i 0.647120i
\(297\) −145.497 483.405i −0.489890 1.62763i
\(298\) −177.635 −0.596090
\(299\) −239.906 + 285.908i −0.802360 + 0.956215i
\(300\) −43.6503 79.0170i −0.145501 0.263390i
\(301\) −8.59691 48.7555i −0.0285612 0.161978i
\(302\) −54.7537 + 150.435i −0.181304 + 0.498128i
\(303\) −197.383 + 226.400i −0.651428 + 0.747193i
\(304\) 1.58843 9.00845i 0.00522511 0.0296331i
\(305\) −150.413 86.8409i −0.493157 0.284724i
\(306\) 228.777 73.6019i 0.747637 0.240529i
\(307\) −28.8883 50.0359i −0.0940986 0.162984i 0.815133 0.579273i \(-0.196664\pi\)
−0.909232 + 0.416290i \(0.863330\pi\)
\(308\) 18.4434 + 50.6729i 0.0598813 + 0.164522i
\(309\) 301.102 243.106i 0.974441 0.786752i
\(310\) 89.7129 75.2780i 0.289396 0.242832i
\(311\) −11.1131 13.2441i −0.0357336 0.0425856i 0.747882 0.663832i \(-0.231071\pi\)
−0.783615 + 0.621246i \(0.786627\pi\)
\(312\) −42.2105 + 109.488i −0.135290 + 0.350922i
\(313\) −327.046 + 119.035i −1.04488 + 0.380304i −0.806727 0.590925i \(-0.798763\pi\)
−0.238149 + 0.971229i \(0.576541\pi\)
\(314\) −63.2563 + 36.5210i −0.201453 + 0.116309i
\(315\) −1.54766 + 40.9191i −0.00491321 + 0.129902i
\(316\) 97.6770 169.181i 0.309104 0.535384i
\(317\) 255.079 + 44.9772i 0.804664 + 0.141884i 0.560828 0.827932i \(-0.310483\pi\)
0.243836 + 0.969816i \(0.421594\pi\)
\(318\) −196.924 + 67.4874i −0.619258 + 0.212225i
\(319\) 471.490 + 171.608i 1.47802 + 0.537957i
\(320\) −24.8573 + 4.38302i −0.0776792 + 0.0136969i
\(321\) 273.666 + 164.975i 0.852543 + 0.513942i
\(322\) −42.1633 35.3792i −0.130942 0.109873i
\(323\) 43.1798i 0.133683i
\(324\) 147.610 + 66.7479i 0.455586 + 0.206012i
\(325\) 208.061 0.640188
\(326\) 0.946467 1.12796i 0.00290327 0.00345998i
\(327\) 159.347 264.329i 0.487298 0.808345i
\(328\) 9.96395 + 56.5084i 0.0303779 + 0.172282i
\(329\) −23.2866 + 63.9794i −0.0707799 + 0.194466i
\(330\) 81.1406 + 236.763i 0.245881 + 0.717464i
\(331\) −57.9326 + 328.552i −0.175023 + 0.992605i 0.763094 + 0.646287i \(0.223679\pi\)
−0.938117 + 0.346318i \(0.887432\pi\)
\(332\) −218.611 126.215i −0.658466 0.380166i
\(333\) −324.482 + 515.947i −0.974422 + 1.54939i
\(334\) −165.079 285.925i −0.494248 0.856063i
\(335\) −134.196 368.700i −0.400584 1.10060i
\(336\) −16.1463 6.22483i −0.0480544 0.0185263i
\(337\) 192.673 161.672i 0.571731 0.479739i −0.310489 0.950577i \(-0.600493\pi\)
0.882220 + 0.470838i \(0.156048\pi\)
\(338\) −20.2168 24.0935i −0.0598131 0.0712825i
\(339\) −170.228 210.839i −0.502149 0.621943i
\(340\) −111.962 + 40.7508i −0.329300 + 0.119855i
\(341\) 424.993 245.370i 1.24631 0.719560i
\(342\) 19.5389 21.5741i 0.0571314 0.0630822i
\(343\) −69.1612 + 119.791i −0.201636 + 0.349244i
\(344\) 95.6285 + 16.8619i 0.277990 + 0.0490171i
\(345\) −192.553 167.874i −0.558125 0.486592i
\(346\) −152.326 55.4423i −0.440250 0.160238i
\(347\) −532.939 + 93.9715i −1.53585 + 0.270811i −0.876638 0.481150i \(-0.840219\pi\)
−0.659208 + 0.751961i \(0.729108\pi\)
\(348\) −140.937 + 77.8562i −0.404993 + 0.223725i
\(349\) 473.306 + 397.151i 1.35618 + 1.13797i 0.977142 + 0.212586i \(0.0681886\pi\)
0.379036 + 0.925382i \(0.376256\pi\)
\(350\) 30.6830i 0.0876658i
\(351\) −299.170 + 223.408i −0.852335 + 0.636491i
\(352\) −105.768 −0.300477
\(353\) −84.7293 + 100.976i −0.240026 + 0.286052i −0.872587 0.488458i \(-0.837559\pi\)
0.632561 + 0.774511i \(0.282004\pi\)
\(354\) 162.080 + 3.06403i 0.457852 + 0.00865544i
\(355\) 6.62172 + 37.5537i 0.0186527 + 0.105785i
\(356\) 7.29700 20.0483i 0.0204972 0.0563156i
\(357\) −80.1619 15.7025i −0.224543 0.0439845i
\(358\) −44.2656 + 251.043i −0.123647 + 0.701237i
\(359\) −114.766 66.2604i −0.319683 0.184569i 0.331568 0.943431i \(-0.392422\pi\)
−0.651251 + 0.758862i \(0.725756\pi\)
\(360\) −74.3800 30.3025i −0.206611 0.0841735i
\(361\) 177.885 + 308.106i 0.492757 + 0.853480i
\(362\) −17.0533 46.8535i −0.0471085 0.129429i
\(363\) 106.296 + 677.478i 0.292826 + 1.86633i
\(364\) 30.5530 25.6370i 0.0839369 0.0704314i
\(365\) 151.672 + 180.755i 0.415539 + 0.495220i
\(366\) 230.726 36.2008i 0.630399 0.0989093i
\(367\) −74.9103 + 27.2651i −0.204115 + 0.0742919i −0.442055 0.896988i \(-0.645750\pi\)
0.237939 + 0.971280i \(0.423528\pi\)
\(368\) 93.4920 53.9776i 0.254054 0.146678i
\(369\) −68.8868 + 169.088i −0.186685 + 0.458234i
\(370\) 151.088 261.692i 0.408346 0.707275i
\(371\) 69.6802 + 12.2865i 0.187817 + 0.0331172i
\(372\) −30.2724 + 154.542i −0.0813775 + 0.415437i
\(373\) −526.327 191.567i −1.41106 0.513586i −0.479623 0.877475i \(-0.659226\pi\)
−0.931442 + 0.363889i \(0.881449\pi\)
\(374\) −491.685 + 86.6973i −1.31466 + 0.231811i
\(375\) −7.16429 + 378.974i −0.0191048 + 1.01060i
\(376\) −102.299 85.8391i −0.272072 0.228296i
\(377\) 371.105i 0.984364i
\(378\) −32.9463 44.1189i −0.0871595 0.116717i
\(379\) −485.129 −1.28002 −0.640012 0.768365i \(-0.721071\pi\)
−0.640012 + 0.768365i \(0.721071\pi\)
\(380\) −9.27576 + 11.0544i −0.0244099 + 0.0290906i
\(381\) 59.0938 + 106.973i 0.155102 + 0.280770i
\(382\) 5.24161 + 29.7267i 0.0137215 + 0.0778185i
\(383\) 60.5772 166.434i 0.158165 0.434555i −0.835145 0.550029i \(-0.814617\pi\)
0.993310 + 0.115474i \(0.0368388\pi\)
\(384\) 22.3045 25.5834i 0.0580846 0.0666234i
\(385\) 14.7721 83.7770i 0.0383692 0.217602i
\(386\) −161.327 93.1422i −0.417945 0.241301i
\(387\) 229.018 + 207.414i 0.591779 + 0.535953i
\(388\) −155.185 268.789i −0.399962 0.692755i
\(389\) 200.042 + 549.610i 0.514246 + 1.41288i 0.876773 + 0.480905i \(0.159692\pi\)
−0.362527 + 0.931973i \(0.618086\pi\)
\(390\) 144.029 116.287i 0.369305 0.298172i
\(391\) 390.373 327.562i 0.998396 0.837753i
\(392\) −85.3051 101.663i −0.217615 0.259343i
\(393\) 53.2956 138.241i 0.135612 0.351757i
\(394\) −40.8640 + 14.8733i −0.103716 + 0.0377494i
\(395\) −266.892 + 154.090i −0.675677 + 0.390102i
\(396\) −284.894 179.171i −0.719428 0.452453i
\(397\) −167.855 + 290.734i −0.422810 + 0.732328i −0.996213 0.0869453i \(-0.972289\pi\)
0.573403 + 0.819273i \(0.305623\pi\)
\(398\) 341.754 + 60.2605i 0.858679 + 0.151408i
\(399\) −9.35896 + 3.20739i −0.0234560 + 0.00803856i
\(400\) −56.5520 20.5832i −0.141380 0.0514581i
\(401\) 656.528 115.764i 1.63723 0.288687i 0.722080 0.691810i \(-0.243186\pi\)
0.915146 + 0.403123i \(0.132075\pi\)
\(402\) 451.853 + 272.392i 1.12401 + 0.677593i
\(403\) −278.045 233.308i −0.689939 0.578928i
\(404\) 200.241i 0.495645i
\(405\) −149.015 207.622i −0.367939 0.512647i
\(406\) 54.7273 0.134796
\(407\) 813.912 969.983i 1.99978 2.38325i
\(408\) 82.7166 137.213i 0.202737 0.336306i
\(409\) 83.1381 + 471.500i 0.203272 + 1.15281i 0.900136 + 0.435608i \(0.143467\pi\)
−0.696865 + 0.717203i \(0.745422\pi\)
\(410\) 30.9597 85.0610i 0.0755114 0.207466i
\(411\) 131.195 + 382.818i 0.319208 + 0.931431i
\(412\) 44.8004 254.076i 0.108739 0.616688i
\(413\) −47.7179 27.5500i −0.115540 0.0667069i
\(414\) 343.266 + 12.9832i 0.829145 + 0.0313603i
\(415\) 199.110 + 344.869i 0.479784 + 0.831011i
\(416\) 26.7557 + 73.5106i 0.0643165 + 0.176708i
\(417\) −222.763 85.8813i −0.534205 0.205950i
\(418\) −46.3219 + 38.8687i −0.110818 + 0.0929873i
\(419\) −111.219 132.545i −0.265438 0.316337i 0.616819 0.787105i \(-0.288421\pi\)
−0.882257 + 0.470769i \(0.843977\pi\)
\(420\) 17.1490 + 21.2401i 0.0408310 + 0.0505717i
\(421\) −252.806 + 92.0139i −0.600490 + 0.218560i −0.624337 0.781155i \(-0.714631\pi\)
0.0238471 + 0.999716i \(0.492409\pi\)
\(422\) −56.6676 + 32.7171i −0.134283 + 0.0775286i
\(423\) −130.138 404.509i −0.307656 0.956287i
\(424\) −69.3891 + 120.185i −0.163654 + 0.283456i
\(425\) −279.766 49.3303i −0.658273 0.116071i
\(426\) −38.6506 33.6969i −0.0907290 0.0791006i
\(427\) −74.5948 27.1503i −0.174695 0.0635838i
\(428\) 209.795 36.9925i 0.490175 0.0864310i
\(429\) 678.979 375.079i 1.58270 0.874311i
\(430\) −117.347 98.4661i −0.272901 0.228991i
\(431\) 457.490i 1.06146i −0.847540 0.530731i \(-0.821918\pi\)
0.847540 0.530731i \(-0.178082\pi\)
\(432\) 103.417 31.1269i 0.239392 0.0720530i
\(433\) −541.733 −1.25112 −0.625558 0.780178i \(-0.715129\pi\)
−0.625558 + 0.780178i \(0.715129\pi\)
\(434\) 34.4062 41.0037i 0.0792769 0.0944785i
\(435\) 253.960 + 4.80097i 0.583815 + 0.0110367i
\(436\) −35.7303 202.637i −0.0819503 0.464763i
\(437\) 21.1093 57.9974i 0.0483051 0.132717i
\(438\) −311.375 60.9935i −0.710902 0.139255i
\(439\) 48.5394 275.280i 0.110568 0.627062i −0.878281 0.478144i \(-0.841310\pi\)
0.988849 0.148918i \(-0.0475792\pi\)
\(440\) 144.500 + 83.4270i 0.328409 + 0.189607i
\(441\) −57.5586 418.343i −0.130518 0.948624i
\(442\) 184.636 + 319.798i 0.417728 + 0.723526i
\(443\) 80.1232 + 220.137i 0.180865 + 0.496923i 0.996683 0.0813867i \(-0.0259349\pi\)
−0.815818 + 0.578309i \(0.803713\pi\)
\(444\) 62.9830 + 401.423i 0.141854 + 0.904105i
\(445\) −25.7828 + 21.6343i −0.0579388 + 0.0486165i
\(446\) −51.7822 61.7116i −0.116104 0.138367i
\(447\) −372.266 + 58.4083i −0.832809 + 0.130667i
\(448\) −10.8407 + 3.94569i −0.0241980 + 0.00880734i
\(449\) −26.8989 + 15.5301i −0.0599085 + 0.0345882i −0.529655 0.848213i \(-0.677679\pi\)
0.469747 + 0.882801i \(0.344345\pi\)
\(450\) −117.459 151.242i −0.261020 0.336093i
\(451\) 189.655 328.493i 0.420522 0.728365i
\(452\) −177.909 31.3702i −0.393605 0.0694031i
\(453\) −65.2817 + 333.267i −0.144110 + 0.735688i
\(454\) −115.168 41.9176i −0.253673 0.0923296i
\(455\) −61.9634 + 10.9258i −0.136183 + 0.0240128i
\(456\) 0.366768 19.4011i 0.000804316 0.0425464i
\(457\) −299.624 251.414i −0.655632 0.550140i 0.253142 0.967429i \(-0.418536\pi\)
−0.908774 + 0.417289i \(0.862980\pi\)
\(458\) 183.571i 0.400810i
\(459\) 455.243 229.471i 0.991814 0.499936i
\(460\) −170.305 −0.370228
\(461\) −29.1528 + 34.7429i −0.0632381 + 0.0753642i −0.796736 0.604327i \(-0.793442\pi\)
0.733498 + 0.679692i \(0.237886\pi\)
\(462\) 55.3134 + 100.130i 0.119726 + 0.216731i
\(463\) 37.4481 + 212.379i 0.0808815 + 0.458702i 0.998170 + 0.0604774i \(0.0192623\pi\)
−0.917288 + 0.398224i \(0.869627\pi\)
\(464\) −36.7130 + 100.868i −0.0791228 + 0.217388i
\(465\) 163.257 187.257i 0.351091 0.402704i
\(466\) −28.0541 + 159.102i −0.0602018 + 0.341422i
\(467\) 336.385 + 194.212i 0.720312 + 0.415872i 0.814867 0.579648i \(-0.196810\pi\)
−0.0945558 + 0.995520i \(0.530143\pi\)
\(468\) −52.4589 + 243.331i −0.112092 + 0.519937i
\(469\) −89.6654 155.305i −0.191184 0.331141i
\(470\) 72.0531 + 197.964i 0.153304 + 0.421201i
\(471\) −120.557 + 97.3359i −0.255959 + 0.206658i
\(472\) 82.7882 69.4676i 0.175399 0.147177i
\(473\) −412.607 491.726i −0.872320 1.03959i
\(474\) 149.071 386.668i 0.314496 0.815755i
\(475\) −32.3315 + 11.7677i −0.0680664 + 0.0247742i
\(476\) −47.1610 + 27.2284i −0.0990778 + 0.0572026i
\(477\) −390.500 + 206.183i −0.818658 + 0.432250i
\(478\) −215.625 + 373.474i −0.451099 + 0.781326i
\(479\) −301.385 53.1423i −0.629196 0.110944i −0.150048 0.988679i \(-0.547943\pi\)
−0.479147 + 0.877734i \(0.659054\pi\)
\(480\) −50.6519 + 17.3588i −0.105525 + 0.0361642i
\(481\) −880.048 320.311i −1.82962 0.665928i
\(482\) 188.645 33.2632i 0.391379 0.0690107i
\(483\) −99.9938 60.2797i −0.207027 0.124803i
\(484\) 350.218 + 293.868i 0.723591 + 0.607165i
\(485\) 489.625i 1.00954i
\(486\) 331.291 + 91.3466i 0.681669 + 0.187956i
\(487\) 947.316 1.94521 0.972604 0.232469i \(-0.0746805\pi\)
0.972604 + 0.232469i \(0.0746805\pi\)
\(488\) 100.082 119.272i 0.205085 0.244411i
\(489\) 1.61261 2.67504i 0.00329777 0.00547044i
\(490\) 36.3547 + 206.178i 0.0741933 + 0.420771i
\(491\) 49.4422 135.841i 0.100697 0.276663i −0.879107 0.476625i \(-0.841860\pi\)
0.979804 + 0.199963i \(0.0640821\pi\)
\(492\) 39.4619 + 115.147i 0.0802071 + 0.234039i
\(493\) −87.9872 + 499.000i −0.178473 + 1.01217i
\(494\) 38.7323 + 22.3621i 0.0784055 + 0.0452674i
\(495\) 247.895 + 469.501i 0.500799 + 0.948486i
\(496\) 52.4932 + 90.9208i 0.105833 + 0.183308i
\(497\) 5.96102 + 16.3778i 0.0119940 + 0.0329532i
\(498\) −499.640 192.625i −1.00329 0.386797i
\(499\) 636.655 534.217i 1.27586 1.07058i 0.282062 0.959396i \(-0.408982\pi\)
0.993800 0.111179i \(-0.0354628\pi\)
\(500\) 162.429 + 193.575i 0.324857 + 0.387150i
\(501\) −439.968 544.928i −0.878180 1.08768i
\(502\) 334.834 121.870i 0.666999 0.242768i
\(503\) −252.425 + 145.738i −0.501840 + 0.289737i −0.729473 0.684010i \(-0.760235\pi\)
0.227633 + 0.973747i \(0.426901\pi\)
\(504\) −35.8842 7.73618i −0.0711989 0.0153496i
\(505\) 157.945 273.569i 0.312762 0.541720i
\(506\) −702.796 123.922i −1.38892 0.244905i
\(507\) −50.2902 43.8447i −0.0991918 0.0864788i
\(508\) 76.5601 + 27.8656i 0.150709 + 0.0548536i
\(509\) 50.9622 8.98602i 0.100122 0.0176543i −0.123363 0.992362i \(-0.539368\pi\)
0.223485 + 0.974707i \(0.428257\pi\)
\(510\) −221.237 + 122.215i −0.433799 + 0.239638i
\(511\) 82.6150 + 69.3222i 0.161673 + 0.135660i
\(512\) 22.6274i 0.0441942i
\(513\) 33.8536 51.6371i 0.0659913 0.100657i
\(514\) 458.536 0.892094
\(515\) −261.615 + 311.780i −0.507990 + 0.605399i
\(516\) 205.951 + 3.89340i 0.399130 + 0.00754534i
\(517\) 153.293 + 869.366i 0.296504 + 1.68156i
\(518\) 47.2367 129.782i 0.0911905 0.250544i
\(519\) −337.458 66.1027i −0.650208 0.127366i
\(520\) 21.4298 121.534i 0.0412111 0.233720i
\(521\) 230.062 + 132.827i 0.441578 + 0.254945i 0.704267 0.709935i \(-0.251276\pi\)
−0.262689 + 0.964881i \(0.584609\pi\)
\(522\) −269.760 + 209.504i −0.516782 + 0.401348i
\(523\) −9.24084 16.0056i −0.0176689 0.0306035i 0.857056 0.515224i \(-0.172291\pi\)
−0.874725 + 0.484620i \(0.838958\pi\)
\(524\) −33.7821 92.8156i −0.0644697 0.177129i
\(525\) 10.0889 + 64.3019i 0.0192170 + 0.122480i
\(526\) −28.6498 + 24.0401i −0.0544673 + 0.0457035i
\(527\) 318.553 + 379.637i 0.604465 + 0.720373i
\(528\) −221.656 + 34.7777i −0.419803 + 0.0658668i
\(529\) 187.371 68.1976i 0.354199 0.128918i
\(530\) 189.599 109.465i 0.357733 0.206537i
\(531\) 340.675 46.8724i 0.641572 0.0882720i
\(532\) −3.29777 + 5.71190i −0.00619881 + 0.0107367i
\(533\) −276.285 48.7165i −0.518358 0.0914005i
\(534\) 8.70006 44.4143i 0.0162923 0.0831728i
\(535\) −315.800 114.942i −0.590280 0.214845i
\(536\) 346.394 61.0786i 0.646257 0.113953i
\(537\) −10.2209 + 540.661i −0.0190333 + 1.00682i
\(538\) −541.646 454.495i −1.00678 0.844786i
\(539\) 877.286i 1.62762i
\(540\) −165.841 39.0474i −0.307112 0.0723099i
\(541\) 469.047 0.867000 0.433500 0.901154i \(-0.357278\pi\)
0.433500 + 0.901154i \(0.357278\pi\)
\(542\) −92.1464 + 109.816i −0.170012 + 0.202612i
\(543\) −51.1442 92.5827i −0.0941882 0.170502i
\(544\) −18.5476 105.188i −0.0340948 0.193361i
\(545\) −111.020 + 305.025i −0.203707 + 0.559679i
\(546\) 55.5997 63.7733i 0.101831 0.116801i
\(547\) 172.475 978.152i 0.315310 1.78821i −0.255166 0.966897i \(-0.582130\pi\)
0.570476 0.821314i \(-0.306759\pi\)
\(548\) 233.639 + 134.892i 0.426349 + 0.246152i
\(549\) 471.625 151.731i 0.859062 0.276377i
\(550\) 198.914 + 344.529i 0.361662 + 0.626417i
\(551\) 20.9893 + 57.6677i 0.0380931 + 0.104660i
\(552\) 178.181 143.861i 0.322792 0.260618i
\(553\) −107.901 + 90.5401i −0.195120 + 0.163725i
\(554\) 52.0299 + 62.0068i 0.0939167 + 0.111926i
\(555\) 230.585 598.102i 0.415468 1.07766i
\(556\) −149.564 + 54.4370i −0.269001 + 0.0979083i
\(557\) −743.009 + 428.977i −1.33395 + 0.770155i −0.985902 0.167322i \(-0.946488\pi\)
−0.348046 + 0.937477i \(0.613155\pi\)
\(558\) −12.6261 + 333.826i −0.0226274 + 0.598254i
\(559\) −237.383 + 411.160i −0.424657 + 0.735527i
\(560\) 17.9228 + 3.16027i 0.0320050 + 0.00564335i
\(561\) −1001.91 + 343.361i −1.78593 + 0.612053i
\(562\) 162.733 + 59.2299i 0.289560 + 0.105391i
\(563\) −367.498 + 64.7999i −0.652750 + 0.115097i −0.490210 0.871604i \(-0.663080\pi\)
−0.162540 + 0.986702i \(0.551969\pi\)
\(564\) −242.611 146.254i −0.430162 0.259316i
\(565\) 218.315 + 183.188i 0.386399 + 0.324227i
\(566\) 664.876i 1.17469i
\(567\) −83.5518 81.6261i −0.147358 0.143961i
\(568\) −34.1848 −0.0601844
\(569\) −392.267 + 467.485i −0.689396 + 0.821591i −0.991283 0.131753i \(-0.957939\pi\)
0.301886 + 0.953344i \(0.402384\pi\)
\(570\) −15.8042 + 26.2165i −0.0277267 + 0.0459939i
\(571\) −18.1196 102.761i −0.0317331 0.179967i 0.964822 0.262905i \(-0.0846807\pi\)
−0.996555 + 0.0829382i \(0.973570\pi\)
\(572\) 176.868 485.941i 0.309210 0.849547i
\(573\) 20.7592 + 60.5741i 0.0362290 + 0.105714i
\(574\) 7.18427 40.7440i 0.0125162 0.0709826i
\(575\) −351.655 203.028i −0.611574 0.353092i
\(576\) 38.3310 60.9486i 0.0665468 0.105814i
\(577\) −53.6060 92.8483i −0.0929046 0.160916i 0.815828 0.578295i \(-0.196282\pi\)
−0.908732 + 0.417380i \(0.862949\pi\)
\(578\) −32.6584 89.7282i −0.0565024 0.155239i
\(579\) −368.716 142.150i −0.636816 0.245510i
\(580\) 129.719 108.848i 0.223654 0.187668i
\(581\) 116.993 + 139.427i 0.201365 + 0.239977i
\(582\) −413.600 512.269i −0.710653 0.880188i
\(583\) 862.067 313.767i 1.47867 0.538193i
\(584\) −183.189 + 105.764i −0.313680 + 0.181103i
\(585\) 263.602 291.060i 0.450602 0.497538i
\(586\) 144.925 251.018i 0.247313 0.428358i
\(587\) −272.582 48.0636i −0.464365 0.0818801i −0.0634293 0.997986i \(-0.520204\pi\)
−0.400936 + 0.916106i \(0.631315\pi\)
\(588\) −212.200 185.003i −0.360885 0.314631i
\(589\) 56.4023 + 20.5288i 0.0957595 + 0.0348536i
\(590\) −167.899 + 29.6052i −0.284575 + 0.0501783i
\(591\) −80.7474 + 44.6062i −0.136628 + 0.0754758i
\(592\) 207.513 + 174.124i 0.350529 + 0.294129i
\(593\) 44.7982i 0.0755451i 0.999286 + 0.0377725i \(0.0120262\pi\)
−0.999286 + 0.0377725i \(0.987974\pi\)
\(594\) −655.960 281.810i −1.10431 0.474427i
\(595\) 85.9085 0.144384
\(596\) −161.477 + 192.441i −0.270934 + 0.322887i
\(597\) 736.023 + 13.9141i 1.23287 + 0.0233067i
\(598\) 91.6554 + 519.804i 0.153270 + 0.869237i
\(599\) 318.570 875.264i 0.531836 1.46121i −0.325047 0.945698i \(-0.605380\pi\)
0.856883 0.515511i \(-0.172398\pi\)
\(600\) −125.283 24.5410i −0.208805 0.0409016i
\(601\) 59.0610 334.951i 0.0982712 0.557323i −0.895425 0.445213i \(-0.853128\pi\)
0.993696 0.112110i \(-0.0357610\pi\)
\(602\) −60.6342 35.0072i −0.100721 0.0581515i
\(603\) 1036.51 + 422.273i 1.71891 + 0.700287i
\(604\) 113.200 + 196.068i 0.187417 + 0.324616i
\(605\) −246.672 677.725i −0.407722 1.12021i
\(606\) 65.8414 + 419.641i 0.108649 + 0.692477i
\(607\) −857.856 + 719.827i −1.41327 + 1.18588i −0.458441 + 0.888725i \(0.651592\pi\)
−0.954830 + 0.297151i \(0.903963\pi\)
\(608\) −8.31536 9.90986i −0.0136766 0.0162991i
\(609\) 114.691 17.9950i 0.188327 0.0295484i
\(610\) −230.810 + 84.0081i −0.378378 + 0.137718i
\(611\) 565.448 326.461i 0.925446 0.534307i
\(612\) 128.231 314.753i 0.209527 0.514302i
\(613\) 503.975 872.910i 0.822144 1.42400i −0.0819377 0.996637i \(-0.526111\pi\)
0.904082 0.427359i \(-0.140556\pi\)
\(614\) −80.4670 14.1885i −0.131054 0.0231083i
\(615\) 36.9126 188.441i 0.0600205 0.306408i
\(616\) 71.6623 + 26.0829i 0.116335 + 0.0423424i
\(617\) 811.213 143.039i 1.31477 0.231830i 0.528089 0.849189i \(-0.322909\pi\)
0.786681 + 0.617359i \(0.211798\pi\)
\(618\) 10.3444 547.193i 0.0167385 0.885425i
\(619\) 101.667 + 85.3084i 0.164243 + 0.137817i 0.721205 0.692722i \(-0.243589\pi\)
−0.556962 + 0.830538i \(0.688033\pi\)
\(620\) 165.621i 0.267131i
\(621\) 723.646 85.6613i 1.16529 0.137941i
\(622\) −24.4503 −0.0393092
\(623\) −9.88807 + 11.7841i −0.0158717 + 0.0189151i
\(624\) 80.2425 + 145.257i 0.128594 + 0.232784i
\(625\) −3.90782 22.1623i −0.00625251 0.0354598i
\(626\) −168.341 + 462.513i −0.268915 + 0.738839i
\(627\) −84.2955 + 96.6876i −0.134443 + 0.154207i
\(628\) −17.9374 + 101.728i −0.0285627 + 0.161987i
\(629\) 1107.40 + 639.356i 1.76057 + 1.01646i
\(630\) 42.9229 + 38.8738i 0.0681316 + 0.0617044i
\(631\) −52.2617 90.5198i −0.0828235 0.143455i 0.821638 0.570009i \(-0.193060\pi\)
−0.904462 + 0.426555i \(0.859727\pi\)
\(632\) −94.4907 259.611i −0.149511 0.410777i
\(633\) −108.000 + 87.1975i −0.170615 + 0.137753i
\(634\) 280.602 235.453i 0.442591 0.371378i
\(635\) −82.6166 98.4587i −0.130105 0.155053i
\(636\) −105.899 + 274.687i −0.166508 + 0.431897i
\(637\) 609.730 221.923i 0.957190 0.348389i
\(638\) 614.514 354.790i 0.963189 0.556097i
\(639\) −92.0792 57.9092i −0.144099 0.0906247i
\(640\) −17.8479 + 30.9135i −0.0278874 + 0.0483024i
\(641\) 144.994 + 25.5664i 0.226200 + 0.0398852i 0.285599 0.958349i \(-0.407807\pi\)
−0.0593990 + 0.998234i \(0.518918\pi\)
\(642\) 427.500 146.507i 0.665887 0.228205i
\(643\) −986.208 358.950i −1.53376 0.558243i −0.569221 0.822184i \(-0.692755\pi\)
−0.964539 + 0.263941i \(0.914977\pi\)
\(644\) −76.6561 + 13.5165i −0.119031 + 0.0209884i
\(645\) −278.299 167.768i −0.431472 0.260106i
\(646\) −46.7788 39.2521i −0.0724130 0.0607617i
\(647\) 828.962i 1.28124i 0.767858 + 0.640620i \(0.221323\pi\)
−0.767858 + 0.640620i \(0.778677\pi\)
\(648\) 206.495 99.2369i 0.318665 0.153143i
\(649\) −714.411 −1.10079
\(650\) 189.136 225.403i 0.290978 0.346774i
\(651\) 58.6219 97.2438i 0.0900490 0.149376i
\(652\) −0.361596 2.05071i −0.000554594 0.00314526i
\(653\) −244.816 + 672.626i −0.374910 + 1.03006i 0.598528 + 0.801102i \(0.295753\pi\)
−0.973437 + 0.228953i \(0.926470\pi\)
\(654\) −141.509 412.913i −0.216374 0.631366i
\(655\) −27.0575 + 153.451i −0.0413092 + 0.234276i
\(656\) 70.2760 + 40.5739i 0.107128 + 0.0618504i
\(657\) −672.598 25.4393i −1.02374 0.0387204i
\(658\) 48.1437 + 83.3873i 0.0731666 + 0.126728i
\(659\) −77.5795 213.148i −0.117723 0.323442i 0.866810 0.498638i \(-0.166166\pi\)
−0.984534 + 0.175196i \(0.943944\pi\)
\(660\) 330.258 + 127.323i 0.500390 + 0.192914i
\(661\) −494.893 + 415.264i −0.748703 + 0.628237i −0.935160 0.354227i \(-0.884744\pi\)
0.186456 + 0.982463i \(0.440300\pi\)
\(662\) 303.274 + 361.428i 0.458118 + 0.545964i
\(663\) 492.091 + 609.485i 0.742219 + 0.919284i
\(664\) −335.461 + 122.098i −0.505212 + 0.183882i
\(665\) 9.01081 5.20239i 0.0135501 0.00782315i
\(666\) 263.985 + 820.545i 0.396373 + 1.23205i
\(667\) −362.128 + 627.223i −0.542920 + 0.940365i
\(668\) −459.820 81.0787i −0.688353 0.121375i
\(669\) −128.811 112.301i −0.192542 0.167865i
\(670\) −521.420 189.781i −0.778239 0.283256i
\(671\) −1013.61 + 178.727i −1.51060 + 0.266359i
\(672\) −21.4213 + 11.8335i −0.0318769 + 0.0176093i
\(673\) −322.666 270.749i −0.479444 0.402301i 0.370781 0.928720i \(-0.379090\pi\)
−0.850225 + 0.526419i \(0.823534\pi\)
\(674\) 355.699i 0.527743i
\(675\) −295.887 278.333i −0.438350 0.412345i
\(676\) −44.4796 −0.0657982
\(677\) 568.791 677.859i 0.840164 1.00127i −0.159736 0.987160i \(-0.551064\pi\)
0.999900 0.0141088i \(-0.00449111\pi\)
\(678\) −383.156 7.24336i −0.565127 0.0106834i
\(679\) 38.8599 + 220.386i 0.0572311 + 0.324574i
\(680\) −57.6304 + 158.338i −0.0847505 + 0.232850i
\(681\) −255.138 49.9775i −0.374652 0.0733884i
\(682\) 120.514 683.467i 0.176706 1.00215i
\(683\) −179.989 103.917i −0.263527 0.152148i 0.362415 0.932017i \(-0.381952\pi\)
−0.625943 + 0.779869i \(0.715286\pi\)
\(684\) −5.61069 40.7792i −0.00820276 0.0596188i
\(685\) −212.798 368.577i −0.310654 0.538069i
\(686\) 66.9051 + 183.820i 0.0975293 + 0.267960i
\(687\) 60.3603 + 384.707i 0.0878607 + 0.559981i
\(688\) 105.197 88.2711i 0.152903 0.128301i
\(689\) −436.147 519.780i −0.633015 0.754398i
\(690\) −356.905 + 55.9982i −0.517253 + 0.0811568i
\(691\) −688.491 + 250.590i −0.996370 + 0.362649i −0.788184 0.615440i \(-0.788978\pi\)
−0.208186 + 0.978089i \(0.566756\pi\)
\(692\) −198.534 + 114.624i −0.286899 + 0.165641i
\(693\) 148.843 + 191.653i 0.214781 + 0.276555i
\(694\) −382.658 + 662.783i −0.551380 + 0.955019i
\(695\) 247.273 + 43.6010i 0.355789 + 0.0627352i
\(696\) −43.7721 + 223.459i −0.0628910 + 0.321062i
\(697\) 359.951 + 131.012i 0.516429 + 0.187965i
\(698\) 860.507 151.731i 1.23282 0.217379i
\(699\) −6.47766 + 342.653i −0.00926704 + 0.490204i
\(700\) 33.2405 + 27.8921i 0.0474864 + 0.0398458i
\(701\) 176.592i 0.251915i 0.992036 + 0.125957i \(0.0402002\pi\)
−0.992036 + 0.125957i \(0.959800\pi\)
\(702\) −29.9274 + 527.193i −0.0426316 + 0.750986i
\(703\) 154.871 0.220300
\(704\) −96.1471 + 114.584i −0.136573 + 0.162761i
\(705\) 216.093 + 391.178i 0.306515 + 0.554863i
\(706\) 32.3707 + 183.583i 0.0458508 + 0.260033i
\(707\) 49.3805 135.672i 0.0698451 0.191898i
\(708\) 150.656 172.804i 0.212791 0.244073i
\(709\) −158.919 + 901.273i −0.224145 + 1.27119i 0.640168 + 0.768235i \(0.278865\pi\)
−0.864313 + 0.502954i \(0.832247\pi\)
\(710\) 46.7032 + 26.9641i 0.0657791 + 0.0379776i
\(711\) 185.265 859.349i 0.260569 1.20865i
\(712\) −15.0861 26.1299i −0.0211884 0.0366993i
\(713\) 242.275 + 665.644i 0.339796 + 0.933583i
\(714\) −89.8815 + 72.5693i −0.125884 + 0.101638i
\(715\) −624.935 + 524.383i −0.874035 + 0.733403i
\(716\) 231.728 + 276.163i 0.323643 + 0.385702i
\(717\) −329.079 + 853.582i −0.458967 + 1.19049i
\(718\) −176.110 + 64.0989i −0.245279 + 0.0892742i
\(719\) 555.297 320.601i 0.772319 0.445898i −0.0613824 0.998114i \(-0.519551\pi\)
0.833701 + 0.552216i \(0.186218\pi\)
\(720\) −100.442 + 53.0334i −0.139503 + 0.0736576i
\(721\) −93.0107 + 161.099i −0.129002 + 0.223439i
\(722\) 495.491 + 87.3685i 0.686276 + 0.121009i
\(723\) 384.402 131.738i 0.531676 0.182210i
\(724\) −66.2608 24.1170i −0.0915205 0.0333107i
\(725\) 397.614 70.1100i 0.548433 0.0967035i
\(726\) 830.573 + 500.698i 1.14404 + 0.689667i
\(727\) 140.649 + 118.019i 0.193465 + 0.162337i 0.734375 0.678744i \(-0.237475\pi\)
−0.540910 + 0.841081i \(0.681920\pi\)
\(728\) 56.4047i 0.0774790i
\(729\) 724.317 + 82.5011i 0.993576 + 0.113170i
\(730\) 333.697 0.457119
\(731\) 416.677 496.577i 0.570010 0.679312i
\(732\) 170.521 282.865i 0.232952 0.386428i
\(733\) −224.357 1272.39i −0.306081 1.73587i −0.618373 0.785885i \(-0.712208\pi\)
0.312292 0.949986i \(-0.398903\pi\)
\(734\) −38.5587 + 105.939i −0.0525323 + 0.144331i
\(735\) 143.982 + 420.129i 0.195893 + 0.571605i
\(736\) 26.5112 150.352i 0.0360206 0.204283i
\(737\) −2013.65 1162.58i −2.73222 1.57745i
\(738\) 120.561 + 228.337i 0.163362 + 0.309399i
\(739\) −372.906 645.892i −0.504609 0.874008i −0.999986 0.00533011i \(-0.998303\pi\)
0.495377 0.868678i \(-0.335030\pi\)
\(740\) −146.159 401.569i −0.197513 0.542661i
\(741\) 88.5235 + 34.1282i 0.119465 + 0.0460570i
\(742\) 76.6526 64.3191i 0.103305 0.0866835i
\(743\) −20.0884 23.9404i −0.0270368 0.0322212i 0.752357 0.658756i \(-0.228917\pi\)
−0.779393 + 0.626535i \(0.784473\pi\)
\(744\) 139.905 + 173.281i 0.188044 + 0.232904i
\(745\) 372.402 135.543i 0.499868 0.181937i
\(746\) −685.987 + 396.055i −0.919553 + 0.530904i
\(747\) −1110.42 239.393i −1.48651 0.320472i
\(748\) −353.037 + 611.478i −0.471975 + 0.817484i
\(749\) −151.268 26.6726i −0.201959 0.0356109i
\(750\) 404.049 + 352.263i 0.538731 + 0.469684i
\(751\) 871.195 + 317.089i 1.16005 + 0.422222i 0.849114 0.528210i \(-0.177136\pi\)
0.310932 + 0.950432i \(0.399359\pi\)
\(752\) −185.988 + 32.7946i −0.247324 + 0.0436099i
\(753\) 661.633 365.497i 0.878663 0.485388i
\(754\) −402.037 337.349i −0.533205 0.447412i
\(755\) 357.158i 0.473057i
\(756\) −77.7457 4.41343i −0.102838 0.00583787i
\(757\) 358.777 0.473946 0.236973 0.971516i \(-0.423845\pi\)
0.236973 + 0.971516i \(0.423845\pi\)
\(758\) −441.001 + 525.565i −0.581796 + 0.693357i
\(759\) −1513.58 28.6135i −1.99418 0.0376989i
\(760\) 3.54378 + 20.0978i 0.00466287 + 0.0264445i
\(761\) 402.928 1107.03i 0.529471 1.45471i −0.330224 0.943903i \(-0.607124\pi\)
0.859695 0.510807i \(-0.170653\pi\)
\(762\) 169.608 + 33.2236i 0.222583 + 0.0436005i
\(763\) −25.7625 + 146.106i −0.0337647 + 0.191489i
\(764\) 36.9692 + 21.3442i 0.0483891 + 0.0279374i
\(765\) −423.457 + 328.870i −0.553539 + 0.429895i
\(766\) −125.240