Properties

Label 54.3.f.a.11.4
Level $54$
Weight $3$
Character 54.11
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 11.4
Character \(\chi\) \(=\) 54.11
Dual form 54.3.f.a.5.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.909039 - 1.08335i) q^{2} +(-2.95590 - 0.512490i) q^{3} +(-0.347296 - 1.96962i) q^{4} +(2.71293 - 7.45370i) q^{5} +(-3.24224 + 2.73640i) q^{6} +(0.0787775 - 0.446769i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(8.47471 + 3.02974i) q^{9} +O(q^{10})\) \(q+(0.909039 - 1.08335i) q^{2} +(-2.95590 - 0.512490i) q^{3} +(-0.347296 - 1.96962i) q^{4} +(2.71293 - 7.45370i) q^{5} +(-3.24224 + 2.73640i) q^{6} +(0.0787775 - 0.446769i) q^{7} +(-2.44949 - 1.41421i) q^{8} +(8.47471 + 3.02974i) q^{9} +(-5.60882 - 9.71475i) q^{10} +(4.82381 + 13.2533i) q^{11} +(0.0171659 + 5.99998i) q^{12} +(-9.80599 + 8.22820i) q^{13} +(-0.412396 - 0.491475i) q^{14} +(-11.8391 + 20.6421i) q^{15} +(-3.75877 + 1.36808i) q^{16} +(28.5583 - 16.4882i) q^{17} +(10.9861 - 6.42693i) q^{18} +(0.202792 - 0.351246i) q^{19} +(-15.6231 - 2.75478i) q^{20} +(-0.461823 + 1.28023i) q^{21} +(18.7430 + 6.82189i) q^{22} +(14.2603 - 2.51448i) q^{23} +(6.51568 + 5.43561i) q^{24} +(-29.0466 - 24.3730i) q^{25} +18.1031i q^{26} +(-23.4977 - 13.2988i) q^{27} -0.907323 q^{28} +(-16.8547 + 20.0866i) q^{29} +(11.6004 + 31.5903i) q^{30} +(4.33881 + 24.6066i) q^{31} +(-1.93476 + 5.31570i) q^{32} +(-7.46652 - 41.6476i) q^{33} +(8.09818 - 45.9270i) q^{34} +(-3.11637 - 1.79924i) q^{35} +(3.02419 - 17.7441i) q^{36} +(3.84477 + 6.65933i) q^{37} +(-0.196177 - 0.538991i) q^{38} +(33.2024 - 19.2963i) q^{39} +(-17.1864 + 14.4211i) q^{40} +(-15.9304 - 18.9851i) q^{41} +(0.967127 + 1.66410i) q^{42} +(-16.8662 + 6.13880i) q^{43} +(24.4286 - 14.1039i) q^{44} +(45.5740 - 54.9485i) q^{45} +(10.2391 - 17.7347i) q^{46} +(-46.7491 - 8.24313i) q^{47} +(11.8117 - 2.11758i) q^{48} +(45.8515 + 16.6886i) q^{49} +(-52.8090 + 9.31165i) q^{50} +(-92.8656 + 34.1015i) q^{51} +(19.6120 + 16.4564i) q^{52} +0.261457i q^{53} +(-35.7676 + 13.3671i) q^{54} +111.873 q^{55} +(-0.824792 + 0.982949i) q^{56} +(-0.779443 + 0.934320i) q^{57} +(6.43929 + 36.5190i) q^{58} +(18.8461 - 51.7793i) q^{59} +(44.7686 + 16.1495i) q^{60} +(-18.1761 + 103.082i) q^{61} +(30.6018 + 17.6679i) q^{62} +(2.02121 - 3.54757i) q^{63} +(4.00000 + 6.92820i) q^{64} +(34.7276 + 95.4134i) q^{65} +(-51.9063 - 29.7704i) q^{66} +(-49.4929 + 41.5295i) q^{67} +(-42.3935 - 50.5226i) q^{68} +(-43.4407 + 0.124283i) q^{69} +(-4.78210 + 1.74054i) q^{70} +(-94.6180 + 54.6277i) q^{71} +(-16.4740 - 19.4064i) q^{72} +(31.4705 - 54.5085i) q^{73} +(10.7094 + 1.88836i) q^{74} +(73.3680 + 86.9302i) q^{75} +(-0.762248 - 0.277436i) q^{76} +(6.30118 - 1.11107i) q^{77} +(9.27764 - 53.5109i) q^{78} +(-14.7532 - 12.3794i) q^{79} +31.7283i q^{80} +(62.6414 + 51.3523i) q^{81} -35.0489 q^{82} +(36.7220 - 43.7636i) q^{83} +(2.68196 + 0.464994i) q^{84} +(-45.4212 - 257.596i) q^{85} +(-8.68158 + 23.8524i) q^{86} +(60.1149 - 50.7362i) q^{87} +(6.92713 - 39.2857i) q^{88} +(89.7902 + 51.8404i) q^{89} +(-18.0999 - 99.3230i) q^{90} +(2.90362 + 5.02921i) q^{91} +(-9.90511 - 27.2141i) q^{92} +(-0.214455 - 74.9584i) q^{93} +(-51.4269 + 43.1523i) q^{94} +(-2.06792 - 2.46445i) q^{95} +(8.44320 - 14.7212i) q^{96} +(-52.8231 + 19.2260i) q^{97} +(59.7604 - 34.5027i) q^{98} +(0.726312 + 126.933i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.909039 1.08335i 0.454519 0.541675i
\(3\) −2.95590 0.512490i −0.985301 0.170830i
\(4\) −0.347296 1.96962i −0.0868241 0.492404i
\(5\) 2.71293 7.45370i 0.542585 1.49074i −0.300936 0.953644i \(-0.597299\pi\)
0.843521 0.537096i \(-0.180479\pi\)
\(6\) −3.24224 + 2.73640i −0.540373 + 0.456067i
\(7\) 0.0787775 0.446769i 0.0112539 0.0638242i −0.978664 0.205469i \(-0.934128\pi\)
0.989918 + 0.141645i \(0.0452391\pi\)
\(8\) −2.44949 1.41421i −0.306186 0.176777i
\(9\) 8.47471 + 3.02974i 0.941634 + 0.336638i
\(10\) −5.60882 9.71475i −0.560882 0.971475i
\(11\) 4.82381 + 13.2533i 0.438528 + 1.20485i 0.940450 + 0.339933i \(0.110404\pi\)
−0.501922 + 0.864913i \(0.667373\pi\)
\(12\) 0.0171659 + 5.99998i 0.00143049 + 0.499998i
\(13\) −9.80599 + 8.22820i −0.754307 + 0.632939i −0.936638 0.350299i \(-0.886080\pi\)
0.182331 + 0.983237i \(0.441636\pi\)
\(14\) −0.412396 0.491475i −0.0294569 0.0351053i
\(15\) −11.8391 + 20.6421i −0.789273 + 1.37614i
\(16\) −3.75877 + 1.36808i −0.234923 + 0.0855050i
\(17\) 28.5583 16.4882i 1.67990 0.969891i 0.718182 0.695856i \(-0.244975\pi\)
0.961720 0.274036i \(-0.0883586\pi\)
\(18\) 10.9861 6.42693i 0.610339 0.357052i
\(19\) 0.202792 0.351246i 0.0106733 0.0184866i −0.860639 0.509215i \(-0.829936\pi\)
0.871313 + 0.490728i \(0.163269\pi\)
\(20\) −15.6231 2.75478i −0.781156 0.137739i
\(21\) −0.461823 + 1.28023i −0.0219916 + 0.0609635i
\(22\) 18.7430 + 6.82189i 0.851955 + 0.310086i
\(23\) 14.2603 2.51448i 0.620013 0.109325i 0.145187 0.989404i \(-0.453622\pi\)
0.474827 + 0.880079i \(0.342511\pi\)
\(24\) 6.51568 + 5.43561i 0.271487 + 0.226484i
\(25\) −29.0466 24.3730i −1.16186 0.974920i
\(26\) 18.1031i 0.696272i
\(27\) −23.4977 13.2988i −0.870285 0.492549i
\(28\) −0.907323 −0.0324044
\(29\) −16.8547 + 20.0866i −0.581195 + 0.692642i −0.973888 0.227028i \(-0.927099\pi\)
0.392693 + 0.919670i \(0.371544\pi\)
\(30\) 11.6004 + 31.5903i 0.386680 + 1.05301i
\(31\) 4.33881 + 24.6066i 0.139962 + 0.793762i 0.971275 + 0.237959i \(0.0764783\pi\)
−0.831314 + 0.555804i \(0.812411\pi\)
\(32\) −1.93476 + 5.31570i −0.0604612 + 0.166116i
\(33\) −7.46652 41.6476i −0.226258 1.26205i
\(34\) 8.09818 45.9270i 0.238182 1.35080i
\(35\) −3.11637 1.79924i −0.0890391 0.0514068i
\(36\) 3.02419 17.7441i 0.0840052 0.492893i
\(37\) 3.84477 + 6.65933i 0.103913 + 0.179982i 0.913293 0.407302i \(-0.133530\pi\)
−0.809381 + 0.587284i \(0.800197\pi\)
\(38\) −0.196177 0.538991i −0.00516254 0.0141840i
\(39\) 33.2024 19.2963i 0.851344 0.494777i
\(40\) −17.1864 + 14.4211i −0.429660 + 0.360528i
\(41\) −15.9304 18.9851i −0.388547 0.463052i 0.535946 0.844253i \(-0.319955\pi\)
−0.924492 + 0.381200i \(0.875511\pi\)
\(42\) 0.967127 + 1.66410i 0.0230268 + 0.0396214i
\(43\) −16.8662 + 6.13880i −0.392238 + 0.142763i −0.530607 0.847618i \(-0.678036\pi\)
0.138369 + 0.990381i \(0.455814\pi\)
\(44\) 24.4286 14.1039i 0.555196 0.320543i
\(45\) 45.5740 54.9485i 1.01276 1.22108i
\(46\) 10.2391 17.7347i 0.222589 0.385536i
\(47\) −46.7491 8.24313i −0.994662 0.175386i −0.347452 0.937698i \(-0.612953\pi\)
−0.647210 + 0.762312i \(0.724064\pi\)
\(48\) 11.8117 2.11758i 0.246077 0.0441162i
\(49\) 45.8515 + 16.6886i 0.935746 + 0.340584i
\(50\) −52.8090 + 9.31165i −1.05618 + 0.186233i
\(51\) −92.8656 + 34.1015i −1.82089 + 0.668657i
\(52\) 19.6120 + 16.4564i 0.377153 + 0.316469i
\(53\) 0.261457i 0.00493315i 0.999997 + 0.00246657i \(0.000785136\pi\)
−0.999997 + 0.00246657i \(0.999215\pi\)
\(54\) −35.7676 + 13.3671i −0.662363 + 0.247539i
\(55\) 111.873 2.03405
\(56\) −0.824792 + 0.982949i −0.0147284 + 0.0175527i
\(57\) −0.779443 + 0.934320i −0.0136744 + 0.0163916i
\(58\) 6.43929 + 36.5190i 0.111022 + 0.629638i
\(59\) 18.8461 51.7793i 0.319426 0.877615i −0.671232 0.741247i \(-0.734235\pi\)
0.990658 0.136368i \(-0.0435430\pi\)
\(60\) 44.7686 + 16.1495i 0.746143 + 0.269159i
\(61\) −18.1761 + 103.082i −0.297969 + 1.68987i 0.356916 + 0.934137i \(0.383828\pi\)
−0.654885 + 0.755729i \(0.727283\pi\)
\(62\) 30.6018 + 17.6679i 0.493577 + 0.284967i
\(63\) 2.02121 3.54757i 0.0320827 0.0563106i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) 34.7276 + 95.4134i 0.534271 + 1.46790i
\(66\) −51.9063 29.7704i −0.786459 0.451067i
\(67\) −49.4929 + 41.5295i −0.738700 + 0.619843i −0.932488 0.361200i \(-0.882367\pi\)
0.193788 + 0.981043i \(0.437923\pi\)
\(68\) −42.3935 50.5226i −0.623434 0.742980i
\(69\) −43.4407 + 0.124283i −0.629576 + 0.00180121i
\(70\) −4.78210 + 1.74054i −0.0683158 + 0.0248649i
\(71\) −94.6180 + 54.6277i −1.33265 + 0.769405i −0.985705 0.168481i \(-0.946114\pi\)
−0.346943 + 0.937886i \(0.612780\pi\)
\(72\) −16.4740 19.4064i −0.228806 0.269533i
\(73\) 31.4705 54.5085i 0.431103 0.746692i −0.565866 0.824497i \(-0.691458\pi\)
0.996969 + 0.0778057i \(0.0247914\pi\)
\(74\) 10.7094 + 1.88836i 0.144722 + 0.0255184i
\(75\) 73.3680 + 86.9302i 0.978240 + 1.15907i
\(76\) −0.762248 0.277436i −0.0100296 0.00365047i
\(77\) 6.30118 1.11107i 0.0818335 0.0144295i
\(78\) 9.27764 53.5109i 0.118944 0.686037i
\(79\) −14.7532 12.3794i −0.186750 0.156702i 0.544620 0.838683i \(-0.316674\pi\)
−0.731369 + 0.681981i \(0.761118\pi\)
\(80\) 31.7283i 0.396603i
\(81\) 62.6414 + 51.3523i 0.773350 + 0.633979i
\(82\) −35.0489 −0.427426
\(83\) 36.7220 43.7636i 0.442434 0.527273i −0.498033 0.867158i \(-0.665944\pi\)
0.940467 + 0.339886i \(0.110388\pi\)
\(84\) 2.68196 + 0.464994i 0.0319281 + 0.00553564i
\(85\) −45.4212 257.596i −0.534367 3.03055i
\(86\) −8.68158 + 23.8524i −0.100949 + 0.277354i
\(87\) 60.1149 50.7362i 0.690976 0.583175i
\(88\) 6.92713 39.2857i 0.0787174 0.446429i
\(89\) 89.7902 + 51.8404i 1.00888 + 0.582476i 0.910863 0.412709i \(-0.135417\pi\)
0.0980154 + 0.995185i \(0.468751\pi\)
\(90\) −18.0999 99.3230i −0.201110 1.10359i
\(91\) 2.90362 + 5.02921i 0.0319079 + 0.0552661i
\(92\) −9.90511 27.2141i −0.107664 0.295805i
\(93\) −0.214455 74.9584i −0.00230597 0.806004i
\(94\) −51.4269 + 43.1523i −0.547095 + 0.459067i
\(95\) −2.06792 2.46445i −0.0217676 0.0259416i
\(96\) 8.44320 14.7212i 0.0879500 0.153345i
\(97\) −52.8231 + 19.2260i −0.544568 + 0.198207i −0.599631 0.800276i \(-0.704686\pi\)
0.0550633 + 0.998483i \(0.482464\pi\)
\(98\) 59.7604 34.5027i 0.609800 0.352068i
\(99\) 0.726312 + 126.933i 0.00733649 + 1.28215i
\(100\) −37.9176 + 65.6753i −0.379176 + 0.656753i
\(101\) −44.2921 7.80990i −0.438536 0.0773258i −0.0499788 0.998750i \(-0.515915\pi\)
−0.388557 + 0.921425i \(0.627026\pi\)
\(102\) −47.4746 + 131.606i −0.465437 + 1.29025i
\(103\) 85.6429 + 31.1715i 0.831485 + 0.302636i 0.722468 0.691404i \(-0.243008\pi\)
0.109017 + 0.994040i \(0.465230\pi\)
\(104\) 35.6561 6.28713i 0.342847 0.0604532i
\(105\) 8.28959 + 6.91547i 0.0789485 + 0.0658617i
\(106\) 0.283249 + 0.237674i 0.00267216 + 0.00224221i
\(107\) 206.049i 1.92569i −0.270046 0.962847i \(-0.587039\pi\)
0.270046 0.962847i \(-0.412961\pi\)
\(108\) −18.0329 + 50.9000i −0.166971 + 0.471297i
\(109\) −140.161 −1.28588 −0.642942 0.765915i \(-0.722286\pi\)
−0.642942 + 0.765915i \(0.722286\pi\)
\(110\) 101.697 121.197i 0.924516 1.10180i
\(111\) −7.95191 21.6547i −0.0716388 0.195088i
\(112\) 0.315110 + 1.78708i 0.00281348 + 0.0159561i
\(113\) −24.9375 + 68.5153i −0.220686 + 0.606330i −0.999788 0.0205666i \(-0.993453\pi\)
0.779102 + 0.626897i \(0.215675\pi\)
\(114\) 0.303651 + 1.69374i 0.00266361 + 0.0148574i
\(115\) 19.9450 113.114i 0.173435 0.983597i
\(116\) 45.4165 + 26.2212i 0.391521 + 0.226045i
\(117\) −108.032 + 40.0220i −0.923352 + 0.342069i
\(118\) −38.9633 67.4864i −0.330197 0.571918i
\(119\) −5.11665 14.0579i −0.0429971 0.118133i
\(120\) 58.1920 33.8195i 0.484933 0.281829i
\(121\) −59.6896 + 50.0855i −0.493302 + 0.413930i
\(122\) 95.1509 + 113.396i 0.779925 + 0.929479i
\(123\) 37.3591 + 64.2824i 0.303732 + 0.522621i
\(124\) 46.9588 17.0916i 0.378700 0.137835i
\(125\) −88.7360 + 51.2318i −0.709888 + 0.409854i
\(126\) −2.00590 5.41456i −0.0159198 0.0429727i
\(127\) −5.49347 + 9.51497i −0.0432557 + 0.0749210i −0.886843 0.462072i \(-0.847106\pi\)
0.843587 + 0.536993i \(0.180440\pi\)
\(128\) 11.1418 + 1.96460i 0.0870455 + 0.0153485i
\(129\) 53.0010 9.50193i 0.410860 0.0736584i
\(130\) 134.935 + 49.1123i 1.03796 + 0.377787i
\(131\) 36.9106 6.50833i 0.281760 0.0496819i −0.0309820 0.999520i \(-0.509863\pi\)
0.312742 + 0.949838i \(0.398752\pi\)
\(132\) −79.4367 + 29.1702i −0.601793 + 0.220987i
\(133\) −0.140951 0.118272i −0.00105978 0.000889260i
\(134\) 91.3701i 0.681866i
\(135\) −162.873 + 139.066i −1.20647 + 1.03012i
\(136\) −93.2711 −0.685817
\(137\) −27.2090 + 32.4264i −0.198606 + 0.236689i −0.856151 0.516726i \(-0.827150\pi\)
0.657545 + 0.753415i \(0.271595\pi\)
\(138\) −39.3547 + 47.1745i −0.285179 + 0.341844i
\(139\) −28.2955 160.472i −0.203565 1.15447i −0.899682 0.436545i \(-0.856202\pi\)
0.696117 0.717928i \(-0.254909\pi\)
\(140\) −2.46150 + 6.76292i −0.0175821 + 0.0483066i
\(141\) 133.961 + 48.3243i 0.950079 + 0.342726i
\(142\) −26.8305 + 152.163i −0.188947 + 1.07157i
\(143\) −156.353 90.2705i −1.09338 0.631262i
\(144\) −35.9994 + 0.205990i −0.249996 + 0.00143048i
\(145\) 103.994 + 180.123i 0.717201 + 1.24223i
\(146\) −30.4439 83.6439i −0.208520 0.572903i
\(147\) −126.980 72.8283i −0.863809 0.495431i
\(148\) 11.7810 9.88547i 0.0796017 0.0667937i
\(149\) 115.419 + 137.551i 0.774624 + 0.923161i 0.998677 0.0514163i \(-0.0163735\pi\)
−0.224054 + 0.974577i \(0.571929\pi\)
\(150\) 160.870 0.460248i 1.07247 0.00306832i
\(151\) 151.225 55.0415i 1.00149 0.364514i 0.211333 0.977414i \(-0.432220\pi\)
0.790160 + 0.612901i \(0.209997\pi\)
\(152\) −0.993473 + 0.573582i −0.00653601 + 0.00377357i
\(153\) 291.978 53.2080i 1.90835 0.347765i
\(154\) 4.52434 7.83639i 0.0293788 0.0508856i
\(155\) 195.181 + 34.4157i 1.25923 + 0.222037i
\(156\) −49.5373 58.6945i −0.317547 0.376246i
\(157\) −72.6336 26.4365i −0.462635 0.168385i 0.100178 0.994969i \(-0.468059\pi\)
−0.562813 + 0.826584i \(0.690281\pi\)
\(158\) −26.8225 + 4.72954i −0.169763 + 0.0299338i
\(159\) 0.133994 0.772841i 0.000842730 0.00486063i
\(160\) 34.3728 + 28.8422i 0.214830 + 0.180264i
\(161\) 6.56915i 0.0408022i
\(162\) 112.576 21.1813i 0.694913 0.130749i
\(163\) −2.14092 −0.0131345 −0.00656723 0.999978i \(-0.502090\pi\)
−0.00656723 + 0.999978i \(0.502090\pi\)
\(164\) −31.8608 + 37.9703i −0.194273 + 0.231526i
\(165\) −330.685 57.3337i −2.00415 0.347477i
\(166\) −14.0296 79.5657i −0.0845155 0.479311i
\(167\) 30.6994 84.3460i 0.183829 0.505066i −0.813209 0.581971i \(-0.802282\pi\)
0.997038 + 0.0769052i \(0.0245039\pi\)
\(168\) 2.94176 2.48280i 0.0175105 0.0147786i
\(169\) −0.892424 + 5.06119i −0.00528061 + 0.0299479i
\(170\) −320.357 184.958i −1.88445 1.08799i
\(171\) 2.78279 2.36230i 0.0162736 0.0138146i
\(172\) 17.9487 + 31.0880i 0.104353 + 0.180744i
\(173\) −62.3682 171.355i −0.360510 0.990492i −0.978850 0.204581i \(-0.934417\pi\)
0.618340 0.785911i \(-0.287805\pi\)
\(174\) −0.318275 111.247i −0.00182917 0.639349i
\(175\) −13.1773 + 11.0571i −0.0752990 + 0.0631834i
\(176\) −36.2632 43.2168i −0.206041 0.245550i
\(177\) −82.2436 + 143.396i −0.464653 + 0.810147i
\(178\) 137.784 50.1493i 0.774068 0.281738i
\(179\) −104.032 + 60.0628i −0.581183 + 0.335546i −0.761604 0.648043i \(-0.775588\pi\)
0.180420 + 0.983590i \(0.442254\pi\)
\(180\) −124.055 70.6799i −0.689195 0.392666i
\(181\) −79.9928 + 138.552i −0.441949 + 0.765478i −0.997834 0.0657809i \(-0.979046\pi\)
0.555885 + 0.831259i \(0.312380\pi\)
\(182\) 8.08790 + 1.42612i 0.0444390 + 0.00783580i
\(183\) 106.555 295.385i 0.582268 1.61412i
\(184\) −38.4865 14.0079i −0.209166 0.0761301i
\(185\) 60.0672 10.5915i 0.324688 0.0572512i
\(186\) −81.4012 67.9078i −0.437641 0.365096i
\(187\) 356.282 + 298.956i 1.90525 + 1.59870i
\(188\) 94.9406i 0.505003i
\(189\) −7.79259 + 9.45040i −0.0412307 + 0.0500021i
\(190\) −4.54969 −0.0239457
\(191\) −82.0805 + 97.8197i −0.429741 + 0.512145i −0.936847 0.349738i \(-0.886271\pi\)
0.507107 + 0.861883i \(0.330715\pi\)
\(192\) −8.27297 22.5290i −0.0430884 0.117339i
\(193\) 17.3129 + 98.1865i 0.0897043 + 0.508738i 0.996242 + 0.0866135i \(0.0276045\pi\)
−0.906538 + 0.422125i \(0.861284\pi\)
\(194\) −27.1897 + 74.7032i −0.140153 + 0.385068i
\(195\) −53.7531 299.830i −0.275657 1.53759i
\(196\) 16.9460 96.1058i 0.0864594 0.490336i
\(197\) −32.9869 19.0450i −0.167446 0.0966751i 0.413935 0.910306i \(-0.364154\pi\)
−0.581381 + 0.813631i \(0.697487\pi\)
\(198\) 138.173 + 114.600i 0.697843 + 0.578788i
\(199\) −192.718 333.797i −0.968430 1.67737i −0.700102 0.714043i \(-0.746862\pi\)
−0.268329 0.963327i \(-0.586471\pi\)
\(200\) 36.6807 + 100.779i 0.183404 + 0.503897i
\(201\) 167.580 97.3925i 0.833730 0.484540i
\(202\) −48.7241 + 40.8844i −0.241209 + 0.202398i
\(203\) 7.64631 + 9.11252i 0.0376666 + 0.0448893i
\(204\) 99.4187 + 171.066i 0.487347 + 0.838560i
\(205\) −184.728 + 67.2354i −0.901110 + 0.327977i
\(206\) 111.622 64.4452i 0.541856 0.312841i
\(207\) 128.470 + 21.8956i 0.620629 + 0.105776i
\(208\) 25.6016 44.3433i 0.123085 0.213189i
\(209\) 5.63340 + 0.993320i 0.0269541 + 0.00475273i
\(210\) 15.0274 2.69410i 0.0715592 0.0128290i
\(211\) 320.622 + 116.697i 1.51953 + 0.553065i 0.961032 0.276439i \(-0.0891542\pi\)
0.558502 + 0.829503i \(0.311376\pi\)
\(212\) 0.514970 0.0908030i 0.00242910 0.000428316i
\(213\) 307.678 112.983i 1.44450 0.530439i
\(214\) −223.224 187.307i −1.04310 0.875266i
\(215\) 142.370i 0.662186i
\(216\) 38.7500 + 65.8061i 0.179398 + 0.304658i
\(217\) 11.3353 0.0522364
\(218\) −127.412 + 151.844i −0.584459 + 0.696532i
\(219\) −120.959 + 144.993i −0.552323 + 0.662070i
\(220\) −38.8530 220.346i −0.176605 1.00157i
\(221\) −144.375 + 396.666i −0.653279 + 1.79487i
\(222\) −30.6883 11.0703i −0.138235 0.0498661i
\(223\) −10.1542 + 57.5872i −0.0455344 + 0.258238i −0.999074 0.0430300i \(-0.986299\pi\)
0.953539 + 0.301268i \(0.0974100\pi\)
\(224\) 2.22248 + 1.28315i 0.00992178 + 0.00572834i
\(225\) −172.318 294.558i −0.765856 1.30914i
\(226\) 51.5569 + 89.2992i 0.228128 + 0.395129i
\(227\) 14.3644 + 39.4658i 0.0632792 + 0.173858i 0.967303 0.253624i \(-0.0816227\pi\)
−0.904024 + 0.427483i \(0.859400\pi\)
\(228\) 2.11095 + 1.21072i 0.00925854 + 0.00531016i
\(229\) 68.1857 57.2146i 0.297754 0.249845i −0.481655 0.876361i \(-0.659964\pi\)
0.779409 + 0.626516i \(0.215520\pi\)
\(230\) −104.411 124.432i −0.453961 0.541009i
\(231\) −19.1951 + 0.0549169i −0.0830956 + 0.000237735i
\(232\) 69.6921 25.3658i 0.300397 0.109336i
\(233\) 121.622 70.2184i 0.521982 0.301367i −0.215763 0.976446i \(-0.569224\pi\)
0.737745 + 0.675079i \(0.235891\pi\)
\(234\) −54.8476 + 153.418i −0.234391 + 0.655634i
\(235\) −188.269 + 326.091i −0.801143 + 1.38762i
\(236\) −108.530 19.1369i −0.459875 0.0810884i
\(237\) 37.2648 + 44.1533i 0.157235 + 0.186301i
\(238\) −19.8808 7.23604i −0.0835330 0.0304035i
\(239\) −28.6122 + 5.04510i −0.119716 + 0.0211092i −0.233185 0.972432i \(-0.574915\pi\)
0.113469 + 0.993542i \(0.463804\pi\)
\(240\) 16.2604 93.7856i 0.0677517 0.390773i
\(241\) −113.719 95.4212i −0.471861 0.395938i 0.375612 0.926777i \(-0.377433\pi\)
−0.847473 + 0.530839i \(0.821877\pi\)
\(242\) 110.194i 0.455349i
\(243\) −158.844 183.895i −0.653680 0.756771i
\(244\) 209.344 0.857967
\(245\) 248.784 296.489i 1.01544 1.21016i
\(246\) 103.601 + 17.9622i 0.421143 + 0.0730172i
\(247\) 0.901547 + 5.11293i 0.00364999 + 0.0207001i
\(248\) 24.1712 66.4097i 0.0974643 0.267781i
\(249\) −130.975 + 110.541i −0.526005 + 0.443941i
\(250\) −25.1625 + 142.704i −0.100650 + 0.570816i
\(251\) 270.246 + 156.027i 1.07668 + 0.621621i 0.929999 0.367563i \(-0.119808\pi\)
0.146680 + 0.989184i \(0.453141\pi\)
\(252\) −7.68930 2.74895i −0.0305131 0.0109085i
\(253\) 102.114 + 176.867i 0.403613 + 0.699078i
\(254\) 5.31427 + 14.6008i 0.0209223 + 0.0574836i
\(255\) 2.24504 + 784.707i 0.00880407 + 3.07728i
\(256\) 12.2567 10.2846i 0.0478778 0.0401742i
\(257\) −33.8555 40.3474i −0.131733 0.156994i 0.696145 0.717901i \(-0.254897\pi\)
−0.827879 + 0.560907i \(0.810452\pi\)
\(258\) 37.8860 66.0563i 0.146845 0.256032i
\(259\) 3.27807 1.19312i 0.0126566 0.00460664i
\(260\) 175.867 101.537i 0.676411 0.390526i
\(261\) −203.696 + 119.163i −0.780443 + 0.456563i
\(262\) 26.5024 45.9034i 0.101154 0.175204i
\(263\) −15.7913 2.78443i −0.0600429 0.0105872i 0.143546 0.989644i \(-0.454149\pi\)
−0.203589 + 0.979056i \(0.565261\pi\)
\(264\) −40.6095 + 112.575i −0.153824 + 0.426419i
\(265\) 1.94882 + 0.709313i 0.00735404 + 0.00267665i
\(266\) −0.256259 + 0.0451854i −0.000963380 + 0.000169870i
\(267\) −238.843 199.252i −0.894544 0.746261i
\(268\) 98.9858 + 83.0590i 0.369350 + 0.309922i
\(269\) 233.865i 0.869388i −0.900578 0.434694i \(-0.856857\pi\)
0.900578 0.434694i \(-0.143143\pi\)
\(270\) 2.59954 + 302.865i 0.00962791 + 1.12172i
\(271\) −229.874 −0.848243 −0.424122 0.905605i \(-0.639417\pi\)
−0.424122 + 0.905605i \(0.639417\pi\)
\(272\) −84.7870 + 101.045i −0.311717 + 0.371490i
\(273\) −6.00539 16.3539i −0.0219978 0.0599045i
\(274\) 10.3951 + 58.9537i 0.0379384 + 0.215159i
\(275\) 182.907 502.534i 0.665118 1.82740i
\(276\) 15.3316 + 85.5183i 0.0555492 + 0.309849i
\(277\) 45.6767 259.046i 0.164898 0.935183i −0.784272 0.620418i \(-0.786963\pi\)
0.949170 0.314765i \(-0.101926\pi\)
\(278\) −199.569 115.221i −0.717874 0.414465i
\(279\) −37.7815 + 221.680i −0.135418 + 0.794550i
\(280\) 5.08901 + 8.81442i 0.0181750 + 0.0314801i
\(281\) −168.471 462.870i −0.599540 1.64722i −0.752193 0.658943i \(-0.771004\pi\)
0.152653 0.988280i \(-0.451218\pi\)
\(282\) 174.128 101.198i 0.617476 0.358859i
\(283\) −375.336 + 314.944i −1.32628 + 1.11288i −0.341343 + 0.939939i \(0.610882\pi\)
−0.984933 + 0.172938i \(0.944674\pi\)
\(284\) 140.456 + 167.389i 0.494564 + 0.589398i
\(285\) 4.84957 + 8.34447i 0.0170160 + 0.0292789i
\(286\) −239.926 + 87.3258i −0.838901 + 0.305335i
\(287\) −9.73694 + 5.62162i −0.0339266 + 0.0195875i
\(288\) −32.5017 + 39.1872i −0.112853 + 0.136067i
\(289\) 399.218 691.467i 1.38138 2.39262i
\(290\) 289.671 + 51.0768i 0.998866 + 0.176127i
\(291\) 165.993 29.7590i 0.570423 0.102265i
\(292\) −118.290 43.0542i −0.405104 0.147446i
\(293\) −149.954 + 26.4409i −0.511788 + 0.0902420i −0.423578 0.905860i \(-0.639226\pi\)
−0.0882105 + 0.996102i \(0.528115\pi\)
\(294\) −194.328 + 71.3600i −0.660980 + 0.242721i
\(295\) −334.819 280.947i −1.13498 0.952362i
\(296\) 21.7493i 0.0734773i
\(297\) 62.9048 375.573i 0.211801 1.26456i
\(298\) 253.936 0.852135
\(299\) −119.147 + 141.994i −0.398484 + 0.474895i
\(300\) 145.739 174.697i 0.485796 0.582324i
\(301\) 1.41395 + 8.01892i 0.00469751 + 0.0266409i
\(302\) 77.8405 213.865i 0.257750 0.708162i
\(303\) 126.921 + 45.7846i 0.418880 + 0.151104i
\(304\) −0.281716 + 1.59769i −0.000926696 + 0.00525555i
\(305\) 719.030 + 415.132i 2.35748 + 1.36109i
\(306\) 207.777 364.683i 0.679009 1.19177i
\(307\) −152.701 264.487i −0.497399 0.861520i 0.502597 0.864521i \(-0.332378\pi\)
−0.999995 + 0.00300104i \(0.999045\pi\)
\(308\) −4.37675 12.0250i −0.0142102 0.0390423i
\(309\) −237.177 136.031i −0.767563 0.440230i
\(310\) 214.712 180.165i 0.692619 0.581176i
\(311\) −227.448 271.062i −0.731344 0.871582i 0.264336 0.964431i \(-0.414847\pi\)
−0.995680 + 0.0928489i \(0.970403\pi\)
\(312\) −108.618 + 0.310755i −0.348135 + 0.000996009i
\(313\) −109.151 + 39.7277i −0.348725 + 0.126926i −0.510443 0.859911i \(-0.670519\pi\)
0.161718 + 0.986837i \(0.448297\pi\)
\(314\) −94.6668 + 54.6559i −0.301487 + 0.174063i
\(315\) −20.9591 24.6898i −0.0665368 0.0783803i
\(316\) −19.2590 + 33.3575i −0.0609462 + 0.105562i
\(317\) 223.759 + 39.4548i 0.705866 + 0.124463i 0.515047 0.857162i \(-0.327775\pi\)
0.190819 + 0.981625i \(0.438886\pi\)
\(318\) −0.715452 0.847705i −0.00224985 0.00266574i
\(319\) −347.518 126.486i −1.08940 0.396508i
\(320\) 62.4925 11.0191i 0.195289 0.0344347i
\(321\) −105.598 + 609.062i −0.328966 + 1.89739i
\(322\) −7.11670 5.97162i −0.0221015 0.0185454i
\(323\) 13.3747i 0.0414076i
\(324\) 79.3892 141.214i 0.245028 0.435845i
\(325\) 485.376 1.49347
\(326\) −1.94618 + 2.31936i −0.00596987 + 0.00711461i
\(327\) 414.303 + 71.8313i 1.26698 + 0.219668i
\(328\) 12.1724 + 69.0329i 0.0371109 + 0.210466i
\(329\) −7.36556 + 20.2367i −0.0223877 + 0.0615097i
\(330\) −362.718 + 306.129i −1.09915 + 0.927664i
\(331\) −16.3581 + 92.7715i −0.0494203 + 0.280276i −0.999496 0.0317429i \(-0.989894\pi\)
0.950076 + 0.312019i \(0.101005\pi\)
\(332\) −98.9509 57.1293i −0.298045 0.172076i
\(333\) 12.4072 + 68.0845i 0.0372590 + 0.204458i
\(334\) −63.4693 109.932i −0.190028 0.329138i
\(335\) 175.278 + 481.572i 0.523217 + 1.43753i
\(336\) −0.0155750 5.44392i −4.63541e−5 0.0162021i
\(337\) 55.5042 46.5735i 0.164701 0.138200i −0.556712 0.830705i \(-0.687937\pi\)
0.721413 + 0.692505i \(0.243493\pi\)
\(338\) 4.67179 + 5.56762i 0.0138219 + 0.0164723i
\(339\) 108.826 189.744i 0.321021 0.559718i
\(340\) −491.591 + 178.925i −1.44586 + 0.526249i
\(341\) −305.190 + 176.201i −0.894984 + 0.516719i
\(342\) −0.0295380 5.16216i −8.63684e−5 0.0150940i
\(343\) 22.1827 38.4216i 0.0646727 0.112016i
\(344\) 49.9952 + 8.81551i 0.145335 + 0.0256265i
\(345\) −116.925 + 324.131i −0.338913 + 0.939511i
\(346\) −242.333 88.2019i −0.700384 0.254919i
\(347\) −407.086 + 71.7802i −1.17316 + 0.206859i −0.726063 0.687628i \(-0.758652\pi\)
−0.447094 + 0.894487i \(0.647541\pi\)
\(348\) −120.808 100.783i −0.347151 0.289606i
\(349\) −53.8823 45.2127i −0.154391 0.129549i 0.562320 0.826920i \(-0.309909\pi\)
−0.716711 + 0.697370i \(0.754353\pi\)
\(350\) 24.3270i 0.0695057i
\(351\) 339.843 62.9357i 0.968215 0.179304i
\(352\) −79.7835 −0.226658
\(353\) −318.904 + 380.055i −0.903411 + 1.07664i 0.0933029 + 0.995638i \(0.470257\pi\)
−0.996714 + 0.0810052i \(0.974187\pi\)
\(354\) 80.5855 + 219.451i 0.227643 + 0.619919i
\(355\) 150.487 + 853.456i 0.423908 + 2.40410i
\(356\) 70.9218 194.856i 0.199219 0.547349i
\(357\) 7.91979 + 44.1759i 0.0221843 + 0.123742i
\(358\) −29.4999 + 167.302i −0.0824020 + 0.467325i
\(359\) 251.693 + 145.315i 0.701094 + 0.404777i 0.807755 0.589519i \(-0.200683\pi\)
−0.106661 + 0.994295i \(0.534016\pi\)
\(360\) −189.342 + 70.1444i −0.525950 + 0.194845i
\(361\) 180.418 + 312.493i 0.499772 + 0.865631i
\(362\) 77.3834 + 212.609i 0.213766 + 0.587318i
\(363\) 202.105 117.457i 0.556762 0.323574i
\(364\) 8.89720 7.46564i 0.0244429 0.0205100i
\(365\) −320.913 382.449i −0.879213 1.04781i
\(366\) −223.142 383.953i −0.609678 1.04905i
\(367\) 536.255 195.181i 1.46119 0.531828i 0.515495 0.856893i \(-0.327608\pi\)
0.945692 + 0.325065i \(0.105386\pi\)
\(368\) −50.1612 + 28.9606i −0.136308 + 0.0786973i
\(369\) −77.4857 209.159i −0.209988 0.566825i
\(370\) 43.1292 74.7019i 0.116565 0.201897i
\(371\) 0.116811 + 0.0205969i 0.000314854 + 5.55173e-5i
\(372\) −147.565 + 26.4552i −0.396679 + 0.0711161i
\(373\) 18.7449 + 6.82259i 0.0502545 + 0.0182911i 0.367025 0.930211i \(-0.380376\pi\)
−0.316771 + 0.948502i \(0.602599\pi\)
\(374\) 647.749 114.216i 1.73195 0.305389i
\(375\) 288.551 105.960i 0.769469 0.282559i
\(376\) 102.854 + 86.3047i 0.273548 + 0.229534i
\(377\) 335.653i 0.890325i
\(378\) 3.15433 + 17.0329i 0.00834479 + 0.0450606i
\(379\) −37.0647 −0.0977961 −0.0488981 0.998804i \(-0.515571\pi\)
−0.0488981 + 0.998804i \(0.515571\pi\)
\(380\) −4.13585 + 4.92891i −0.0108838 + 0.0129708i
\(381\) 21.1145 25.3100i 0.0554186 0.0664304i
\(382\) 31.3587 + 177.844i 0.0820908 + 0.465560i
\(383\) −139.086 + 382.135i −0.363148 + 0.997740i 0.614762 + 0.788713i \(0.289252\pi\)
−0.977910 + 0.209028i \(0.932970\pi\)
\(384\) −31.9273 11.5173i −0.0831440 0.0299928i
\(385\) 8.81306 49.9814i 0.0228911 0.129822i
\(386\) 122.109 + 70.4994i 0.316343 + 0.182641i
\(387\) −161.535 + 0.924309i −0.417404 + 0.00238840i
\(388\) 56.2132 + 97.3641i 0.144879 + 0.250938i
\(389\) −53.2715 146.362i −0.136945 0.376253i 0.852196 0.523222i \(-0.175270\pi\)
−0.989141 + 0.146970i \(0.953048\pi\)
\(390\) −373.685 214.324i −0.958166 0.549549i
\(391\) 365.791 306.935i 0.935528 0.785001i
\(392\) −88.7116 105.722i −0.226305 0.269700i
\(393\) −112.440 + 0.321688i −0.286106 + 0.000818545i
\(394\) −50.6188 + 18.4237i −0.128474 + 0.0467607i
\(395\) −132.297 + 76.3818i −0.334929 + 0.193372i
\(396\) 249.756 45.5138i 0.630698 0.114934i
\(397\) −203.720 + 352.853i −0.513147 + 0.888797i 0.486736 + 0.873549i \(0.338187\pi\)
−0.999884 + 0.0152485i \(0.995146\pi\)
\(398\) −536.807 94.6535i −1.34876 0.237823i
\(399\) 0.356023 + 0.421835i 0.000892288 + 0.00105723i
\(400\) 142.524 + 51.8744i 0.356309 + 0.129686i
\(401\) −57.1810 + 10.0826i −0.142596 + 0.0251435i −0.244491 0.969652i \(-0.578621\pi\)
0.101894 + 0.994795i \(0.467510\pi\)
\(402\) 46.8262 270.081i 0.116483 0.671843i
\(403\) −245.015 205.592i −0.607977 0.510153i
\(404\) 89.9509i 0.222651i
\(405\) 552.706 327.595i 1.36471 0.808877i
\(406\) 16.8229 0.0414356
\(407\) −69.7117 + 83.0792i −0.171282 + 0.204126i
\(408\) 275.700 + 47.8005i 0.675736 + 0.117158i
\(409\) 50.2599 + 285.038i 0.122885 + 0.696915i 0.982542 + 0.186043i \(0.0595664\pi\)
−0.859657 + 0.510872i \(0.829323\pi\)
\(410\) −95.0851 + 261.244i −0.231915 + 0.637181i
\(411\) 97.0452 81.9049i 0.236120 0.199282i
\(412\) 31.6524 179.509i 0.0768261 0.435702i
\(413\) −21.6488 12.4989i −0.0524183 0.0302637i
\(414\) 140.505 119.274i 0.339384 0.288102i
\(415\) −226.577 392.443i −0.545968 0.945645i
\(416\) −24.7665 68.0453i −0.0595348 0.163570i
\(417\) 1.39857 + 488.840i 0.00335387 + 1.17228i
\(418\) 6.19709 5.19998i 0.0148256 0.0124401i
\(419\) 432.059 + 514.908i 1.03117 + 1.22890i 0.973052 + 0.230587i \(0.0740648\pi\)
0.0581156 + 0.998310i \(0.481491\pi\)
\(420\) 10.7419 18.7290i 0.0255759 0.0445929i
\(421\) 211.095 76.8324i 0.501414 0.182500i −0.0789157 0.996881i \(-0.525146\pi\)
0.580330 + 0.814381i \(0.302924\pi\)
\(422\) 417.881 241.264i 0.990239 0.571715i
\(423\) −371.210 211.496i −0.877566 0.499990i
\(424\) 0.369756 0.640436i 0.000872066 0.00151046i
\(425\) −1231.39 217.127i −2.89738 0.510887i
\(426\) 157.290 436.029i 0.369226 1.02354i
\(427\) 44.6219 + 16.2411i 0.104501 + 0.0380353i
\(428\) −405.838 + 71.5602i −0.948220 + 0.167197i
\(429\) 415.902 + 346.960i 0.969468 + 0.808765i
\(430\) 154.237 + 129.420i 0.358690 + 0.300976i
\(431\) 189.283i 0.439171i −0.975593 0.219585i \(-0.929530\pi\)
0.975593 0.219585i \(-0.0704705\pi\)
\(432\) 106.516 + 17.8404i 0.246565 + 0.0412973i
\(433\) −364.876 −0.842669 −0.421334 0.906905i \(-0.638438\pi\)
−0.421334 + 0.906905i \(0.638438\pi\)
\(434\) 10.3042 12.2801i 0.0237425 0.0282952i
\(435\) −215.085 585.722i −0.494449 1.34649i
\(436\) 48.6775 + 276.064i 0.111646 + 0.633174i
\(437\) 2.00868 5.51879i 0.00459651 0.0126288i
\(438\) 47.1225 + 262.845i 0.107586 + 0.600104i
\(439\) 73.6423 417.646i 0.167750 0.951358i −0.778433 0.627727i \(-0.783985\pi\)
0.946183 0.323631i \(-0.104904\pi\)
\(440\) −274.031 158.212i −0.622798 0.359573i
\(441\) 338.016 + 280.349i 0.766477 + 0.635712i
\(442\) 298.486 + 516.994i 0.675308 + 1.16967i
\(443\) 61.4880 + 168.937i 0.138799 + 0.381348i 0.989544 0.144231i \(-0.0460710\pi\)
−0.850745 + 0.525579i \(0.823849\pi\)
\(444\) −39.8898 + 23.1828i −0.0898419 + 0.0522135i
\(445\) 629.997 528.630i 1.41572 1.18793i
\(446\) 53.1565 + 63.3495i 0.119185 + 0.142039i
\(447\) −270.674 465.738i −0.605534 1.04192i
\(448\) 3.41042 1.24129i 0.00761254 0.00277074i
\(449\) 558.134 322.239i 1.24306 0.717681i 0.273343 0.961917i \(-0.411871\pi\)
0.969716 + 0.244236i \(0.0785372\pi\)
\(450\) −475.753 81.0839i −1.05723 0.180187i
\(451\) 174.770 302.711i 0.387518 0.671200i
\(452\) 143.610 + 25.3222i 0.317720 + 0.0560226i
\(453\) −475.216 + 85.1959i −1.04904 + 0.188070i
\(454\) 55.8131 + 20.3143i 0.122936 + 0.0447452i
\(455\) 45.3636 7.99882i 0.0997001 0.0175798i
\(456\) 3.23056 1.18631i 0.00708457 0.00260155i
\(457\) 198.907 + 166.903i 0.435246 + 0.365215i 0.833927 0.551875i \(-0.186088\pi\)
−0.398681 + 0.917090i \(0.630532\pi\)
\(458\) 125.879i 0.274846i
\(459\) −890.327 + 7.64182i −1.93971 + 0.0166488i
\(460\) −229.717 −0.499385
\(461\) 313.010 373.031i 0.678981 0.809178i −0.310996 0.950411i \(-0.600662\pi\)
0.989976 + 0.141234i \(0.0451069\pi\)
\(462\) −17.3896 + 20.8449i −0.0376398 + 0.0451189i
\(463\) 104.106 + 590.412i 0.224850 + 1.27519i 0.862972 + 0.505252i \(0.168601\pi\)
−0.638121 + 0.769936i \(0.720288\pi\)
\(464\) 35.8727 98.5595i 0.0773119 0.212413i
\(465\) −559.299 201.758i −1.20279 0.433888i
\(466\) 34.4879 195.590i 0.0740083 0.419722i
\(467\) −551.534 318.428i −1.18102 0.681860i −0.224766 0.974413i \(-0.572162\pi\)
−0.956249 + 0.292553i \(0.905495\pi\)
\(468\) 116.347 + 198.882i 0.248605 + 0.424962i
\(469\) 14.6552 + 25.3835i 0.0312477 + 0.0541226i
\(470\) 182.127 + 500.390i 0.387505 + 1.06466i
\(471\) 201.149 + 115.368i 0.427069 + 0.244942i
\(472\) −119.390 + 100.180i −0.252946 + 0.212247i
\(473\) −162.719 193.921i −0.344015 0.409981i
\(474\) 81.7086 0.233767i 0.172381 0.000493180i
\(475\) −14.4513 + 5.25985i −0.0304238 + 0.0110734i
\(476\) −25.9116 + 14.9601i −0.0544362 + 0.0314288i
\(477\) −0.792146 + 2.21577i −0.00166068 + 0.00464522i
\(478\) −20.5440 + 35.5832i −0.0429790 + 0.0744419i
\(479\) 393.091 + 69.3125i 0.820649 + 0.144703i 0.568182 0.822903i \(-0.307647\pi\)
0.252467 + 0.967605i \(0.418758\pi\)
\(480\) −86.8213 102.870i −0.180878 0.214314i
\(481\) −92.4960 33.6658i −0.192299 0.0699913i
\(482\) −206.749 + 36.4555i −0.428940 + 0.0756337i
\(483\) −3.36663 + 19.4178i −0.00697024 + 0.0402024i
\(484\) 119.379 + 100.171i 0.246651 + 0.206965i
\(485\) 445.886i 0.919354i
\(486\) −343.619 + 4.91577i −0.707034 + 0.0101147i
\(487\) −379.619 −0.779505 −0.389753 0.920920i \(-0.627440\pi\)
−0.389753 + 0.920920i \(0.627440\pi\)
\(488\) 190.302 226.793i 0.389963 0.464740i
\(489\) 6.32834 + 1.09720i 0.0129414 + 0.00224376i
\(490\) −95.0473 539.040i −0.193974 1.10008i
\(491\) 204.694 562.393i 0.416893 1.14540i −0.536561 0.843862i \(-0.680277\pi\)
0.953453 0.301541i \(-0.0975010\pi\)
\(492\) 113.637 95.9080i 0.230969 0.194935i
\(493\) −150.150 + 851.542i −0.304564 + 1.72727i
\(494\) 6.35863 + 3.67116i 0.0128717 + 0.00743149i
\(495\) 948.089 + 338.945i 1.91533 + 0.684738i
\(496\) −49.9725 86.5549i −0.100751 0.174506i
\(497\) 16.9522 + 46.5759i 0.0341091 + 0.0937141i
\(498\) 0.693442 + 242.378i 0.00139245 + 0.486703i
\(499\) −35.4771 + 29.7688i −0.0710964 + 0.0596569i −0.677643 0.735391i \(-0.736999\pi\)
0.606547 + 0.795048i \(0.292554\pi\)
\(500\) 131.725 + 156.983i 0.263449 + 0.313966i
\(501\) −133.971 + 233.585i −0.267407 + 0.466238i
\(502\) 414.696 150.937i 0.826088 0.300672i
\(503\) −728.991 + 420.883i −1.44929 + 0.836745i −0.998439 0.0558562i \(-0.982211\pi\)
−0.450847 + 0.892601i \(0.648878\pi\)
\(504\) −9.96795 + 5.83130i −0.0197777 + 0.0115700i
\(505\) −178.374 + 308.953i −0.353216 + 0.611788i
\(506\) 284.434 + 50.1535i 0.562123 + 0.0991175i
\(507\) 5.23172 14.5030i 0.0103190 0.0286055i
\(508\) 20.6487 + 7.51551i 0.0406470 + 0.0147943i
\(509\) 503.035 88.6986i 0.988281 0.174261i 0.343934 0.938994i \(-0.388240\pi\)
0.644347 + 0.764733i \(0.277129\pi\)
\(510\) 852.154 + 710.897i 1.67089 + 1.39392i
\(511\) −21.8736 18.3541i −0.0428054 0.0359180i
\(512\) 22.6274i 0.0441942i
\(513\) −9.43630 + 5.55658i −0.0183943 + 0.0108315i
\(514\) −74.4863 −0.144915
\(515\) 464.686 553.791i 0.902303 1.07532i
\(516\) −37.1222 101.092i −0.0719423 0.195914i
\(517\) −116.260 659.343i −0.224874 1.27533i
\(518\) 1.68732 4.63589i 0.00325738 0.00894959i
\(519\) 96.5364 + 538.472i 0.186005 + 1.03752i
\(520\) 49.8699 282.827i 0.0959037 0.543897i
\(521\) −496.828 286.844i −0.953604 0.550563i −0.0594053 0.998234i \(-0.518920\pi\)
−0.894199 + 0.447670i \(0.852254\pi\)
\(522\) −56.0720 + 328.997i −0.107418 + 0.630263i
\(523\) 257.403 + 445.835i 0.492166 + 0.852457i 0.999959 0.00902213i \(-0.00287187\pi\)
−0.507793 + 0.861479i \(0.669539\pi\)
\(524\) −25.6378 70.4394i −0.0489272 0.134426i
\(525\) 44.6175 25.9304i 0.0849858 0.0493913i
\(526\) −17.3714 + 14.5763i −0.0330255 + 0.0277117i
\(527\) 529.627 + 631.185i 1.00499 + 1.19769i
\(528\) 85.0422 + 146.329i 0.161065 + 0.277138i
\(529\) −300.064 + 109.214i −0.567228 + 0.206454i
\(530\) 2.53999 1.46646i 0.00479243 0.00276691i
\(531\) 316.593 381.716i 0.596221 0.718862i
\(532\) −0.183998 + 0.318694i −0.000345861 + 0.000599048i
\(533\) 312.427 + 55.0893i 0.586167 + 0.103357i
\(534\) −432.977 + 77.6235i −0.810819 + 0.145362i
\(535\) −1535.83 558.997i −2.87071 1.04485i
\(536\) 179.964 31.7325i 0.335754 0.0592024i
\(537\) 338.289 124.224i 0.629962 0.231331i
\(538\) −253.358 212.593i −0.470926 0.395154i
\(539\) 688.187i 1.27678i
\(540\) 330.472 + 272.500i 0.611985 + 0.504629i
\(541\) 104.119 0.192457 0.0962284 0.995359i \(-0.469322\pi\)
0.0962284 + 0.995359i \(0.469322\pi\)
\(542\) −208.964 + 249.034i −0.385543 + 0.459472i
\(543\) 307.457 368.549i 0.566219 0.678728i
\(544\) 32.3927 + 183.708i 0.0595454 + 0.337699i
\(545\) −380.247 + 1044.72i −0.697702 + 1.91692i
\(546\) −23.1762 8.36043i −0.0424472 0.0153121i
\(547\) −34.7198 + 196.906i −0.0634732 + 0.359974i 0.936484 + 0.350711i \(0.114060\pi\)
−0.999957 + 0.00926380i \(0.997051\pi\)
\(548\) 73.3171 + 42.3296i 0.133790 + 0.0772439i
\(549\) −466.348 + 818.519i −0.849450 + 1.49093i
\(550\) −378.150 654.976i −0.687546 1.19087i
\(551\) 3.63735 + 9.99353i 0.00660136 + 0.0181371i
\(552\) 106.583 + 61.1300i 0.193086 + 0.110743i
\(553\) −6.69298 + 5.61608i −0.0121030 + 0.0101557i
\(554\) −239.115 284.966i −0.431616 0.514380i
\(555\) −182.981 + 0.523506i −0.329695 + 0.000943254i
\(556\) −306.241 + 111.463i −0.550793 + 0.200472i
\(557\) 289.044 166.880i 0.518930 0.299604i −0.217567 0.976045i \(-0.569812\pi\)
0.736497 + 0.676441i \(0.236479\pi\)
\(558\) 205.812 + 242.446i 0.368838 + 0.434491i
\(559\) 114.879 198.976i 0.205508 0.355950i
\(560\) 14.1752 + 2.49947i 0.0253129 + 0.00446334i
\(561\) −899.923 1066.28i −1.60414 1.90067i
\(562\) −654.597 238.254i −1.16476 0.423939i
\(563\) 989.177 174.419i 1.75697 0.309802i 0.800006 0.599992i \(-0.204830\pi\)
0.956969 + 0.290190i \(0.0937187\pi\)
\(564\) 48.6561 280.635i 0.0862696 0.497580i
\(565\) 443.039 + 371.754i 0.784140 + 0.657971i
\(566\) 692.917i 1.22423i
\(567\) 27.8774 23.9408i 0.0491664 0.0422237i
\(568\) 309.021 0.544051
\(569\) 441.594 526.272i 0.776089 0.924906i −0.222661 0.974896i \(-0.571474\pi\)
0.998750 + 0.0499895i \(0.0159188\pi\)
\(570\) 13.4484 + 2.33167i 0.0235937 + 0.00409065i
\(571\) −67.2813 381.571i −0.117831 0.668251i −0.985310 0.170777i \(-0.945372\pi\)
0.867479 0.497474i \(-0.165739\pi\)
\(572\) −123.497 + 339.306i −0.215904 + 0.593192i
\(573\) 292.753 247.080i 0.510914 0.431204i
\(574\) −2.76107 + 15.6588i −0.00481022 + 0.0272801i
\(575\) −475.499 274.529i −0.826954 0.477442i
\(576\) 12.9082 + 70.8335i 0.0224100 + 0.122975i
\(577\) −279.632 484.337i −0.484631 0.839406i 0.515213 0.857062i \(-0.327713\pi\)
−0.999844 + 0.0176564i \(0.994379\pi\)
\(578\) −386.196 1061.06i −0.668158 1.83575i
\(579\) −0.855729 299.102i −0.00147794 0.516584i
\(580\) 318.656 267.385i 0.549408 0.461008i
\(581\) −16.6594 19.8539i −0.0286736 0.0341719i
\(582\) 118.655 206.881i 0.203874 0.355465i
\(583\) −3.46517 + 1.26122i −0.00594368 + 0.00216332i
\(584\) −154.173 + 89.0120i −0.263995 + 0.152418i
\(585\) 5.22888 + 913.817i 0.00893826 + 1.56208i
\(586\) −107.669 + 186.488i −0.183736 + 0.318240i
\(587\) 499.131 + 88.0103i 0.850309 + 0.149932i 0.581787 0.813341i \(-0.302354\pi\)
0.268522 + 0.963274i \(0.413465\pi\)
\(588\) −99.3441 + 275.395i −0.168953 + 0.468358i
\(589\) 9.52286 + 3.46604i 0.0161678 + 0.00588461i
\(590\) −608.728 + 107.335i −1.03174 + 0.181924i
\(591\) 87.7456 + 73.2005i 0.148470 + 0.123859i
\(592\) −23.5621 19.7709i −0.0398008 0.0333969i
\(593\) 598.516i 1.00930i −0.863324 0.504651i \(-0.831621\pi\)
0.863324 0.504651i \(-0.168379\pi\)
\(594\) −349.694 409.558i −0.588711 0.689492i
\(595\) −118.664 −0.199436
\(596\) 230.838 275.102i 0.387312 0.461580i
\(597\) 398.587 + 1085.44i 0.667650 + 1.81815i
\(598\) 45.5198 + 258.155i 0.0761200 + 0.431698i
\(599\) 264.288 726.125i 0.441215 1.21223i −0.497478 0.867477i \(-0.665741\pi\)
0.938694 0.344753i \(-0.112037\pi\)
\(600\) −56.7762 316.693i −0.0946269 0.527821i
\(601\) −22.6179 + 128.272i −0.0376337 + 0.213431i −0.997826 0.0659100i \(-0.979005\pi\)
0.960192 + 0.279341i \(0.0901161\pi\)
\(602\) 9.97263 + 5.75770i 0.0165658 + 0.00956429i
\(603\) −545.262 + 202.000i −0.904248 + 0.334991i
\(604\) −160.931 278.740i −0.266442 0.461490i
\(605\) 211.389 + 580.786i 0.349403 + 0.959978i
\(606\) 164.977 95.8797i 0.272239 0.158217i
\(607\) 485.221 407.149i 0.799376 0.670756i −0.148671 0.988887i \(-0.547500\pi\)
0.948047 + 0.318131i \(0.103055\pi\)
\(608\) 1.47477 + 1.75756i 0.00242560 + 0.00289072i
\(609\) −17.9317 30.8544i −0.0294445 0.0506640i
\(610\) 1103.36 401.590i 1.80879 0.658345i
\(611\) 526.247 303.829i 0.861288 0.497265i
\(612\) −206.202 556.606i −0.336932 0.909487i
\(613\) −388.396 + 672.722i −0.633599 + 1.09743i 0.353211 + 0.935544i \(0.385090\pi\)
−0.986810 + 0.161883i \(0.948243\pi\)
\(614\) −425.343 74.9995i −0.692741 0.122149i
\(615\) 580.494 104.070i 0.943893 0.169220i
\(616\) −17.0060 6.18966i −0.0276071 0.0100482i
\(617\) −360.546 + 63.5740i −0.584353 + 0.103037i −0.458006 0.888949i \(-0.651436\pi\)
−0.126347 + 0.991986i \(0.540325\pi\)
\(618\) −362.972 + 133.288i −0.587334 + 0.215677i
\(619\) 341.806 + 286.809i 0.552190 + 0.463343i 0.875682 0.482888i \(-0.160412\pi\)
−0.323492 + 0.946231i \(0.604857\pi\)
\(620\) 396.385i 0.639330i
\(621\) −368.524 130.561i −0.593436 0.210243i
\(622\) −500.414 −0.804524
\(623\) 30.2342 36.0317i 0.0485299 0.0578357i
\(624\) −98.4014 + 117.954i −0.157694 + 0.189029i
\(625\) −23.4761 133.140i −0.0375618 0.213024i
\(626\) −56.1835 + 154.363i −0.0897500 + 0.246586i
\(627\) −16.1427 5.82322i −0.0257459 0.00928743i
\(628\) −26.8443 + 152.242i −0.0427457 + 0.242423i
\(629\) 219.600 + 126.786i 0.349126 + 0.201568i
\(630\) −45.8003 + 0.262071i −0.0726989 + 0.000415985i
\(631\) 444.799 + 770.415i 0.704911 + 1.22094i 0.966723 + 0.255824i \(0.0823466\pi\)
−0.261812 + 0.965119i \(0.584320\pi\)
\(632\) 18.6307 + 51.1875i 0.0294790 + 0.0809929i
\(633\) −887.920 509.259i −1.40272 0.804517i
\(634\) 246.150 206.544i 0.388248 0.325779i
\(635\) 56.0184 + 66.7601i 0.0882179 + 0.105134i
\(636\) −1.56873 + 0.00448813i −0.00246656 + 7.05681e-6i
\(637\) −586.937 + 213.628i −0.921408 + 0.335365i
\(638\) −452.936 + 261.503i −0.709931 + 0.409879i
\(639\) −967.368 + 176.286i −1.51388 + 0.275878i
\(640\) 44.8705 77.7180i 0.0701102 0.121434i
\(641\) 460.754 + 81.2433i 0.718805 + 0.126745i 0.521074 0.853512i \(-0.325532\pi\)
0.197731 + 0.980256i \(0.436643\pi\)
\(642\) 563.834 + 668.061i 0.878246 + 1.04059i
\(643\) 367.369 + 133.711i 0.571336 + 0.207949i 0.611501 0.791244i \(-0.290566\pi\)
−0.0401649 + 0.999193i \(0.512788\pi\)
\(644\) −12.9387 + 2.28144i −0.0200912 + 0.00354261i
\(645\) 72.9632 420.832i 0.113121 0.652452i
\(646\) −14.4894 12.1581i −0.0224295 0.0188206i
\(647\) 343.874i 0.531490i −0.964043 0.265745i \(-0.914382\pi\)
0.964043 0.265745i \(-0.0856180\pi\)
\(648\) −80.8162 214.375i −0.124716 0.330826i
\(649\) 777.157 1.19747
\(650\) 441.226 525.833i 0.678809 0.808974i
\(651\) −33.5060 5.80922i −0.0514685 0.00892354i
\(652\) 0.743533 + 4.21678i 0.00114039 + 0.00646746i
\(653\) 40.4063 111.015i 0.0618779 0.170008i −0.904901 0.425622i \(-0.860055\pi\)
0.966779 + 0.255614i \(0.0822776\pi\)
\(654\) 454.436 383.538i 0.694857 0.586450i
\(655\) 51.6245 292.777i 0.0788161 0.446988i
\(656\) 85.8520 + 49.5667i 0.130872 + 0.0755590i
\(657\) 431.850 366.596i 0.657306 0.557985i
\(658\) 15.2279 + 26.3754i 0.0231426 + 0.0400842i
\(659\) −236.242 649.069i −0.358485 0.984930i −0.979555 0.201175i \(-0.935524\pi\)
0.621070 0.783755i \(-0.286698\pi\)
\(660\) 1.92039 + 671.234i 0.00290969 + 1.01702i
\(661\) 767.161 643.724i 1.16061 0.973864i 0.160692 0.987005i \(-0.448627\pi\)
0.999914 + 0.0131403i \(0.00418282\pi\)
\(662\) 85.6338 + 102.054i 0.129356 + 0.154161i
\(663\) 630.045 1098.52i 0.950294 1.65689i
\(664\) −151.841 + 55.2657i −0.228677 + 0.0832315i
\(665\) −1.26395 + 0.729741i −0.00190068 + 0.00109736i
\(666\) 85.0380 + 48.4501i 0.127685 + 0.0727479i
\(667\) −189.845 + 328.822i −0.284626 + 0.492986i
\(668\) −176.791 31.1730i −0.264657 0.0466662i
\(669\) 59.5276 165.018i 0.0889799 0.246664i
\(670\) 681.045 + 247.880i 1.01649 + 0.369971i
\(671\) −1453.85 + 256.353i −2.16669 + 0.382047i
\(672\) −5.91183 4.93186i −0.00879736 0.00733908i
\(673\) −122.061 102.421i −0.181368 0.152186i 0.547584 0.836751i \(-0.315548\pi\)
−0.728952 + 0.684565i \(0.759992\pi\)
\(674\) 102.468i 0.152029i
\(675\) 358.396 + 958.994i 0.530957 + 1.42073i
\(676\) 10.2785 0.0152049
\(677\) −657.379 + 783.434i −0.971018 + 1.15721i 0.0165244 + 0.999863i \(0.494740\pi\)
−0.987543 + 0.157351i \(0.949705\pi\)
\(678\) −106.632 290.382i −0.157275 0.428292i
\(679\) 4.42833 + 25.1143i 0.00652185 + 0.0369872i
\(680\) −253.038 + 695.215i −0.372114 + 1.02237i
\(681\) −22.2339 124.019i −0.0326489 0.182113i
\(682\) −86.5415 + 490.801i −0.126894 + 0.719650i
\(683\) 376.428 + 217.331i 0.551139 + 0.318200i 0.749581 0.661912i \(-0.230255\pi\)
−0.198442 + 0.980113i \(0.563588\pi\)
\(684\) −5.61927 4.66060i −0.00821531 0.00681374i
\(685\) 167.881 + 290.778i 0.245081 + 0.424493i
\(686\) −21.4591 58.9584i −0.0312815 0.0859452i
\(687\) −230.872 + 134.176i −0.336058 + 0.195307i
\(688\) 54.9979 46.1487i 0.0799388 0.0670766i
\(689\) −2.15132 2.56384i −0.00312238 0.00372111i
\(690\) 244.858 + 421.319i 0.354867 + 0.610607i
\(691\) −576.062 + 209.669i −0.833664 + 0.303429i −0.723362 0.690469i \(-0.757404\pi\)
−0.110302 + 0.993898i \(0.535182\pi\)
\(692\) −315.843 + 182.352i −0.456421 + 0.263515i
\(693\) 56.7669 + 9.67495i 0.0819147 + 0.0139610i
\(694\) −292.294 + 506.267i −0.421172 + 0.729492i
\(695\) −1272.87 224.442i −1.83147 0.322938i
\(696\) −219.003 + 39.2624i −0.314659 + 0.0564116i
\(697\) −767.976 279.520i −1.10183 0.401034i
\(698\) −97.9623 + 17.2734i −0.140347 + 0.0247470i
\(699\) −395.489 + 145.229i −0.565792 + 0.207766i
\(700\) 26.3547 + 22.1142i 0.0376495 + 0.0315917i
\(701\) 644.120i 0.918859i 0.888214 + 0.459430i \(0.151946\pi\)
−0.888214 + 0.459430i \(0.848054\pi\)
\(702\) 240.749 425.381i 0.342948 0.605955i
\(703\) 3.11875 0.00443634
\(704\) −72.5264 + 86.4335i −0.103020 + 0.122775i
\(705\) 723.622 867.407i 1.02641 1.23036i
\(706\) 121.837 + 690.970i 0.172573 + 0.978710i
\(707\) −6.97845 + 19.1731i −0.00987051 + 0.0271190i
\(708\) 310.998 + 112.187i 0.439263 + 0.158457i
\(709\) 54.3773 308.389i 0.0766958 0.434963i −0.922146 0.386843i \(-0.873566\pi\)
0.998842 0.0481207i \(-0.0153232\pi\)
\(710\) 1061.39 + 612.794i 1.49492 + 0.863090i
\(711\) −87.5229 149.611i −0.123098 0.210423i
\(712\) −146.627 253.965i −0.205936 0.356692i
\(713\) 123.746 + 339.988i 0.173556 + 0.476842i
\(714\) 55.0574 + 31.5777i 0.0771112 + 0.0442265i
\(715\) −1097.02 + 920.512i −1.53430 + 1.28743i
\(716\) 154.431 + 184.043i 0.215685 + 0.257043i
\(717\) 87.1604 0.249365i 0.121563 0.000347789i
\(718\) 386.226 140.575i 0.537919 0.195786i
\(719\) −1134.61 + 655.066i −1.57804 + 0.911079i −0.582902 + 0.812543i \(0.698083\pi\)
−0.995133 + 0.0985362i \(0.968584\pi\)
\(720\) −96.1283 + 268.888i −0.133512 + 0.373455i
\(721\) 20.6732 35.8070i 0.0286730 0.0496630i
\(722\) 502.546 + 88.6124i 0.696047 + 0.122732i
\(723\) 287.238 + 340.335i 0.397287 + 0.470726i
\(724\) 300.675 + 109.437i 0.415296 + 0.151156i
\(725\) 979.141 172.649i 1.35054 0.238137i
\(726\) 56.4735 325.724i 0.0777872 0.448655i
\(727\) 965.609 + 810.242i 1.32821 + 1.11450i 0.984492 + 0.175428i \(0.0561308\pi\)
0.343718 + 0.939073i \(0.388314\pi\)
\(728\) 16.4253i 0.0225623i
\(729\) 375.283 + 624.983i 0.514792 + 0.857315i
\(730\) −706.049 −0.967190
\(731\) −380.454 + 453.407i −0.520456 + 0.620256i
\(732\) −618.800 107.287i −0.845355 0.146566i
\(733\) 36.7966 + 208.684i 0.0502000 + 0.284698i 0.999566 0.0294754i \(-0.00938366\pi\)
−0.949365 + 0.314174i \(0.898273\pi\)
\(734\) 276.028 758.380i 0.376059 1.03321i
\(735\) −887.327 + 748.893i −1.20725 + 1.01890i
\(736\) −14.2240 + 80.6685i −0.0193261 + 0.109604i
\(737\) −789.147 455.614i −1.07076 0.618201i
\(738\) −297.029 106.189i −0.402479 0.143888i
\(739\) 26.2115 + 45.3996i 0.0354688 + 0.0614338i 0.883215 0.468968i \(-0.155374\pi\)
−0.847746 + 0.530402i \(0.822041\pi\)
\(740\) −41.7223 114.631i −0.0563814 0.154907i
\(741\) −0.0445609 15.5753i −6.01361e−5 0.0210194i
\(742\) 0.128499 0.107824i 0.000173180 0.000145315i
\(743\) −12.7448 15.1886i −0.0171531 0.0204423i 0.757400 0.652952i \(-0.226469\pi\)
−0.774553 + 0.632509i \(0.782025\pi\)
\(744\) −105.482 + 183.913i −0.141777 + 0.247195i
\(745\) 1338.39 487.133i 1.79649 0.653870i
\(746\) 24.4311 14.1053i 0.0327495 0.0189079i
\(747\) 443.801 259.626i 0.594111 0.347558i
\(748\) 465.094 805.566i 0.621783 1.07696i
\(749\) −92.0566 16.2321i −0.122906 0.0216716i
\(750\) 147.512 408.923i 0.196683 0.545231i
\(751\) 1260.89 + 458.927i 1.67895 + 0.611088i 0.993165 0.116716i \(-0.0372368\pi\)
0.685785 + 0.727804i \(0.259459\pi\)
\(752\) 186.996 32.9725i 0.248665 0.0438464i
\(753\) −718.860 599.699i −0.954661 0.796412i
\(754\) −363.629 305.121i −0.482267 0.404670i
\(755\) 1276.51i 1.69075i
\(756\) 21.3200 + 12.0663i 0.0282011 + 0.0159607i
\(757\) 1369.68 1.80935 0.904675 0.426102i \(-0.140114\pi\)
0.904675 + 0.426102i \(0.140114\pi\)
\(758\) −33.6933 + 40.1541i −0.0444503 + 0.0529738i
\(759\) −211.197 575.133i −0.278257 0.757752i
\(760\) 1.58009 + 8.96114i 0.00207907 + 0.0117910i
\(761\) −18.9789 + 52.1440i −0.0249394 + 0.0685204i −0.951538 0.307533i \(-0.900497\pi\)
0.926598 + 0.376053i \(0.122719\pi\)
\(762\) −8.22567 45.8821i −0.0107948 0.0602128i
\(763\) −11.0416 + 62.6198i −0.0144712 + 0.0820705i
\(764\) 221.174 + 127.695i 0.289494 + 0.167140i
\(765\) 395.518 2320.67i 0.517018 3.03355i
\(766\) 287.551 + 498.054i 0.375393