Properties

Label 54.3.f.a.11.3
Level $54$
Weight $3$
Character 54.11
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 11.3
Character \(\chi\) \(=\) 54.11
Dual form 54.3.f.a.5.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.909039 + 1.08335i) q^{2} +(2.80846 - 1.05478i) q^{3} +(-0.347296 - 1.96962i) q^{4} +(2.86430 - 7.86960i) q^{5} +(-1.41030 + 4.00138i) q^{6} +(-1.95208 + 11.0708i) q^{7} +(2.44949 + 1.41421i) q^{8} +(6.77487 - 5.92462i) q^{9} +O(q^{10})\) \(q+(-0.909039 + 1.08335i) q^{2} +(2.80846 - 1.05478i) q^{3} +(-0.347296 - 1.96962i) q^{4} +(2.86430 - 7.86960i) q^{5} +(-1.41030 + 4.00138i) q^{6} +(-1.95208 + 11.0708i) q^{7} +(2.44949 + 1.41421i) q^{8} +(6.77487 - 5.92462i) q^{9} +(5.92177 + 10.2568i) q^{10} +(0.538121 + 1.47848i) q^{11} +(-3.05288 - 5.16526i) q^{12} +(-6.82419 + 5.72617i) q^{13} +(-10.2191 - 12.1786i) q^{14} +(-0.256445 - 25.1227i) q^{15} +(-3.75877 + 1.36808i) q^{16} +(-16.9870 + 9.80744i) q^{17} +(0.259819 + 12.7253i) q^{18} +(4.86486 - 8.42619i) q^{19} +(-16.4948 - 2.90849i) q^{20} +(6.19496 + 33.1510i) q^{21} +(-2.09088 - 0.761018i) q^{22} +(-13.8255 + 2.43781i) q^{23} +(8.37098 + 1.38808i) q^{24} +(-34.5753 - 29.0121i) q^{25} -12.5983i q^{26} +(12.7778 - 23.7851i) q^{27} +22.4832 q^{28} +(7.05122 - 8.40331i) q^{29} +(27.4498 + 22.5597i) q^{30} +(8.04854 + 45.6456i) q^{31} +(1.93476 - 5.31570i) q^{32} +(3.07076 + 3.58464i) q^{33} +(4.81694 - 27.3182i) q^{34} +(81.5316 + 47.0723i) q^{35} +(-14.0221 - 11.2863i) q^{36} +(7.89337 + 13.6717i) q^{37} +(4.70617 + 12.9301i) q^{38} +(-13.1256 + 23.2797i) q^{39} +(18.1454 - 15.2258i) q^{40} +(-6.59742 - 7.86250i) q^{41} +(-41.5456 - 23.4242i) q^{42} +(24.6205 - 8.96112i) q^{43} +(2.72514 - 1.57336i) q^{44} +(-27.2191 - 70.2854i) q^{45} +(9.92691 - 17.1939i) q^{46} +(-42.2938 - 7.45754i) q^{47} +(-9.11332 + 7.80688i) q^{48} +(-72.7075 - 26.4634i) q^{49} +(62.8606 - 11.0840i) q^{50} +(-37.3625 + 45.4614i) q^{51} +(13.6484 + 11.4523i) q^{52} +41.5395i q^{53} +(14.1521 + 35.4643i) q^{54} +13.1764 q^{55} +(-20.4381 + 24.3572i) q^{56} +(4.77497 - 28.7960i) q^{57} +(2.69390 + 15.2779i) q^{58} +(20.6989 - 56.8698i) q^{59} +(-49.3929 + 9.23010i) q^{60} +(13.2934 - 75.3906i) q^{61} +(-56.7666 - 32.7742i) q^{62} +(52.3653 + 86.5688i) q^{63} +(4.00000 + 6.92820i) q^{64} +(25.5162 + 70.1051i) q^{65} +(-6.67486 + 0.0681351i) q^{66} +(2.09011 - 1.75381i) q^{67} +(25.2164 + 30.0518i) q^{68} +(-36.2569 + 21.4293i) q^{69} +(-125.111 + 45.5367i) q^{70} +(65.1324 - 37.6042i) q^{71} +(24.9737 - 4.93118i) q^{72} +(33.0777 - 57.2922i) q^{73} +(-21.9866 - 3.87684i) q^{74} +(-127.705 - 45.0099i) q^{75} +(-18.2859 - 6.65552i) q^{76} +(-17.4184 + 3.07133i) q^{77} +(-13.2885 - 35.3818i) q^{78} +(38.8113 + 32.5666i) q^{79} +33.4986i q^{80} +(10.7977 - 80.2771i) q^{81} +14.5152 q^{82} +(21.4712 - 25.5884i) q^{83} +(63.1432 - 23.7149i) q^{84} +(28.5248 + 161.772i) q^{85} +(-12.6729 + 34.8186i) q^{86} +(10.9394 - 31.0378i) q^{87} +(-0.772758 + 4.38253i) q^{88} +(-75.2876 - 43.4673i) q^{89} +(100.887 + 34.4043i) q^{90} +(-50.0720 - 86.7273i) q^{91} +(9.60308 + 26.3842i) q^{92} +(70.7501 + 119.704i) q^{93} +(46.5258 - 39.0398i) q^{94} +(-52.3763 - 62.4197i) q^{95} +(-0.173222 - 16.9697i) q^{96} +(132.434 - 48.2019i) q^{97} +(94.7631 - 54.7115i) q^{98} +(12.4051 + 6.82832i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.909039 + 1.08335i −0.454519 + 0.541675i
\(3\) 2.80846 1.05478i 0.936153 0.351594i
\(4\) −0.347296 1.96962i −0.0868241 0.492404i
\(5\) 2.86430 7.86960i 0.572860 1.57392i −0.227103 0.973871i \(-0.572925\pi\)
0.799963 0.600049i \(-0.204852\pi\)
\(6\) −1.41030 + 4.00138i −0.235050 + 0.666897i
\(7\) −1.95208 + 11.0708i −0.278869 + 1.58155i 0.447527 + 0.894270i \(0.352305\pi\)
−0.726397 + 0.687276i \(0.758806\pi\)
\(8\) 2.44949 + 1.41421i 0.306186 + 0.176777i
\(9\) 6.77487 5.92462i 0.752763 0.658291i
\(10\) 5.92177 + 10.2568i 0.592177 + 1.02568i
\(11\) 0.538121 + 1.47848i 0.0489201 + 0.134407i 0.961747 0.273941i \(-0.0883273\pi\)
−0.912826 + 0.408348i \(0.866105\pi\)
\(12\) −3.05288 5.16526i −0.254407 0.430438i
\(13\) −6.82419 + 5.72617i −0.524937 + 0.440475i −0.866349 0.499439i \(-0.833539\pi\)
0.341412 + 0.939914i \(0.389095\pi\)
\(14\) −10.2191 12.1786i −0.729933 0.869900i
\(15\) −0.256445 25.1227i −0.0170963 1.67484i
\(16\) −3.75877 + 1.36808i −0.234923 + 0.0855050i
\(17\) −16.9870 + 9.80744i −0.999235 + 0.576909i −0.908022 0.418923i \(-0.862408\pi\)
−0.0912130 + 0.995831i \(0.529074\pi\)
\(18\) 0.259819 + 12.7253i 0.0144344 + 0.706959i
\(19\) 4.86486 8.42619i 0.256045 0.443484i −0.709134 0.705074i \(-0.750914\pi\)
0.965179 + 0.261591i \(0.0842470\pi\)
\(20\) −16.4948 2.90849i −0.824742 0.145424i
\(21\) 6.19496 + 33.1510i 0.294998 + 1.57862i
\(22\) −2.09088 0.761018i −0.0950400 0.0345917i
\(23\) −13.8255 + 2.43781i −0.601108 + 0.105992i −0.465918 0.884828i \(-0.654276\pi\)
−0.135190 + 0.990820i \(0.543165\pi\)
\(24\) 8.37098 + 1.38808i 0.348791 + 0.0578367i
\(25\) −34.5753 29.0121i −1.38301 1.16048i
\(26\) 12.5983i 0.484550i
\(27\) 12.7778 23.7851i 0.473250 0.880928i
\(28\) 22.4832 0.802972
\(29\) 7.05122 8.40331i 0.243145 0.289769i −0.630646 0.776071i \(-0.717210\pi\)
0.873791 + 0.486301i \(0.161654\pi\)
\(30\) 27.4498 + 22.5597i 0.914992 + 0.751988i
\(31\) 8.04854 + 45.6456i 0.259630 + 1.47244i 0.783901 + 0.620886i \(0.213227\pi\)
−0.524271 + 0.851552i \(0.675662\pi\)
\(32\) 1.93476 5.31570i 0.0604612 0.166116i
\(33\) 3.07076 + 3.58464i 0.0930534 + 0.108625i
\(34\) 4.81694 27.3182i 0.141675 0.803477i
\(35\) 81.5316 + 47.0723i 2.32947 + 1.34492i
\(36\) −14.0221 11.2863i −0.389503 0.313508i
\(37\) 7.89337 + 13.6717i 0.213334 + 0.369506i 0.952756 0.303737i \(-0.0982343\pi\)
−0.739422 + 0.673243i \(0.764901\pi\)
\(38\) 4.70617 + 12.9301i 0.123846 + 0.340265i
\(39\) −13.1256 + 23.2797i −0.336553 + 0.596916i
\(40\) 18.1454 15.2258i 0.453634 0.380644i
\(41\) −6.59742 7.86250i −0.160913 0.191768i 0.679564 0.733617i \(-0.262169\pi\)
−0.840476 + 0.541848i \(0.817725\pi\)
\(42\) −41.5456 23.4242i −0.989180 0.557719i
\(43\) 24.6205 8.96112i 0.572569 0.208398i −0.0394765 0.999220i \(-0.512569\pi\)
0.612046 + 0.790822i \(0.290347\pi\)
\(44\) 2.72514 1.57336i 0.0619350 0.0357582i
\(45\) −27.2191 70.2854i −0.604870 1.56190i
\(46\) 9.92691 17.1939i 0.215802 0.373781i
\(47\) −42.2938 7.45754i −0.899868 0.158671i −0.295468 0.955352i \(-0.595476\pi\)
−0.604399 + 0.796682i \(0.706587\pi\)
\(48\) −9.11332 + 7.80688i −0.189861 + 0.162643i
\(49\) −72.7075 26.4634i −1.48383 0.540069i
\(50\) 62.8606 11.0840i 1.25721 0.221680i
\(51\) −37.3625 + 45.4614i −0.732599 + 0.891399i
\(52\) 13.6484 + 11.4523i 0.262469 + 0.220237i
\(53\) 41.5395i 0.783764i 0.920016 + 0.391882i \(0.128176\pi\)
−0.920016 + 0.391882i \(0.871824\pi\)
\(54\) 14.1521 + 35.4643i 0.262075 + 0.656747i
\(55\) 13.1764 0.239570
\(56\) −20.4381 + 24.3572i −0.364966 + 0.434950i
\(57\) 4.77497 28.7960i 0.0837714 0.505192i
\(58\) 2.69390 + 15.2779i 0.0464466 + 0.263412i
\(59\) 20.6989 56.8698i 0.350829 0.963895i −0.631275 0.775559i \(-0.717468\pi\)
0.982105 0.188336i \(-0.0603095\pi\)
\(60\) −49.3929 + 9.23010i −0.823215 + 0.153835i
\(61\) 13.2934 75.3906i 0.217924 1.23591i −0.657835 0.753162i \(-0.728527\pi\)
0.875759 0.482748i \(-0.160361\pi\)
\(62\) −56.7666 32.7742i −0.915590 0.528616i
\(63\) 52.3653 + 86.5688i 0.831195 + 1.37411i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) 25.5162 + 70.1051i 0.392556 + 1.07854i
\(66\) −6.67486 + 0.0681351i −0.101134 + 0.00103235i
\(67\) 2.09011 1.75381i 0.0311956 0.0261762i −0.627057 0.778974i \(-0.715741\pi\)
0.658252 + 0.752798i \(0.271296\pi\)
\(68\) 25.2164 + 30.0518i 0.370830 + 0.441938i
\(69\) −36.2569 + 21.4293i −0.525463 + 0.310570i
\(70\) −125.111 + 45.5367i −1.78730 + 0.650525i
\(71\) 65.1324 37.6042i 0.917358 0.529637i 0.0345668 0.999402i \(-0.488995\pi\)
0.882791 + 0.469765i \(0.155662\pi\)
\(72\) 24.9737 4.93118i 0.346856 0.0684887i
\(73\) 33.0777 57.2922i 0.453119 0.784825i −0.545459 0.838138i \(-0.683645\pi\)
0.998578 + 0.0533125i \(0.0169779\pi\)
\(74\) −21.9866 3.87684i −0.297117 0.0523897i
\(75\) −127.705 45.0099i −1.70273 0.600132i
\(76\) −18.2859 6.65552i −0.240604 0.0875727i
\(77\) −17.4184 + 3.07133i −0.226213 + 0.0398875i
\(78\) −13.2885 35.3818i −0.170365 0.453613i
\(79\) 38.8113 + 32.5666i 0.491283 + 0.412235i 0.854486 0.519475i \(-0.173872\pi\)
−0.363203 + 0.931710i \(0.618317\pi\)
\(80\) 33.4986i 0.418733i
\(81\) 10.7977 80.2771i 0.133305 0.991075i
\(82\) 14.5152 0.177014
\(83\) 21.4712 25.5884i 0.258689 0.308294i −0.621030 0.783787i \(-0.713286\pi\)
0.879720 + 0.475492i \(0.157730\pi\)
\(84\) 63.1432 23.7149i 0.751704 0.282320i
\(85\) 28.5248 + 161.772i 0.335586 + 1.90320i
\(86\) −12.6729 + 34.8186i −0.147360 + 0.404868i
\(87\) 10.9394 31.0378i 0.125740 0.356757i
\(88\) −0.772758 + 4.38253i −0.00878135 + 0.0498015i
\(89\) −75.2876 43.4673i −0.845928 0.488397i 0.0133471 0.999911i \(-0.495751\pi\)
−0.859275 + 0.511514i \(0.829085\pi\)
\(90\) 100.887 + 34.4043i 1.12097 + 0.382270i
\(91\) −50.0720 86.7273i −0.550242 0.953047i
\(92\) 9.60308 + 26.3842i 0.104381 + 0.286785i
\(93\) 70.7501 + 119.704i 0.760754 + 1.28714i
\(94\) 46.5258 39.0398i 0.494956 0.415317i
\(95\) −52.3763 62.4197i −0.551330 0.657049i
\(96\) −0.173222 16.9697i −0.00180439 0.176767i
\(97\) 132.434 48.2019i 1.36530 0.496927i 0.447608 0.894230i \(-0.352276\pi\)
0.917688 + 0.397303i \(0.130054\pi\)
\(98\) 94.7631 54.7115i 0.966970 0.558281i
\(99\) 12.4051 + 6.82832i 0.125304 + 0.0689729i
\(100\) −45.1348 + 78.1758i −0.451348 + 0.781758i
\(101\) −88.8791 15.6718i −0.879991 0.155166i −0.284642 0.958634i \(-0.591875\pi\)
−0.595348 + 0.803468i \(0.702986\pi\)
\(102\) −15.2866 81.8029i −0.149869 0.801989i
\(103\) 19.7299 + 7.18111i 0.191553 + 0.0697195i 0.436015 0.899939i \(-0.356389\pi\)
−0.244463 + 0.969659i \(0.578612\pi\)
\(104\) −24.8138 + 4.37534i −0.238594 + 0.0420706i
\(105\) 278.629 + 46.2025i 2.65361 + 0.440024i
\(106\) −45.0018 37.7610i −0.424545 0.356236i
\(107\) 21.8959i 0.204635i −0.994752 0.102317i \(-0.967374\pi\)
0.994752 0.102317i \(-0.0326257\pi\)
\(108\) −51.2851 16.9068i −0.474862 0.156544i
\(109\) −92.6448 −0.849953 −0.424976 0.905204i \(-0.639718\pi\)
−0.424976 + 0.905204i \(0.639718\pi\)
\(110\) −11.9778 + 14.2746i −0.108889 + 0.129769i
\(111\) 36.5889 + 30.0707i 0.329629 + 0.270907i
\(112\) −7.80834 44.2833i −0.0697173 0.395387i
\(113\) −52.9813 + 145.565i −0.468861 + 1.28819i 0.449796 + 0.893131i \(0.351497\pi\)
−0.918657 + 0.395055i \(0.870726\pi\)
\(114\) 26.8555 + 31.3496i 0.235574 + 0.274997i
\(115\) −20.4158 + 115.784i −0.177529 + 1.00681i
\(116\) −19.0002 10.9697i −0.163794 0.0945668i
\(117\) −12.3076 + 79.2248i −0.105193 + 0.677135i
\(118\) 42.7938 + 74.1211i 0.362659 + 0.628145i
\(119\) −75.4164 207.205i −0.633752 1.74122i
\(120\) 34.9006 61.9004i 0.290839 0.515836i
\(121\) 90.7951 76.1861i 0.750372 0.629637i
\(122\) 69.5902 + 82.9344i 0.570411 + 0.679790i
\(123\) −26.8218 15.1227i −0.218063 0.122948i
\(124\) 87.1090 31.7051i 0.702492 0.255686i
\(125\) −146.031 + 84.3111i −1.16825 + 0.674489i
\(126\) −141.386 21.9644i −1.12211 0.174321i
\(127\) −115.693 + 200.387i −0.910971 + 1.57785i −0.0982763 + 0.995159i \(0.531333\pi\)
−0.812695 + 0.582689i \(0.802000\pi\)
\(128\) −11.1418 1.96460i −0.0870455 0.0153485i
\(129\) 59.6935 51.1362i 0.462741 0.396404i
\(130\) −99.1436 36.0853i −0.762643 0.277579i
\(131\) −69.0825 + 12.1811i −0.527347 + 0.0929856i −0.430982 0.902360i \(-0.641833\pi\)
−0.0963653 + 0.995346i \(0.530722\pi\)
\(132\) 5.99389 7.29315i 0.0454083 0.0552511i
\(133\) 83.7882 + 70.3067i 0.629987 + 0.528621i
\(134\) 3.85860i 0.0287955i
\(135\) −150.580 168.683i −1.11540 1.24951i
\(136\) −55.4793 −0.407936
\(137\) 136.898 163.149i 0.999257 1.19087i 0.0176713 0.999844i \(-0.494375\pi\)
0.981585 0.191024i \(-0.0611808\pi\)
\(138\) 9.74348 58.7591i 0.0706049 0.425790i
\(139\) 9.79795 + 55.5669i 0.0704888 + 0.399762i 0.999554 + 0.0298471i \(0.00950205\pi\)
−0.929066 + 0.369915i \(0.879387\pi\)
\(140\) 64.3987 176.934i 0.459991 1.26381i
\(141\) −126.646 + 23.6665i −0.898201 + 0.167848i
\(142\) −18.4694 + 104.745i −0.130066 + 0.737640i
\(143\) −12.1382 7.00802i −0.0848829 0.0490071i
\(144\) −17.3598 + 31.5379i −0.120554 + 0.219013i
\(145\) −45.9339 79.5599i −0.316786 0.548689i
\(146\) 31.9987 + 87.9156i 0.219169 + 0.602162i
\(147\) −232.109 + 2.36931i −1.57897 + 0.0161177i
\(148\) 24.1867 20.2950i 0.163424 0.137129i
\(149\) 18.5161 + 22.0666i 0.124269 + 0.148098i 0.824592 0.565728i \(-0.191405\pi\)
−0.700323 + 0.713826i \(0.746961\pi\)
\(150\) 164.850 97.4332i 1.09900 0.649554i
\(151\) −145.452 + 52.9400i −0.963255 + 0.350596i −0.775308 0.631583i \(-0.782405\pi\)
−0.187947 + 0.982179i \(0.560183\pi\)
\(152\) 23.8329 13.7599i 0.156795 0.0905257i
\(153\) −56.9793 + 167.086i −0.372414 + 1.09206i
\(154\) 12.5067 21.6622i 0.0812122 0.140664i
\(155\) 382.266 + 67.4038i 2.46623 + 0.434863i
\(156\) 50.4106 + 17.7674i 0.323145 + 0.113893i
\(157\) −200.915 73.1270i −1.27971 0.465777i −0.389375 0.921080i \(-0.627309\pi\)
−0.890337 + 0.455303i \(0.849531\pi\)
\(158\) −70.5620 + 12.4420i −0.446595 + 0.0787467i
\(159\) 43.8151 + 116.662i 0.275567 + 0.733722i
\(160\) −36.2907 30.4515i −0.226817 0.190322i
\(161\) 157.818i 0.980238i
\(162\) 77.1526 + 84.6727i 0.476251 + 0.522671i
\(163\) 147.201 0.903076 0.451538 0.892252i \(-0.350876\pi\)
0.451538 + 0.892252i \(0.350876\pi\)
\(164\) −13.1948 + 15.7250i −0.0804564 + 0.0958842i
\(165\) 37.0052 13.8982i 0.224274 0.0842314i
\(166\) 8.20304 + 46.5217i 0.0494159 + 0.280251i
\(167\) −50.5448 + 138.871i −0.302664 + 0.831561i 0.691371 + 0.722500i \(0.257007\pi\)
−0.994035 + 0.109062i \(0.965215\pi\)
\(168\) −31.7081 + 89.9639i −0.188738 + 0.535500i
\(169\) −15.5661 + 88.2796i −0.0921070 + 0.522364i
\(170\) −201.186 116.155i −1.18345 0.683264i
\(171\) −16.9632 85.9088i −0.0991997 0.502391i
\(172\) −26.2006 45.3807i −0.152329 0.263841i
\(173\) 72.2331 + 198.459i 0.417532 + 1.14716i 0.953097 + 0.302666i \(0.0978766\pi\)
−0.535565 + 0.844494i \(0.679901\pi\)
\(174\) 23.6805 + 40.0658i 0.136095 + 0.230263i
\(175\) 388.682 326.143i 2.22104 1.86367i
\(176\) −4.04535 4.82106i −0.0229849 0.0273924i
\(177\) −1.85320 181.549i −0.0104701 1.02570i
\(178\) 115.530 42.0493i 0.649043 0.236232i
\(179\) −225.133 + 129.980i −1.25772 + 0.726147i −0.972632 0.232353i \(-0.925358\pi\)
−0.285092 + 0.958500i \(0.592024\pi\)
\(180\) −128.982 + 78.0211i −0.716567 + 0.433451i
\(181\) 159.698 276.606i 0.882311 1.52821i 0.0335470 0.999437i \(-0.489320\pi\)
0.848764 0.528771i \(-0.177347\pi\)
\(182\) 139.474 + 24.5929i 0.766338 + 0.135126i
\(183\) −42.1867 225.753i −0.230528 1.23362i
\(184\) −37.3130 13.5808i −0.202788 0.0738087i
\(185\) 130.200 22.9578i 0.703783 0.124096i
\(186\) −193.996 32.1686i −1.04299 0.172949i
\(187\) −23.6411 19.8373i −0.126423 0.106082i
\(188\) 85.8925i 0.456875i
\(189\) 238.377 + 187.891i 1.26125 + 0.994131i
\(190\) 115.234 0.606497
\(191\) −25.0422 + 29.8442i −0.131111 + 0.156252i −0.827606 0.561310i \(-0.810298\pi\)
0.696495 + 0.717562i \(0.254742\pi\)
\(192\) 18.5416 + 15.2384i 0.0965707 + 0.0793669i
\(193\) −28.3760 160.928i −0.147026 0.833825i −0.965718 0.259593i \(-0.916412\pi\)
0.818692 0.574233i \(-0.194699\pi\)
\(194\) −68.1678 + 187.289i −0.351380 + 0.965410i
\(195\) 145.607 + 169.973i 0.746701 + 0.871657i
\(196\) −26.8716 + 152.397i −0.137100 + 0.777533i
\(197\) 296.815 + 171.366i 1.50668 + 0.869880i 0.999970 + 0.00776089i \(0.00247039\pi\)
0.506706 + 0.862119i \(0.330863\pi\)
\(198\) −18.6742 + 7.23188i −0.0943141 + 0.0365246i
\(199\) 98.8611 + 171.232i 0.496789 + 0.860464i 0.999993 0.00370331i \(-0.00117880\pi\)
−0.503204 + 0.864168i \(0.667845\pi\)
\(200\) −43.6625 119.962i −0.218312 0.599809i
\(201\) 4.02009 7.13010i 0.0200005 0.0354731i
\(202\) 97.7725 82.0409i 0.484022 0.406143i
\(203\) 79.2670 + 94.4668i 0.390478 + 0.465353i
\(204\) 102.517 + 57.8013i 0.502536 + 0.283340i
\(205\) −80.7718 + 29.3985i −0.394009 + 0.143407i
\(206\) −25.7149 + 14.8465i −0.124830 + 0.0720705i
\(207\) −79.2228 + 98.4266i −0.382719 + 0.475491i
\(208\) 17.8167 30.8594i 0.0856571 0.148363i
\(209\) 15.0758 + 2.65827i 0.0721330 + 0.0127190i
\(210\) −303.338 + 259.853i −1.44447 + 1.23740i
\(211\) −214.619 78.1150i −1.01715 0.370213i −0.220977 0.975279i \(-0.570925\pi\)
−0.796176 + 0.605066i \(0.793147\pi\)
\(212\) 81.8168 14.4265i 0.385928 0.0680496i
\(213\) 143.257 174.310i 0.672570 0.818359i
\(214\) 23.7210 + 19.9042i 0.110846 + 0.0930105i
\(215\) 219.421i 1.02056i
\(216\) 64.9361 40.1908i 0.300630 0.186068i
\(217\) −521.045 −2.40113
\(218\) 84.2178 100.367i 0.386320 0.460398i
\(219\) 32.4665 195.793i 0.148249 0.894030i
\(220\) −4.57610 25.9524i −0.0208005 0.117965i
\(221\) 59.7633 164.198i 0.270422 0.742979i
\(222\) −65.8378 + 12.3032i −0.296566 + 0.0554197i
\(223\) 67.0596 380.314i 0.300716 1.70544i −0.342301 0.939590i \(-0.611206\pi\)
0.643016 0.765852i \(-0.277683\pi\)
\(224\) 55.0724 + 31.7961i 0.245859 + 0.141947i
\(225\) −406.129 + 8.29216i −1.80502 + 0.0368541i
\(226\) −109.536 189.722i −0.484672 0.839476i
\(227\) −63.6795 174.958i −0.280527 0.770740i −0.997300 0.0734342i \(-0.976604\pi\)
0.716774 0.697306i \(-0.245618\pi\)
\(228\) −58.3753 + 0.595879i −0.256032 + 0.00261350i
\(229\) −236.706 + 198.620i −1.03365 + 0.867336i −0.991281 0.131766i \(-0.957935\pi\)
−0.0423704 + 0.999102i \(0.513491\pi\)
\(230\) −106.876 127.369i −0.464676 0.553780i
\(231\) −45.6793 + 26.9983i −0.197746 + 0.116876i
\(232\) 29.1560 10.6119i 0.125672 0.0457410i
\(233\) −17.8085 + 10.2818i −0.0764315 + 0.0441277i −0.537729 0.843118i \(-0.680718\pi\)
0.461297 + 0.887246i \(0.347384\pi\)
\(234\) −74.6401 85.3518i −0.318975 0.364751i
\(235\) −179.830 + 311.475i −0.765234 + 1.32542i
\(236\) −119.200 21.0182i −0.505086 0.0890603i
\(237\) 143.351 + 50.5243i 0.604855 + 0.213183i
\(238\) 293.032 + 106.655i 1.23123 + 0.448130i
\(239\) −101.144 + 17.8344i −0.423197 + 0.0746211i −0.381191 0.924496i \(-0.624486\pi\)
−0.0420061 + 0.999117i \(0.513375\pi\)
\(240\) 35.3337 + 94.0795i 0.147224 + 0.391998i
\(241\) 294.337 + 246.978i 1.22131 + 1.02480i 0.998755 + 0.0498853i \(0.0158856\pi\)
0.222559 + 0.974919i \(0.428559\pi\)
\(242\) 167.619i 0.692641i
\(243\) −54.3498 236.844i −0.223662 0.974667i
\(244\) −153.107 −0.627488
\(245\) −416.512 + 496.380i −1.70005 + 2.02604i
\(246\) 40.7652 15.3103i 0.165712 0.0622371i
\(247\) 15.0511 + 85.3589i 0.0609355 + 0.345583i
\(248\) −44.8377 + 123.191i −0.180797 + 0.496737i
\(249\) 33.3108 94.5114i 0.133778 0.379564i
\(250\) 41.4095 234.845i 0.165638 0.939380i
\(251\) 281.668 + 162.621i 1.12218 + 0.647893i 0.941958 0.335732i \(-0.108984\pi\)
0.180227 + 0.983625i \(0.442317\pi\)
\(252\) 152.321 133.205i 0.604448 0.528589i
\(253\) −11.0440 19.1288i −0.0436523 0.0756080i
\(254\) −111.919 307.496i −0.440627 1.21061i
\(255\) 250.745 + 424.243i 0.983315 + 1.66370i
\(256\) 12.2567 10.2846i 0.0478778 0.0401742i
\(257\) −21.5034 25.6267i −0.0836708 0.0997150i 0.722585 0.691282i \(-0.242954\pi\)
−0.806256 + 0.591567i \(0.798509\pi\)
\(258\) 1.13463 + 111.154i 0.00439778 + 0.430829i
\(259\) −166.766 + 60.6977i −0.643883 + 0.234354i
\(260\) 129.218 74.6043i 0.496994 0.286940i
\(261\) −2.01536 98.7072i −0.00772169 0.378188i
\(262\) 49.6023 85.9137i 0.189322 0.327915i
\(263\) −154.814 27.2979i −0.588646 0.103794i −0.128611 0.991695i \(-0.541052\pi\)
−0.460035 + 0.887901i \(0.652163\pi\)
\(264\) 2.45235 + 13.1232i 0.00928922 + 0.0497093i
\(265\) 326.899 + 118.982i 1.23358 + 0.448987i
\(266\) −152.333 + 26.8605i −0.572682 + 0.100979i
\(267\) −257.290 42.6641i −0.963635 0.159791i
\(268\) −4.18021 3.50762i −0.0155978 0.0130881i
\(269\) 289.194i 1.07507i −0.843241 0.537536i \(-0.819355\pi\)
0.843241 0.537536i \(-0.180645\pi\)
\(270\) 319.626 9.79068i 1.18380 0.0362618i
\(271\) 438.046 1.61641 0.808204 0.588903i \(-0.200440\pi\)
0.808204 + 0.588903i \(0.200440\pi\)
\(272\) 50.4328 60.1035i 0.185415 0.220969i
\(273\) −232.104 190.755i −0.850196 0.698736i
\(274\) 52.3016 + 296.617i 0.190882 + 1.08255i
\(275\) 24.2880 66.7308i 0.0883201 0.242657i
\(276\) 54.7995 + 63.9699i 0.198549 + 0.231775i
\(277\) 2.95396 16.7527i 0.0106641 0.0604791i −0.979011 0.203806i \(-0.934669\pi\)
0.989675 + 0.143327i \(0.0457800\pi\)
\(278\) −69.1052 39.8979i −0.248580 0.143518i
\(279\) 324.960 + 261.558i 1.16473 + 0.937484i
\(280\) 133.141 + 230.606i 0.475502 + 0.823594i
\(281\) 31.3851 + 86.2298i 0.111691 + 0.306867i 0.982927 0.183996i \(-0.0589035\pi\)
−0.871236 + 0.490864i \(0.836681\pi\)
\(282\) 89.4873 158.716i 0.317331 0.562824i
\(283\) −335.404 + 281.438i −1.18517 + 0.994479i −0.185243 + 0.982693i \(0.559307\pi\)
−0.999931 + 0.0117863i \(0.996248\pi\)
\(284\) −96.6861 115.226i −0.340444 0.405725i
\(285\) −212.936 120.057i −0.747143 0.421254i
\(286\) 18.6263 6.77941i 0.0651269 0.0237042i
\(287\) 99.9231 57.6906i 0.348164 0.201013i
\(288\) −18.3858 47.4759i −0.0638396 0.164847i
\(289\) 47.8719 82.9166i 0.165647 0.286909i
\(290\) 127.947 + 22.5605i 0.441196 + 0.0777948i
\(291\) 321.092 275.062i 1.10341 0.945229i
\(292\) −124.331 45.2529i −0.425793 0.154976i
\(293\) 254.746 44.9185i 0.869439 0.153305i 0.278905 0.960319i \(-0.410028\pi\)
0.590533 + 0.807013i \(0.298917\pi\)
\(294\) 208.429 253.609i 0.708944 0.862617i
\(295\) −388.255 325.784i −1.31612 1.10435i
\(296\) 44.6516i 0.150850i
\(297\) 42.0416 + 6.09236i 0.141554 + 0.0205130i
\(298\) −40.7377 −0.136704
\(299\) 80.3884 95.8031i 0.268857 0.320412i
\(300\) −44.3008 + 267.161i −0.147669 + 0.890536i
\(301\) 51.1457 + 290.062i 0.169919 + 0.963661i
\(302\) 74.8685 205.700i 0.247909 0.681124i
\(303\) −266.143 + 49.7345i −0.878361 + 0.164140i
\(304\) −6.75819 + 38.3276i −0.0222309 + 0.126078i
\(305\) −555.217 320.555i −1.82038 1.05100i
\(306\) −129.216 213.616i −0.422274 0.698091i
\(307\) 106.596 + 184.630i 0.347219 + 0.601401i 0.985754 0.168192i \(-0.0537927\pi\)
−0.638535 + 0.769592i \(0.720459\pi\)
\(308\) 12.0987 + 33.2409i 0.0392815 + 0.107925i
\(309\) 62.9852 0.642935i 0.203835 0.00208070i
\(310\) −420.516 + 352.855i −1.35650 + 1.13824i
\(311\) 299.915 + 357.425i 0.964358 + 1.14928i 0.988750 + 0.149575i \(0.0477904\pi\)
−0.0243925 + 0.999702i \(0.507765\pi\)
\(312\) −65.0735 + 38.4611i −0.208569 + 0.123273i
\(313\) −88.7107 + 32.2881i −0.283421 + 0.103157i −0.479819 0.877367i \(-0.659298\pi\)
0.196398 + 0.980524i \(0.437075\pi\)
\(314\) 261.861 151.186i 0.833953 0.481483i
\(315\) 831.251 164.135i 2.63889 0.521064i
\(316\) 50.6646 87.7536i 0.160331 0.277701i
\(317\) −250.991 44.2565i −0.791769 0.139610i −0.236885 0.971538i \(-0.576126\pi\)
−0.554884 + 0.831927i \(0.687238\pi\)
\(318\) −166.215 58.5831i −0.522690 0.184224i
\(319\) 16.2185 + 5.90305i 0.0508417 + 0.0185049i
\(320\) 65.9794 11.6339i 0.206186 0.0363561i
\(321\) −23.0954 61.4938i −0.0719484 0.191569i
\(322\) 170.973 + 143.463i 0.530971 + 0.445537i
\(323\) 190.847i 0.590859i
\(324\) −161.865 + 6.61254i −0.499583 + 0.0204091i
\(325\) 402.076 1.23716
\(326\) −133.812 + 159.471i −0.410466 + 0.489174i
\(327\) −260.189 + 97.7201i −0.795685 + 0.298838i
\(328\) −5.04106 28.5893i −0.0153691 0.0871625i
\(329\) 165.122 453.669i 0.501891 1.37893i
\(330\) −18.5826 + 52.7236i −0.0563109 + 0.159769i
\(331\) −63.9844 + 362.874i −0.193306 + 1.09629i 0.721504 + 0.692410i \(0.243451\pi\)
−0.914810 + 0.403884i \(0.867660\pi\)
\(332\) −57.8562 33.4033i −0.174266 0.100612i
\(333\) 134.476 + 45.8589i 0.403833 + 0.137714i
\(334\) −104.498 180.997i −0.312870 0.541906i
\(335\) −7.81507 21.4717i −0.0233286 0.0640947i
\(336\) −68.6386 116.132i −0.204282 0.345630i
\(337\) 150.868 126.593i 0.447679 0.375647i −0.390895 0.920435i \(-0.627834\pi\)
0.838574 + 0.544788i \(0.183390\pi\)
\(338\) −81.4876 97.1131i −0.241087 0.287317i
\(339\) 4.74350 + 464.697i 0.0139926 + 1.37079i
\(340\) 308.723 112.366i 0.908008 0.330488i
\(341\) −63.1548 + 36.4624i −0.185205 + 0.106928i
\(342\) 108.489 + 59.7174i 0.317221 + 0.174612i
\(343\) 159.483 276.233i 0.464966 0.805344i
\(344\) 72.9805 + 12.8684i 0.212153 + 0.0374083i
\(345\) 64.7896 + 346.708i 0.187796 + 1.00495i
\(346\) −280.663 102.153i −0.811165 0.295240i
\(347\) −263.673 + 46.4927i −0.759864 + 0.133985i −0.540137 0.841577i \(-0.681628\pi\)
−0.219727 + 0.975561i \(0.570517\pi\)
\(348\) −64.9318 10.7670i −0.186586 0.0309398i
\(349\) −395.788 332.105i −1.13406 0.951591i −0.134834 0.990868i \(-0.543050\pi\)
−0.999228 + 0.0392770i \(0.987495\pi\)
\(350\) 717.555i 2.05016i
\(351\) 48.9995 + 235.481i 0.139600 + 0.670887i
\(352\) 8.90028 0.0252849
\(353\) −186.396 + 222.139i −0.528035 + 0.629288i −0.962461 0.271420i \(-0.912507\pi\)
0.434426 + 0.900708i \(0.356951\pi\)
\(354\) 198.366 + 163.028i 0.560356 + 0.460530i
\(355\) −109.371 620.276i −0.308088 1.74726i
\(356\) −59.4668 + 163.384i −0.167041 + 0.458943i
\(357\) −430.360 502.378i −1.20549 1.40722i
\(358\) 63.8400 362.055i 0.178324 1.01133i
\(359\) 35.8110 + 20.6755i 0.0997520 + 0.0575918i 0.549046 0.835792i \(-0.314991\pi\)
−0.449294 + 0.893384i \(0.648324\pi\)
\(360\) 32.7256 210.657i 0.0909045 0.585159i
\(361\) 133.166 + 230.651i 0.368882 + 0.638922i
\(362\) 154.489 + 424.455i 0.426765 + 1.17253i
\(363\) 174.634 309.734i 0.481086 0.853263i
\(364\) −153.430 + 128.743i −0.421510 + 0.353689i
\(365\) −356.123 424.410i −0.975678 1.16277i
\(366\) 282.919 + 159.515i 0.773002 + 0.435834i
\(367\) 152.544 55.5215i 0.415651 0.151285i −0.125725 0.992065i \(-0.540126\pi\)
0.541376 + 0.840780i \(0.317903\pi\)
\(368\) 48.6317 28.0775i 0.132151 0.0762976i
\(369\) −91.2790 14.1802i −0.247369 0.0384287i
\(370\) −93.4855 + 161.922i −0.252663 + 0.437626i
\(371\) −459.876 81.0886i −1.23956 0.218568i
\(372\) 211.200 180.923i 0.567742 0.486353i
\(373\) 63.6401 + 23.1631i 0.170617 + 0.0620995i 0.425916 0.904763i \(-0.359952\pi\)
−0.255299 + 0.966862i \(0.582174\pi\)
\(374\) 42.9814 7.57879i 0.114924 0.0202641i
\(375\) −321.193 + 390.815i −0.856513 + 1.04217i
\(376\) −93.0516 78.0796i −0.247478 0.207659i
\(377\) 97.7223i 0.259210i
\(378\) −420.245 + 87.4457i −1.11176 + 0.231338i
\(379\) 122.431 0.323038 0.161519 0.986870i \(-0.448361\pi\)
0.161519 + 0.986870i \(0.448361\pi\)
\(380\) −104.753 + 124.839i −0.275665 + 0.328524i
\(381\) −113.556 + 684.809i −0.298046 + 1.79740i
\(382\) −9.56733 54.2590i −0.0250454 0.142039i
\(383\) −20.6906 + 56.8471i −0.0540226 + 0.148426i −0.963769 0.266739i \(-0.914054\pi\)
0.909746 + 0.415165i \(0.136276\pi\)
\(384\) −33.3636 + 6.23469i −0.0868843 + 0.0162362i
\(385\) −25.7214 + 145.873i −0.0668087 + 0.378891i
\(386\) 200.137 + 115.549i 0.518489 + 0.299350i
\(387\) 113.709 206.577i 0.293823 0.533792i
\(388\) −140.933 244.103i −0.363229 0.629132i
\(389\) −82.3102 226.145i −0.211594 0.581350i 0.787808 0.615921i \(-0.211216\pi\)
−0.999402 + 0.0345705i \(0.988994\pi\)
\(390\) −316.503 + 3.23077i −0.811545 + 0.00828403i
\(391\) 210.945 177.004i 0.539501 0.452695i
\(392\) −140.672 167.646i −0.358856 0.427668i
\(393\) −181.167 + 107.077i −0.460984 + 0.272461i
\(394\) −455.466 + 165.776i −1.15601 + 0.420752i
\(395\) 367.453 212.149i 0.930261 0.537087i
\(396\) 9.14091 26.8048i 0.0230831 0.0676888i
\(397\) 14.3451 24.8464i 0.0361337 0.0625854i −0.847393 0.530966i \(-0.821829\pi\)
0.883527 + 0.468381i \(0.155162\pi\)
\(398\) −275.373 48.5557i −0.691893 0.121999i
\(399\) 309.474 + 109.075i 0.775624 + 0.273371i
\(400\) 169.651 + 61.7481i 0.424129 + 0.154370i
\(401\) 697.035 122.906i 1.73824 0.306499i 0.787461 0.616365i \(-0.211395\pi\)
0.950780 + 0.309866i \(0.100284\pi\)
\(402\) 4.06998 + 10.8367i 0.0101243 + 0.0269570i
\(403\) −316.299 265.406i −0.784861 0.658577i
\(404\) 180.500i 0.446783i
\(405\) −600.821 314.912i −1.48351 0.777559i
\(406\) −174.397 −0.429550
\(407\) −15.9657 + 19.0272i −0.0392278 + 0.0467499i
\(408\) −155.811 + 58.5185i −0.381890 + 0.143428i
\(409\) −13.6664 77.5062i −0.0334143 0.189502i 0.963532 0.267593i \(-0.0862284\pi\)
−0.996946 + 0.0780917i \(0.975117\pi\)
\(410\) 41.5758 114.229i 0.101404 0.278606i
\(411\) 212.386 602.594i 0.516755 1.46617i
\(412\) 7.29189 41.3543i 0.0176988 0.100375i
\(413\) 589.190 + 340.169i 1.42661 + 0.823653i
\(414\) −34.6139 175.300i −0.0836084 0.423429i
\(415\) −139.871 242.263i −0.337037 0.583766i
\(416\) 17.2355 + 47.3541i 0.0414315 + 0.113832i
\(417\) 86.1281 + 145.723i 0.206542 + 0.349455i
\(418\) −16.5843 + 13.9159i −0.0396754 + 0.0332916i
\(419\) 33.8949 + 40.3944i 0.0808948 + 0.0964067i 0.804974 0.593310i \(-0.202179\pi\)
−0.724079 + 0.689717i \(0.757735\pi\)
\(420\) −5.76571 564.838i −0.0137279 1.34485i
\(421\) 664.624 241.903i 1.57868 0.574592i 0.603763 0.797164i \(-0.293667\pi\)
0.974916 + 0.222572i \(0.0714452\pi\)
\(422\) 279.723 161.498i 0.662851 0.382697i
\(423\) −330.718 + 200.051i −0.781839 + 0.472933i
\(424\) −58.7457 + 101.751i −0.138551 + 0.239978i
\(425\) 871.865 + 153.733i 2.05145 + 0.361725i
\(426\) 58.6126 + 313.653i 0.137588 + 0.736274i
\(427\) 808.686 + 294.338i 1.89388 + 0.689315i
\(428\) −43.1265 + 7.60437i −0.100763 + 0.0177672i
\(429\) −41.4817 6.87853i −0.0966939 0.0160339i
\(430\) 237.709 + 199.462i 0.552813 + 0.463865i
\(431\) 279.279i 0.647978i 0.946061 + 0.323989i \(0.105024\pi\)
−0.946061 + 0.323989i \(0.894976\pi\)
\(432\) −15.4888 + 106.884i −0.0358536 + 0.247416i
\(433\) 100.836 0.232877 0.116439 0.993198i \(-0.462852\pi\)
0.116439 + 0.993198i \(0.462852\pi\)
\(434\) 473.650 564.475i 1.09136 1.30063i
\(435\) −212.922 174.990i −0.489475 0.402277i
\(436\) 32.1752 + 182.475i 0.0737964 + 0.418520i
\(437\) −46.7177 + 128.356i −0.106905 + 0.293720i
\(438\) 182.599 + 213.156i 0.416892 + 0.486657i
\(439\) 17.2883 98.0470i 0.0393812 0.223342i −0.958765 0.284199i \(-0.908272\pi\)
0.998146 + 0.0608574i \(0.0193835\pi\)
\(440\) 32.2754 + 18.6342i 0.0733531 + 0.0423504i
\(441\) −649.370 + 251.479i −1.47249 + 0.570246i
\(442\) 123.557 + 214.007i 0.279541 + 0.484179i
\(443\) 117.281 + 322.226i 0.264742 + 0.727373i 0.998832 + 0.0483203i \(0.0153868\pi\)
−0.734090 + 0.679052i \(0.762391\pi\)
\(444\) 46.5204 82.5094i 0.104776 0.185832i
\(445\) −557.716 + 467.980i −1.25330 + 1.05164i
\(446\) 351.053 + 418.369i 0.787115 + 0.938047i
\(447\) 75.2771 + 42.4427i 0.168405 + 0.0949501i
\(448\) −84.5092 + 30.7589i −0.188637 + 0.0686581i
\(449\) −433.309 + 250.171i −0.965053 + 0.557174i −0.897725 0.440557i \(-0.854781\pi\)
−0.0673285 + 0.997731i \(0.521448\pi\)
\(450\) 360.204 447.518i 0.800452 0.994484i
\(451\) 8.07431 13.9851i 0.0179031 0.0310091i
\(452\) 305.107 + 53.7987i 0.675016 + 0.119024i
\(453\) −352.654 + 302.099i −0.778486 + 0.666886i
\(454\) 247.428 + 90.0564i 0.544996 + 0.198362i
\(455\) −825.931 + 145.634i −1.81523 + 0.320074i
\(456\) 52.4199 63.7826i 0.114956 0.139874i
\(457\) 88.1631 + 73.9776i 0.192917 + 0.161877i 0.734130 0.679009i \(-0.237590\pi\)
−0.541213 + 0.840886i \(0.682035\pi\)
\(458\) 436.989i 0.954125i
\(459\) 16.2150 + 529.354i 0.0353268 + 1.15328i
\(460\) 235.140 0.511173
\(461\) 371.972 443.299i 0.806880 0.961602i −0.192928 0.981213i \(-0.561798\pi\)
0.999808 + 0.0196109i \(0.00624274\pi\)
\(462\) 12.2756 74.0292i 0.0265705 0.160236i
\(463\) −138.386 784.826i −0.298890 1.69509i −0.650957 0.759114i \(-0.725632\pi\)
0.352067 0.935975i \(-0.385479\pi\)
\(464\) −15.0075 + 41.2328i −0.0323437 + 0.0888637i
\(465\) 1144.67 213.906i 2.46166 0.460014i
\(466\) 5.04990 28.6394i 0.0108367 0.0614579i
\(467\) 234.565 + 135.426i 0.502281 + 0.289992i 0.729655 0.683816i \(-0.239681\pi\)
−0.227374 + 0.973807i \(0.573014\pi\)
\(468\) 160.317 3.27328i 0.342557 0.00699418i
\(469\) 15.3360 + 26.5628i 0.0326994 + 0.0566371i
\(470\) −173.964 477.961i −0.370136 1.01694i
\(471\) −641.393 + 6.54716i −1.36177 + 0.0139006i
\(472\) 131.128 110.029i 0.277813 0.233113i
\(473\) 26.4976 + 31.5786i 0.0560203 + 0.0667624i
\(474\) −185.047 + 109.370i −0.390394 + 0.230739i
\(475\) −412.665 + 150.198i −0.868769 + 0.316206i
\(476\) −381.922 + 220.503i −0.802358 + 0.463241i
\(477\) 246.106 + 281.425i 0.515945 + 0.589989i
\(478\) 72.6230 125.787i 0.151931 0.263152i
\(479\) −785.792 138.556i −1.64048 0.289262i −0.724140 0.689653i \(-0.757763\pi\)
−0.916344 + 0.400391i \(0.868874\pi\)
\(480\) −134.041 47.2431i −0.279252 0.0984231i
\(481\) −132.152 48.0995i −0.274745 0.0999990i
\(482\) −535.127 + 94.3574i −1.11022 + 0.195762i
\(483\) −166.464 443.226i −0.344646 0.917652i
\(484\) −181.590 152.372i −0.375186 0.314819i
\(485\) 1180.26i 2.43354i
\(486\) 305.991 + 156.421i 0.629611 + 0.321853i
\(487\) −139.213 −0.285859 −0.142929 0.989733i \(-0.545652\pi\)
−0.142929 + 0.989733i \(0.545652\pi\)
\(488\) 139.180 165.869i 0.285206 0.339895i
\(489\) 413.409 155.265i 0.845417 0.317516i
\(490\) −159.128 902.458i −0.324750 1.84175i
\(491\) −73.6069 + 202.233i −0.149912 + 0.411881i −0.991804 0.127765i \(-0.959220\pi\)
0.841892 + 0.539646i \(0.181442\pi\)
\(492\) −20.4707 + 58.0807i −0.0416072 + 0.118050i
\(493\) −37.3639 + 211.901i −0.0757889 + 0.429820i
\(494\) −106.156 61.2890i −0.214890 0.124067i
\(495\) 89.2681 78.0649i 0.180340 0.157707i
\(496\) −92.6994 160.560i −0.186894 0.323710i
\(497\) 289.166 + 794.476i 0.581822 + 1.59854i
\(498\) 72.1082 + 122.002i 0.144795 + 0.244984i
\(499\) −363.724 + 305.201i −0.728906 + 0.611624i −0.929833 0.367982i \(-0.880049\pi\)
0.200927 + 0.979606i \(0.435604\pi\)
\(500\) 216.777 + 258.344i 0.433553 + 0.516689i
\(501\) 4.52535 + 443.326i 0.00903264 + 0.884883i
\(502\) −432.223 + 157.316i −0.861002 + 0.313379i
\(503\) −696.911 + 402.362i −1.38551 + 0.799924i −0.992805 0.119740i \(-0.961794\pi\)
−0.392704 + 0.919665i \(0.628460\pi\)
\(504\) 5.84157 + 286.105i 0.0115904 + 0.567669i
\(505\) −377.907 + 654.554i −0.748331 + 1.29615i
\(506\) 30.7627 + 5.42429i 0.0607958 + 0.0107199i
\(507\) 49.3991 + 264.348i 0.0974340 + 0.521397i
\(508\) 434.865 + 158.278i 0.856033 + 0.311571i
\(509\) 924.707 163.051i 1.81671 0.320336i 0.841275 0.540607i \(-0.181806\pi\)
0.975439 + 0.220272i \(0.0706945\pi\)
\(510\) −687.541 114.009i −1.34812 0.223546i
\(511\) 569.702 + 478.036i 1.11488 + 0.935492i
\(512\) 22.6274i 0.0441942i
\(513\) −138.255 223.379i −0.269504 0.435436i
\(514\) 47.3102 0.0920431
\(515\) 113.025 134.698i 0.219466 0.261549i
\(516\) −121.450 99.8139i −0.235368 0.193438i
\(517\) −11.7334 66.5434i −0.0226952 0.128711i
\(518\) 85.8396 235.842i 0.165713 0.455294i
\(519\) 412.194 + 481.173i 0.794208 + 0.927115i
\(520\) −36.6420 + 207.807i −0.0704654 + 0.399629i
\(521\) −832.809 480.823i −1.59848 0.922884i −0.991780 0.127955i \(-0.959159\pi\)
−0.606703 0.794929i \(-0.707508\pi\)
\(522\) 108.766 + 87.5453i 0.208365 + 0.167711i
\(523\) −19.2517 33.3450i −0.0368102 0.0637572i 0.847033 0.531540i \(-0.178386\pi\)
−0.883844 + 0.467783i \(0.845053\pi\)
\(524\) 47.9842 + 131.836i 0.0915729 + 0.251595i
\(525\) 747.587 1325.93i 1.42398 2.52559i
\(526\) 170.305 142.903i 0.323774 0.271679i
\(527\) −584.387 696.445i −1.10889 1.32153i
\(528\) −16.4464 9.27278i −0.0311484 0.0175621i
\(529\) −311.896 + 113.521i −0.589596 + 0.214595i
\(530\) −426.063 + 245.987i −0.803892 + 0.464127i
\(531\) −196.700 507.919i −0.370432 0.956533i
\(532\) 109.378 189.448i 0.205597 0.356105i
\(533\) 90.0441 + 15.8772i 0.168938 + 0.0297884i
\(534\) 280.107 239.952i 0.524545 0.449349i
\(535\) −172.312 62.7165i −0.322079 0.117227i
\(536\) 7.59995 1.34008i 0.0141790 0.00250014i
\(537\) −495.174 + 602.510i −0.922112 + 1.12199i
\(538\) 313.299 + 262.889i 0.582340 + 0.488641i
\(539\) 121.737i 0.225857i
\(540\) −279.946 + 355.167i −0.518418 + 0.657717i
\(541\) −16.4860 −0.0304731 −0.0152366 0.999884i \(-0.504850\pi\)
−0.0152366 + 0.999884i \(0.504850\pi\)
\(542\) −398.201 + 474.558i −0.734689 + 0.875568i
\(543\) 156.747 945.282i 0.288669 1.74085i
\(544\) 19.2678 + 109.273i 0.0354187 + 0.200869i
\(545\) −265.363 + 729.078i −0.486904 + 1.33776i
\(546\) 417.646 78.0459i 0.764919 0.142941i
\(547\) 8.02809 45.5295i 0.0146766 0.0832350i −0.976590 0.215111i \(-0.930989\pi\)
0.991266 + 0.131876i \(0.0420999\pi\)
\(548\) −368.885 212.976i −0.673147 0.388642i
\(549\) −356.599 589.520i −0.649544 1.07381i
\(550\) 50.2141 + 86.9733i 0.0912983 + 0.158133i
\(551\) −36.5047 100.296i −0.0662517 0.182025i
\(552\) −119.117 + 1.21591i −0.215791 + 0.00220274i
\(553\) −436.302 + 366.101i −0.788972 + 0.662026i
\(554\) 15.4638 + 18.4290i 0.0279130 + 0.0332654i
\(555\) 341.446 201.808i 0.615217 0.363619i
\(556\) 106.043 38.5964i 0.190724 0.0694179i
\(557\) 62.2086 35.9161i 0.111685 0.0644814i −0.443117 0.896464i \(-0.646127\pi\)
0.554802 + 0.831982i \(0.312794\pi\)
\(558\) −578.761 + 114.279i −1.03721 + 0.204802i
\(559\) −116.702 + 202.133i −0.208769 + 0.361598i
\(560\) −370.857 65.3921i −0.662245 0.116772i
\(561\) −87.3191 30.7759i −0.155649 0.0548590i
\(562\) −121.947 44.3852i −0.216988 0.0789772i
\(563\) −342.983 + 60.4772i −0.609206 + 0.107420i −0.469736 0.882807i \(-0.655651\pi\)
−0.139470 + 0.990226i \(0.544540\pi\)
\(564\) 90.5978 + 241.225i 0.160634 + 0.427705i
\(565\) 993.784 + 833.884i 1.75891 + 1.47590i
\(566\) 619.198i 1.09399i
\(567\) 867.655 + 276.248i 1.53026 + 0.487209i
\(568\) 212.722 0.374510
\(569\) 218.985 260.976i 0.384859 0.458657i −0.538483 0.842637i \(-0.681002\pi\)
0.923342 + 0.383980i \(0.125447\pi\)
\(570\) 323.631 121.547i 0.567774 0.213241i
\(571\) −93.4096 529.752i −0.163589 0.927762i −0.950507 0.310704i \(-0.899435\pi\)
0.786917 0.617058i \(-0.211676\pi\)
\(572\) −9.58754 + 26.3415i −0.0167614 + 0.0460516i
\(573\) −38.8510 + 110.230i −0.0678027 + 0.192374i
\(574\) −28.3348 + 160.695i −0.0493638 + 0.279956i
\(575\) 548.746 + 316.819i 0.954341 + 0.550989i
\(576\) 68.1465 + 23.2392i 0.118310 + 0.0403458i
\(577\) −146.659 254.021i −0.254175 0.440244i 0.710496 0.703701i \(-0.248471\pi\)
−0.964671 + 0.263457i \(0.915137\pi\)
\(578\) 46.3103 + 127.237i 0.0801216 + 0.220132i
\(579\) −249.437 422.030i −0.430807 0.728894i
\(580\) −140.750 + 118.103i −0.242672 + 0.203626i
\(581\) 241.371 + 287.655i 0.415441 + 0.495103i
\(582\) 6.10316 + 597.897i 0.0104865 + 1.02731i
\(583\) −61.4151 + 22.3533i −0.105343 + 0.0383418i
\(584\) 162.047 93.5578i 0.277478 0.160202i
\(585\) 588.215 + 323.779i 1.00550 + 0.553469i
\(586\) −182.911 + 316.811i −0.312135 + 0.540634i
\(587\) 462.413 + 81.5359i 0.787757 + 0.138903i 0.553033 0.833159i \(-0.313470\pi\)
0.234724 + 0.972062i \(0.424581\pi\)
\(588\) 85.2773 + 456.343i 0.145029 + 0.776093i
\(589\) 423.773 + 154.241i 0.719479 + 0.261869i
\(590\) 705.877 124.465i 1.19640 0.210958i
\(591\) 1014.35 + 168.200i 1.71632 + 0.284602i
\(592\) −48.3734 40.5901i −0.0817118 0.0685643i
\(593\) 880.585i 1.48497i 0.669864 + 0.742483i \(0.266352\pi\)
−0.669864 + 0.742483i \(0.733648\pi\)
\(594\) −44.8176 + 40.0076i −0.0754506 + 0.0673529i
\(595\) −1846.64 −3.10359
\(596\) 37.0322 44.1332i 0.0621345 0.0740490i
\(597\) 458.260 + 376.622i 0.767605 + 0.630858i
\(598\) 30.7122 + 174.178i 0.0513582 + 0.291267i
\(599\) 117.916 323.972i 0.196855 0.540855i −0.801512 0.597979i \(-0.795971\pi\)
0.998367 + 0.0571238i \(0.0181930\pi\)
\(600\) −249.158 290.853i −0.415263 0.484755i
\(601\) 108.241 613.865i 0.180102 1.02141i −0.751987 0.659177i \(-0.770905\pi\)
0.932089 0.362229i \(-0.117984\pi\)
\(602\) −360.732 208.269i −0.599223 0.345961i
\(603\) 3.76956 24.2649i 0.00625134 0.0402403i
\(604\) 154.786 + 268.098i 0.256269 + 0.443870i
\(605\) −339.490 932.741i −0.561140 1.54172i
\(606\) 188.055 333.537i 0.310321 0.550391i
\(607\) 725.795 609.015i 1.19571 1.00332i 0.195967 0.980610i \(-0.437215\pi\)
0.999742 0.0227086i \(-0.00722899\pi\)
\(608\) −35.3788 42.1628i −0.0581888 0.0693467i
\(609\) 322.260 + 181.696i 0.529162 + 0.298352i
\(610\) 851.987 310.098i 1.39670 0.508358i
\(611\) 331.324 191.290i 0.542265 0.313077i
\(612\) 348.883 + 54.1990i 0.570071 + 0.0885605i
\(613\) 352.677 610.854i 0.575329 0.996499i −0.420677 0.907211i \(-0.638207\pi\)
0.996006 0.0892887i \(-0.0284594\pi\)
\(614\) −296.919 52.3549i −0.483582 0.0852685i
\(615\) −195.835 + 167.761i −0.318431 + 0.272782i
\(616\) −47.0097 17.1101i −0.0763145 0.0277762i
\(617\) −876.465 + 154.544i −1.42053 + 0.250477i −0.830550 0.556943i \(-0.811974\pi\)
−0.589976 + 0.807421i \(0.700863\pi\)
\(618\) −56.5594 + 68.8195i −0.0915201 + 0.111358i
\(619\) −376.539 315.954i −0.608303 0.510426i 0.285800 0.958289i \(-0.407741\pi\)
−0.894102 + 0.447863i \(0.852185\pi\)
\(620\) 776.326i 1.25214i
\(621\) −118.675 + 359.990i −0.191104 + 0.579693i
\(622\) −659.851 −1.06085
\(623\) 628.186 748.643i 1.00832 1.20167i
\(624\) 17.4875 105.460i 0.0280248 0.169006i
\(625\) 49.2783 + 279.471i 0.0788452 + 0.447154i
\(626\) 45.6622 125.456i 0.0729428 0.200409i
\(627\) 45.1437 8.43604i 0.0719994 0.0134546i
\(628\) −74.2551 + 421.121i −0.118241 + 0.670575i
\(629\) −268.169 154.828i −0.426342 0.246149i
\(630\) −577.824 + 1049.74i −0.917181 + 1.66626i
\(631\) 14.7611 + 25.5670i 0.0233932 + 0.0405183i 0.877485 0.479604i \(-0.159220\pi\)
−0.854092 + 0.520122i \(0.825886\pi\)
\(632\) 49.0119 + 134.659i 0.0775504 + 0.213068i
\(633\) −685.143 + 6.99375i −1.08238 + 0.0110486i
\(634\) 276.106 231.680i 0.435498 0.365426i
\(635\) 1245.58 + 1484.43i 1.96155 + 2.33768i
\(636\) 214.562 126.815i 0.337362 0.199395i
\(637\) 647.704 235.745i 1.01680 0.370086i
\(638\) −21.1383 + 12.2042i −0.0331322 + 0.0191289i
\(639\) 218.473 640.649i 0.341898 1.00258i
\(640\) −47.3742 + 82.0545i −0.0740222 + 0.128210i
\(641\) −94.3541 16.6372i −0.147198 0.0259550i 0.0995634 0.995031i \(-0.468255\pi\)
−0.246762 + 0.969076i \(0.579366\pi\)
\(642\) 87.6139 + 30.8798i 0.136470 + 0.0480994i
\(643\) 537.766 + 195.731i 0.836339 + 0.304402i 0.724458 0.689319i \(-0.242090\pi\)
0.111881 + 0.993722i \(0.464313\pi\)
\(644\) −310.841 + 54.8097i −0.482673 + 0.0851083i
\(645\) −231.441 616.234i −0.358823 0.955401i
\(646\) −206.755 173.488i −0.320054 0.268557i
\(647\) 419.943i 0.649061i −0.945875 0.324531i \(-0.894794\pi\)
0.945875 0.324531i \(-0.105206\pi\)
\(648\) 139.978 181.368i 0.216015 0.279888i
\(649\) 95.2192 0.146717
\(650\) −365.503 + 435.590i −0.562313 + 0.670138i
\(651\) −1463.33 + 549.589i −2.24782 + 0.844223i
\(652\) −51.1225 289.930i −0.0784087 0.444678i
\(653\) −425.980 + 1170.37i −0.652343 + 1.79230i −0.0434334 + 0.999056i \(0.513830\pi\)
−0.608909 + 0.793240i \(0.708393\pi\)
\(654\) 130.657 370.707i 0.199781 0.566831i
\(655\) −102.013 + 578.542i −0.155744 + 0.883270i
\(656\) 35.5547 + 20.5275i 0.0541993 + 0.0312920i
\(657\) −115.338 584.120i −0.175552 0.889072i
\(658\) 341.380 + 591.288i 0.518815 + 0.898614i
\(659\) 159.051 + 436.990i 0.241353 + 0.663111i 0.999934 + 0.0115322i \(0.00367091\pi\)
−0.758581 + 0.651579i \(0.774107\pi\)
\(660\) −40.2259 68.0593i −0.0609483 0.103120i
\(661\) −250.507 + 210.201i −0.378982 + 0.318004i −0.812303 0.583236i \(-0.801786\pi\)
0.433320 + 0.901240i \(0.357342\pi\)
\(662\) −334.955 399.184i −0.505974 0.602996i
\(663\) −5.35069 524.181i −0.00807043 0.790620i
\(664\) 88.7810 32.3137i 0.133706 0.0486651i
\(665\) 793.280 458.000i 1.19290 0.688722i
\(666\) −171.925 + 103.997i −0.258146 + 0.156152i
\(667\) −77.0009 + 133.369i −0.115444 + 0.199954i
\(668\) 291.076 + 51.3245i 0.435742 + 0.0768332i
\(669\) −212.814 1138.83i −0.318108 1.70228i
\(670\) 30.3656 + 11.0522i 0.0453218 + 0.0164958i
\(671\) 118.617 20.9153i 0.176776 0.0311704i
\(672\) 188.206 + 31.2085i 0.280069 + 0.0464413i
\(673\) −221.219 185.625i −0.328706 0.275817i 0.463466 0.886115i \(-0.346605\pi\)
−0.792172 + 0.610297i \(0.791050\pi\)
\(674\) 278.521i 0.413235i
\(675\) −1131.85 + 451.666i −1.67681 + 0.669134i
\(676\) 179.283 0.265211
\(677\) 110.656 131.875i 0.163450 0.194793i −0.678102 0.734967i \(-0.737197\pi\)
0.841553 + 0.540175i \(0.181642\pi\)
\(678\) −507.742 417.289i −0.748882 0.615470i
\(679\) 275.113 + 1560.24i 0.405174 + 2.29786i
\(680\) −158.909 + 436.600i −0.233690 + 0.642059i
\(681\) −363.384 424.194i −0.533603 0.622899i
\(682\) 17.9086 101.565i 0.0262589 0.148922i
\(683\) −113.042 65.2651i −0.165509 0.0955565i 0.414958 0.909841i \(-0.363796\pi\)
−0.580466 + 0.814284i \(0.697130\pi\)
\(684\) −163.316 + 63.2467i −0.238766 + 0.0924659i
\(685\) −891.799 1544.64i −1.30190 2.25495i
\(686\) 154.281 + 423.883i 0.224899 + 0.617905i
\(687\) −455.278 + 807.489i −0.662705 + 1.17538i
\(688\) −80.2832 + 67.3656i −0.116691 + 0.0979151i
\(689\) −237.862 283.473i −0.345228 0.411427i
\(690\) −434.502 244.981i −0.629713 0.355045i
\(691\) −259.558 + 94.4713i −0.375626 + 0.136717i −0.522932 0.852374i \(-0.675162\pi\)
0.147306 + 0.989091i \(0.452940\pi\)
\(692\) 365.801 211.195i 0.528614 0.305196i
\(693\) −99.8110 + 124.005i −0.144027 + 0.178940i
\(694\) 189.321 327.914i 0.272797 0.472498i
\(695\) 465.354 + 82.0544i 0.669574 + 0.118064i
\(696\) 70.6901 60.5563i 0.101566 0.0870061i
\(697\) 189.181 + 68.8564i 0.271422 + 0.0987897i
\(698\) 719.573 126.880i 1.03091 0.181777i
\(699\) −39.1695 + 47.6600i −0.0560365 + 0.0681831i
\(700\) −777.364 652.286i −1.11052 0.931837i
\(701\) 865.652i 1.23488i 0.786617 + 0.617441i \(0.211830\pi\)
−0.786617 + 0.617441i \(0.788170\pi\)
\(702\) −299.651 160.978i −0.426854 0.229313i
\(703\) 153.601 0.218493
\(704\) −8.09070 + 9.64212i −0.0114925 + 0.0136962i
\(705\) −176.507 + 1064.44i −0.250365 + 1.50985i
\(706\) −71.2123 403.865i −0.100867 0.572047i
\(707\) 346.999 953.372i 0.490805 1.34847i
\(708\) −356.939 + 66.7015i −0.504151 + 0.0942112i
\(709\) −19.7944 + 112.259i −0.0279187 + 0.158335i −0.995580 0.0939188i \(-0.970061\pi\)
0.967661 + 0.252254i \(0.0811717\pi\)
\(710\) 771.399 + 445.367i 1.08648 + 0.627278i
\(711\) 455.886 9.30809i 0.641190 0.0130915i
\(712\) −122.944 212.945i −0.172674 0.299081i
\(713\) −222.550 611.451i −0.312132 0.857575i
\(714\) 935.466 9.54897i 1.31018 0.0133739i
\(715\) −89.9179 + 75.4501i −0.125759 + 0.105525i
\(716\) 334.199 + 398.283i 0.466758 + 0.556261i
\(717\) −265.248 + 156.772i −0.369941 + 0.218650i
\(718\) −54.9523 + 20.0010i −0.0765353 + 0.0278566i
\(719\) −117.571 + 67.8798i −0.163521 + 0.0944086i −0.579527 0.814953i \(-0.696763\pi\)
0.416006 + 0.909362i \(0.363429\pi\)
\(720\) 198.467 + 226.949i 0.275648 + 0.315207i
\(721\) −118.015 + 204.408i −0.163683 + 0.283507i
\(722\) −370.929 65.4048i −0.513752 0.0905883i
\(723\) 1087.14 + 383.166i 1.50365 + 0.529967i
\(724\) −600.270 218.480i −0.829102 0.301768i
\(725\) −487.596 + 85.9763i −0.672546 + 0.118588i
\(726\) 176.801 + 470.751i 0.243528 + 0.648417i
\(727\) 76.0522 + 63.8154i 0.104611 + 0.0877790i 0.693593 0.720367i \(-0.256027\pi\)
−0.588982 + 0.808146i \(0.700471\pi\)
\(728\) 283.250i 0.389080i
\(729\) −402.458 607.839i −0.552068 0.833799i
\(730\) 783.514 1.07331
\(731\) −330.342 + 393.686i −0.451904 + 0.538559i
\(732\) −429.995 + 161.495i −0.587425 + 0.220621i
\(733\) −132.435 751.078i −0.180676 1.02466i −0.931387 0.364032i \(-0.881400\pi\)
0.750711 0.660631i \(-0.229711\pi\)
\(734\) −78.5192 + 215.730i −0.106974 + 0.293910i
\(735\) −646.185 + 1833.39i −0.879163 + 2.49441i
\(736\) −13.7903 + 78.2088i −0.0187368 + 0.106262i
\(737\) 3.71769 + 2.14641i 0.00504436 + 0.00291236i
\(738\) 98.3383 85.9968i 0.133250 0.116527i
\(739\) 436.285 + 755.668i 0.590373 + 1.02256i 0.994182 + 0.107712i \(0.0343525\pi\)
−0.403810 + 0.914843i \(0.632314\pi\)
\(740\) −90.4359 248.471i −0.122211 0.335771i
\(741\) 132.305 + 223.851i 0.178550 + 0.302093i
\(742\) 505.893 424.494i 0.681796 0.572095i
\(743\) −515.245 614.045i −0.693466 0.826441i 0.298304 0.954471i \(-0.403579\pi\)
−0.991770 + 0.128030i \(0.959135\pi\)
\(744\) 4.01439 + 393.270i 0.00539568 + 0.528589i
\(745\) 226.691 82.5088i 0.304283 0.110750i
\(746\) −82.9451 + 47.8884i −0.111186 + 0.0641935i
\(747\) −6.13685 300.567i −0.00821533 0.402366i
\(748\) −30.8613 + 53.4534i −0.0412584 + 0.0714617i
\(749\) 242.406 + 42.7427i 0.323639 + 0.0570663i
\(750\) −131.413 703.230i −0.175218 0.937640i
\(751\) −814.474 296.444i −1.08452 0.394733i −0.262931 0.964815i \(-0.584689\pi\)
−0.821588 + 0.570082i \(0.806911\pi\)
\(752\) 169.175 29.8301i 0.224967 0.0396677i
\(753\) 962.583 + 159.616i 1.27833 + 0.211974i
\(754\) −105.867 88.8333i −0.140408 0.117816i
\(755\) 1296.28i 1.71693i
\(756\) 287.285 534.765i 0.380007 0.707361i
\(757\) −305.290 −0.403289 −0.201644 0.979459i \(-0.564629\pi\)
−0.201644 + 0.979459i \(0.564629\pi\)
\(758\) −111.295 + 132.636i −0.146827 + 0.174981i
\(759\) −51.1934 42.0734i −0.0674485 0.0554327i
\(760\) −40.0205 226.968i −0.0526586 0.298642i
\(761\) 210.316 577.838i 0.276367 0.759313i −0.721399 0.692519i \(-0.756501\pi\)
0.997767 0.0667941i \(-0.0212771\pi\)
\(762\) −638.662 745.539i −0.838139 0.978397i
\(763\) 180.851 1025.65i 0.237026 1.34424i
\(764\) 67.4786 + 38.9588i 0.0883228 + 0.0509932i
\(765\) 1151.69 + 926.988i 1.50548 + 1.21175i
\(766\) −42.7767 74.0914i −0.0558443 0.0967251i