Properties

Label 54.3.f.a.11.1
Level $54$
Weight $3$
Character 54.11
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 11.1
Character \(\chi\) \(=\) 54.11
Dual form 54.3.f.a.5.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.909039 + 1.08335i) q^{2} +(-1.44503 - 2.62905i) q^{3} +(-0.347296 - 1.96962i) q^{4} +(0.696976 - 1.91493i) q^{5} +(4.16177 + 0.824439i) q^{6} +(2.23222 - 12.6596i) q^{7} +(2.44949 + 1.41421i) q^{8} +(-4.82380 + 7.59809i) q^{9} +O(q^{10})\) \(q+(-0.909039 + 1.08335i) q^{2} +(-1.44503 - 2.62905i) q^{3} +(-0.347296 - 1.96962i) q^{4} +(0.696976 - 1.91493i) q^{5} +(4.16177 + 0.824439i) q^{6} +(2.23222 - 12.6596i) q^{7} +(2.44949 + 1.41421i) q^{8} +(-4.82380 + 7.59809i) q^{9} +(1.44096 + 2.49581i) q^{10} +(1.28270 + 3.52418i) q^{11} +(-4.67636 + 3.75920i) q^{12} +(6.69534 - 5.61806i) q^{13} +(11.6856 + 13.9263i) q^{14} +(-6.04158 + 0.934733i) q^{15} +(-3.75877 + 1.36808i) q^{16} +(-20.4462 + 11.8046i) q^{17} +(-3.84637 - 12.1328i) q^{18} +(-2.58391 + 4.47546i) q^{19} +(-4.01373 - 0.707728i) q^{20} +(-36.5082 + 12.4248i) q^{21} +(-4.98394 - 1.81401i) q^{22} +(34.3001 - 6.04803i) q^{23} +(0.178462 - 8.48340i) q^{24} +(15.9699 + 13.4004i) q^{25} +12.3604i q^{26} +(26.9463 + 1.70258i) q^{27} -25.7097 q^{28} +(18.1485 - 21.6285i) q^{29} +(4.47939 - 7.39486i) q^{30} +(-0.600583 - 3.40608i) q^{31} +(1.93476 - 5.31570i) q^{32} +(7.41171 - 8.46479i) q^{33} +(5.79786 - 32.8813i) q^{34} +(-22.6863 - 13.0979i) q^{35} +(16.6406 + 6.86225i) q^{36} +(27.7928 + 48.1386i) q^{37} +(-2.49962 - 6.86765i) q^{38} +(-24.4451 - 9.48415i) q^{39} +(4.41535 - 3.70492i) q^{40} +(-10.1636 - 12.1124i) q^{41} +(19.7270 - 50.8458i) q^{42} +(49.2717 - 17.9334i) q^{43} +(6.49580 - 3.75035i) q^{44} +(11.1877 + 14.5329i) q^{45} +(-24.6280 + 42.6569i) q^{46} +(-53.2114 - 9.38261i) q^{47} +(9.02827 + 7.90508i) q^{48} +(-109.237 - 39.7589i) q^{49} +(-29.0346 + 5.11958i) q^{50} +(60.5802 + 36.6961i) q^{51} +(-13.3907 - 11.2361i) q^{52} +0.286719i q^{53} +(-26.3397 + 27.6445i) q^{54} +7.64255 q^{55} +(23.3711 - 27.8526i) q^{56} +(15.5000 + 0.326068i) q^{57} +(6.93358 + 39.3223i) q^{58} +(3.64869 - 10.0247i) q^{59} +(3.93928 + 11.5750i) q^{60} +(-16.4195 + 93.1195i) q^{61} +(4.23593 + 2.44561i) q^{62} +(85.4206 + 78.0278i) q^{63} +(4.00000 + 6.92820i) q^{64} +(-6.09168 - 16.7367i) q^{65} +(2.43281 + 15.7243i) q^{66} +(16.2682 - 13.6506i) q^{67} +(30.3515 + 36.1715i) q^{68} +(-65.4651 - 81.4371i) q^{69} +(34.8124 - 12.6707i) q^{70} +(-89.4087 + 51.6201i) q^{71} +(-22.5612 + 11.7896i) q^{72} +(11.9742 - 20.7399i) q^{73} +(-77.4157 - 13.6505i) q^{74} +(12.1533 - 61.3497i) q^{75} +(9.71232 + 3.53500i) q^{76} +(47.4778 - 8.37161i) q^{77} +(32.4962 - 17.8611i) q^{78} +(-9.54529 - 8.00945i) q^{79} +8.15129i q^{80} +(-34.4619 - 73.3033i) q^{81} +22.3611 q^{82} +(46.6451 - 55.5895i) q^{83} +(37.1512 + 67.5921i) q^{84} +(8.35446 + 47.3805i) q^{85} +(-25.3617 + 69.6807i) q^{86} +(-83.0873 - 16.4595i) q^{87} +(-1.84199 + 10.4464i) q^{88} +(56.5926 + 32.6737i) q^{89} +(-25.9143 - 1.09078i) q^{90} +(-56.1766 - 97.3008i) q^{91} +(-23.8246 - 65.4576i) q^{92} +(-8.08688 + 6.50083i) q^{93} +(58.5359 - 49.1175i) q^{94} +(6.76926 + 8.06729i) q^{95} +(-16.7710 + 2.59475i) q^{96} +(-31.7241 + 11.5466i) q^{97} +(142.373 - 82.1991i) q^{98} +(-32.9645 - 7.25390i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.909039 + 1.08335i −0.454519 + 0.541675i
\(3\) −1.44503 2.62905i −0.481675 0.876350i
\(4\) −0.347296 1.96962i −0.0868241 0.492404i
\(5\) 0.696976 1.91493i 0.139395 0.382985i −0.850277 0.526336i \(-0.823565\pi\)
0.989672 + 0.143351i \(0.0457877\pi\)
\(6\) 4.16177 + 0.824439i 0.693628 + 0.137407i
\(7\) 2.23222 12.6596i 0.318889 1.80851i −0.230647 0.973037i \(-0.574084\pi\)
0.549536 0.835470i \(-0.314805\pi\)
\(8\) 2.44949 + 1.41421i 0.306186 + 0.176777i
\(9\) −4.82380 + 7.59809i −0.535978 + 0.844232i
\(10\) 1.44096 + 2.49581i 0.144096 + 0.249581i
\(11\) 1.28270 + 3.52418i 0.116609 + 0.320380i 0.984242 0.176824i \(-0.0565824\pi\)
−0.867634 + 0.497204i \(0.834360\pi\)
\(12\) −4.67636 + 3.75920i −0.389697 + 0.313267i
\(13\) 6.69534 5.61806i 0.515026 0.432158i −0.347867 0.937544i \(-0.613094\pi\)
0.862894 + 0.505385i \(0.168650\pi\)
\(14\) 11.6856 + 13.9263i 0.834683 + 0.994736i
\(15\) −6.04158 + 0.934733i −0.402772 + 0.0623155i
\(16\) −3.75877 + 1.36808i −0.234923 + 0.0855050i
\(17\) −20.4462 + 11.8046i −1.20272 + 0.694390i −0.961159 0.275996i \(-0.910992\pi\)
−0.241560 + 0.970386i \(0.577659\pi\)
\(18\) −3.84637 12.1328i −0.213687 0.674046i
\(19\) −2.58391 + 4.47546i −0.135995 + 0.235551i −0.925977 0.377579i \(-0.876757\pi\)
0.789982 + 0.613130i \(0.210090\pi\)
\(20\) −4.01373 0.707728i −0.200686 0.0353864i
\(21\) −36.5082 + 12.4248i −1.73849 + 0.591655i
\(22\) −4.98394 1.81401i −0.226543 0.0824548i
\(23\) 34.3001 6.04803i 1.49131 0.262958i 0.632222 0.774787i \(-0.282143\pi\)
0.859087 + 0.511829i \(0.171032\pi\)
\(24\) 0.178462 8.48340i 0.00743592 0.353475i
\(25\) 15.9699 + 13.4004i 0.638798 + 0.536015i
\(26\) 12.3604i 0.475401i
\(27\) 26.9463 + 1.70258i 0.998010 + 0.0630587i
\(28\) −25.7097 −0.918203
\(29\) 18.1485 21.6285i 0.625809 0.745810i −0.356249 0.934391i \(-0.615944\pi\)
0.982058 + 0.188581i \(0.0603889\pi\)
\(30\) 4.47939 7.39486i 0.149313 0.246495i
\(31\) −0.600583 3.40608i −0.0193736 0.109873i 0.973587 0.228314i \(-0.0733214\pi\)
−0.992961 + 0.118441i \(0.962210\pi\)
\(32\) 1.93476 5.31570i 0.0604612 0.166116i
\(33\) 7.41171 8.46479i 0.224597 0.256509i
\(34\) 5.79786 32.8813i 0.170525 0.967096i
\(35\) −22.6863 13.0979i −0.648180 0.374227i
\(36\) 16.6406 + 6.86225i 0.462239 + 0.190618i
\(37\) 27.7928 + 48.1386i 0.751158 + 1.30104i 0.947262 + 0.320460i \(0.103838\pi\)
−0.196104 + 0.980583i \(0.562829\pi\)
\(38\) −2.49962 6.86765i −0.0657795 0.180728i
\(39\) −24.4451 9.48415i −0.626797 0.243183i
\(40\) 4.41535 3.70492i 0.110384 0.0926230i
\(41\) −10.1636 12.1124i −0.247891 0.295426i 0.627722 0.778437i \(-0.283987\pi\)
−0.875614 + 0.483012i \(0.839543\pi\)
\(42\) 19.7270 50.8458i 0.469691 1.21061i
\(43\) 49.2717 17.9334i 1.14585 0.417057i 0.301830 0.953362i \(-0.402403\pi\)
0.844024 + 0.536305i \(0.180180\pi\)
\(44\) 6.49580 3.75035i 0.147632 0.0852352i
\(45\) 11.1877 + 14.5329i 0.248616 + 0.322954i
\(46\) −24.6280 + 42.6569i −0.535391 + 0.927325i
\(47\) −53.2114 9.38261i −1.13216 0.199630i −0.423985 0.905669i \(-0.639369\pi\)
−0.708173 + 0.706039i \(0.750480\pi\)
\(48\) 9.02827 + 7.90508i 0.188089 + 0.164689i
\(49\) −109.237 39.7589i −2.22932 0.811405i
\(50\) −29.0346 + 5.11958i −0.580692 + 0.102392i
\(51\) 60.5802 + 36.6961i 1.18785 + 0.719532i
\(52\) −13.3907 11.2361i −0.257513 0.216079i
\(53\) 0.286719i 0.00540979i 0.999996 + 0.00270489i \(0.000860996\pi\)
−0.999996 + 0.00270489i \(0.999139\pi\)
\(54\) −26.3397 + 27.6445i −0.487772 + 0.511936i
\(55\) 7.64255 0.138955
\(56\) 23.3711 27.8526i 0.417341 0.497368i
\(57\) 15.5000 + 0.326068i 0.271930 + 0.00572050i
\(58\) 6.93358 + 39.3223i 0.119544 + 0.677970i
\(59\) 3.64869 10.0247i 0.0618421 0.169910i −0.904923 0.425574i \(-0.860072\pi\)
0.966766 + 0.255665i \(0.0822943\pi\)
\(60\) 3.93928 + 11.5750i 0.0656547 + 0.192916i
\(61\) −16.4195 + 93.1195i −0.269172 + 1.52655i 0.487714 + 0.873003i \(0.337831\pi\)
−0.756886 + 0.653546i \(0.773280\pi\)
\(62\) 4.23593 + 2.44561i 0.0683214 + 0.0394454i
\(63\) 85.4206 + 78.0278i 1.35588 + 1.23854i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) −6.09168 16.7367i −0.0937181 0.257488i
\(66\) 2.43281 + 15.7243i 0.0368607 + 0.238247i
\(67\) 16.2682 13.6506i 0.242809 0.203741i −0.513260 0.858233i \(-0.671562\pi\)
0.756068 + 0.654493i \(0.227118\pi\)
\(68\) 30.3515 + 36.1715i 0.446345 + 0.531933i
\(69\) −65.4651 81.4371i −0.948770 1.18025i
\(70\) 34.8124 12.6707i 0.497320 0.181010i
\(71\) −89.4087 + 51.6201i −1.25928 + 0.727044i −0.972934 0.231083i \(-0.925773\pi\)
−0.286343 + 0.958127i \(0.592440\pi\)
\(72\) −22.5612 + 11.7896i −0.313350 + 0.163744i
\(73\) 11.9742 20.7399i 0.164030 0.284108i −0.772280 0.635282i \(-0.780884\pi\)
0.936310 + 0.351174i \(0.114217\pi\)
\(74\) −77.4157 13.6505i −1.04616 0.184466i
\(75\) 12.1533 61.3497i 0.162044 0.817995i
\(76\) 9.71232 + 3.53500i 0.127794 + 0.0465131i
\(77\) 47.4778 8.37161i 0.616594 0.108722i
\(78\) 32.4962 17.8611i 0.416618 0.228989i
\(79\) −9.54529 8.00945i −0.120826 0.101385i 0.580372 0.814351i \(-0.302907\pi\)
−0.701199 + 0.712966i \(0.747351\pi\)
\(80\) 8.15129i 0.101891i
\(81\) −34.4619 73.3033i −0.425455 0.904980i
\(82\) 22.3611 0.272696
\(83\) 46.6451 55.5895i 0.561990 0.669753i −0.407977 0.912992i \(-0.633766\pi\)
0.969966 + 0.243239i \(0.0782100\pi\)
\(84\) 37.1512 + 67.5921i 0.442276 + 0.804667i
\(85\) 8.35446 + 47.3805i 0.0982878 + 0.557418i
\(86\) −25.3617 + 69.6807i −0.294904 + 0.810241i
\(87\) −83.0873 16.4595i −0.955027 0.189189i
\(88\) −1.84199 + 10.4464i −0.0209317 + 0.118710i
\(89\) 56.5926 + 32.6737i 0.635871 + 0.367121i 0.783022 0.621993i \(-0.213677\pi\)
−0.147151 + 0.989114i \(0.547010\pi\)
\(90\) −25.9143 1.09078i −0.287937 0.0121198i
\(91\) −56.1766 97.3008i −0.617326 1.06924i
\(92\) −23.8246 65.4576i −0.258963 0.711495i
\(93\) −8.08688 + 6.50083i −0.0869557 + 0.0699014i
\(94\) 58.5359 49.1175i 0.622722 0.522526i
\(95\) 6.76926 + 8.06729i 0.0712553 + 0.0849188i
\(96\) −16.7710 + 2.59475i −0.174698 + 0.0270287i
\(97\) −31.7241 + 11.5466i −0.327053 + 0.119037i −0.500328 0.865836i \(-0.666787\pi\)
0.173275 + 0.984873i \(0.444565\pi\)
\(98\) 142.373 82.1991i 1.45279 0.838767i
\(99\) −32.9645 7.25390i −0.332974 0.0732717i
\(100\) 20.8473 36.1086i 0.208473 0.361086i
\(101\) 120.691 + 21.2810i 1.19496 + 0.210703i 0.735518 0.677505i \(-0.236939\pi\)
0.459440 + 0.888209i \(0.348050\pi\)
\(102\) −94.8245 + 32.2714i −0.929652 + 0.316387i
\(103\) −117.259 42.6789i −1.13844 0.414358i −0.297090 0.954850i \(-0.596016\pi\)
−0.841349 + 0.540492i \(0.818238\pi\)
\(104\) 24.3453 4.29273i 0.234090 0.0412763i
\(105\) −1.65285 + 78.5703i −0.0157415 + 0.748288i
\(106\) −0.310617 0.260639i −0.00293035 0.00245885i
\(107\) 85.6184i 0.800172i 0.916478 + 0.400086i \(0.131020\pi\)
−0.916478 + 0.400086i \(0.868980\pi\)
\(108\) −6.00490 53.6651i −0.0556009 0.496899i
\(109\) 89.8028 0.823879 0.411940 0.911211i \(-0.364851\pi\)
0.411940 + 0.911211i \(0.364851\pi\)
\(110\) −6.94737 + 8.27956i −0.0631579 + 0.0752687i
\(111\) 86.3974 142.630i 0.778355 1.28496i
\(112\) 8.92888 + 50.6382i 0.0797222 + 0.452127i
\(113\) 18.1968 49.9953i 0.161034 0.442436i −0.832766 0.553626i \(-0.813244\pi\)
0.993799 + 0.111189i \(0.0354660\pi\)
\(114\) −14.4434 + 16.4956i −0.126696 + 0.144698i
\(115\) 12.3248 69.8975i 0.107172 0.607804i
\(116\) −48.9027 28.2340i −0.421575 0.243396i
\(117\) 10.3895 + 77.9722i 0.0887991 + 0.666429i
\(118\) 7.54345 + 13.0656i 0.0639275 + 0.110726i
\(119\) 103.801 + 285.190i 0.872276 + 2.39656i
\(120\) −16.1207 6.25447i −0.134339 0.0521206i
\(121\) 81.9169 68.7364i 0.676999 0.568070i
\(122\) −85.9551 102.437i −0.704550 0.839650i
\(123\) −17.1576 + 44.2233i −0.139493 + 0.359539i
\(124\) −6.50008 + 2.36584i −0.0524200 + 0.0190793i
\(125\) 80.9115 46.7143i 0.647292 0.373714i
\(126\) −162.182 + 21.6101i −1.28716 + 0.171509i
\(127\) 32.5765 56.4241i 0.256508 0.444284i −0.708796 0.705413i \(-0.750761\pi\)
0.965304 + 0.261129i \(0.0840948\pi\)
\(128\) −11.1418 1.96460i −0.0870455 0.0153485i
\(129\) −118.347 103.624i −0.917417 0.803283i
\(130\) 23.6693 + 8.61493i 0.182072 + 0.0662687i
\(131\) −240.545 + 42.4145i −1.83622 + 0.323775i −0.980928 0.194372i \(-0.937733\pi\)
−0.855291 + 0.518147i \(0.826622\pi\)
\(132\) −19.2464 11.6584i −0.145806 0.0883214i
\(133\) 50.8895 + 42.7014i 0.382628 + 0.321063i
\(134\) 30.0331i 0.224127i
\(135\) 22.0412 50.4135i 0.163268 0.373433i
\(136\) −66.7770 −0.491008
\(137\) −128.507 + 153.149i −0.938009 + 1.11788i 0.0548401 + 0.998495i \(0.482535\pi\)
−0.992849 + 0.119380i \(0.961909\pi\)
\(138\) 147.735 + 3.10785i 1.07055 + 0.0225207i
\(139\) 30.1070 + 170.745i 0.216597 + 1.22838i 0.878113 + 0.478453i \(0.158802\pi\)
−0.661516 + 0.749931i \(0.730086\pi\)
\(140\) −17.9190 + 49.2322i −0.127993 + 0.351658i
\(141\) 52.2245 + 153.454i 0.370387 + 1.08832i
\(142\) 25.3533 143.786i 0.178544 1.01257i
\(143\) 28.3871 + 16.3893i 0.198511 + 0.114611i
\(144\) 7.73677 35.1588i 0.0537276 0.244158i
\(145\) −28.7679 49.8275i −0.198399 0.343638i
\(146\) 11.5836 + 31.8256i 0.0793395 + 0.217984i
\(147\) 53.3216 + 344.641i 0.362732 + 2.34450i
\(148\) 85.1622 71.4596i 0.575420 0.482835i
\(149\) 51.4192 + 61.2791i 0.345096 + 0.411269i 0.910476 0.413561i \(-0.135715\pi\)
−0.565381 + 0.824830i \(0.691271\pi\)
\(150\) 55.4154 + 68.9355i 0.369436 + 0.459570i
\(151\) −254.454 + 92.6135i −1.68512 + 0.613335i −0.993998 0.109400i \(-0.965107\pi\)
−0.691125 + 0.722735i \(0.742885\pi\)
\(152\) −12.6585 + 7.30840i −0.0832797 + 0.0480816i
\(153\) 8.93590 212.295i 0.0584046 1.38755i
\(154\) −34.0897 + 59.0452i −0.221362 + 0.383410i
\(155\) −6.94098 1.22388i −0.0447805 0.00789601i
\(156\) −10.1904 + 51.4413i −0.0653233 + 0.329752i
\(157\) −1.92768 0.701618i −0.0122782 0.00446891i 0.335874 0.941907i \(-0.390968\pi\)
−0.348152 + 0.937438i \(0.613191\pi\)
\(158\) 17.3541 3.05999i 0.109836 0.0193670i
\(159\) 0.753798 0.414316i 0.00474087 0.00260576i
\(160\) −8.83070 7.40984i −0.0551919 0.0463115i
\(161\) 447.725i 2.78090i
\(162\) 110.740 + 29.3013i 0.683583 + 0.180872i
\(163\) −37.5034 −0.230082 −0.115041 0.993361i \(-0.536700\pi\)
−0.115041 + 0.993361i \(0.536700\pi\)
\(164\) −20.3271 + 24.2249i −0.123946 + 0.147713i
\(165\) −11.0437 20.0926i −0.0669314 0.121774i
\(166\) 17.8207 + 101.066i 0.107353 + 0.608832i
\(167\) 51.5277 141.571i 0.308549 0.847731i −0.684391 0.729115i \(-0.739932\pi\)
0.992940 0.118616i \(-0.0378458\pi\)
\(168\) −106.998 21.1961i −0.636891 0.126167i
\(169\) −16.0815 + 91.2028i −0.0951569 + 0.539662i
\(170\) −58.9242 34.0199i −0.346613 0.200117i
\(171\) −21.5407 41.2215i −0.125969 0.241062i
\(172\) −52.4339 90.8181i −0.304848 0.528012i
\(173\) −48.2332 132.520i −0.278805 0.766010i −0.997499 0.0706833i \(-0.977482\pi\)
0.718694 0.695326i \(-0.244740\pi\)
\(174\) 93.3610 75.0504i 0.536557 0.431324i
\(175\) 205.291 172.260i 1.17309 0.984342i
\(176\) −9.64271 11.4917i −0.0547881 0.0652940i
\(177\) −31.6278 + 4.89335i −0.178688 + 0.0276460i
\(178\) −86.8419 + 31.6079i −0.487876 + 0.177572i
\(179\) −155.945 + 90.0350i −0.871202 + 0.502989i −0.867747 0.497005i \(-0.834433\pi\)
−0.00345448 + 0.999994i \(0.501100\pi\)
\(180\) 24.7388 27.0827i 0.137438 0.150459i
\(181\) 22.7711 39.4407i 0.125807 0.217905i −0.796241 0.604980i \(-0.793181\pi\)
0.922048 + 0.387075i \(0.126515\pi\)
\(182\) 156.478 + 27.5912i 0.859767 + 0.151600i
\(183\) 268.542 91.3925i 1.46744 0.499412i
\(184\) 92.5710 + 33.6931i 0.503103 + 0.183115i
\(185\) 111.553 19.6698i 0.602988 0.106323i
\(186\) 0.308616 14.6704i 0.00165923 0.0788733i
\(187\) −67.8278 56.9143i −0.362716 0.304355i
\(188\) 108.065i 0.574812i
\(189\) 81.7040 337.327i 0.432296 1.78480i
\(190\) −14.8932 −0.0783854
\(191\) 28.9138 34.4581i 0.151381 0.180409i −0.685024 0.728520i \(-0.740208\pi\)
0.836406 + 0.548111i \(0.184653\pi\)
\(192\) 12.4345 20.5276i 0.0647630 0.106915i
\(193\) 43.6912 + 247.785i 0.226379 + 1.28386i 0.860031 + 0.510242i \(0.170444\pi\)
−0.633652 + 0.773619i \(0.718445\pi\)
\(194\) 16.3294 44.8647i 0.0841722 0.231261i
\(195\) −35.1991 + 40.2003i −0.180508 + 0.206156i
\(196\) −40.3722 + 228.962i −0.205981 + 1.16817i
\(197\) 46.5235 + 26.8604i 0.236160 + 0.136347i 0.613411 0.789764i \(-0.289797\pi\)
−0.377251 + 0.926111i \(0.623130\pi\)
\(198\) 37.8245 29.1180i 0.191033 0.147061i
\(199\) 36.3436 + 62.9489i 0.182631 + 0.316326i 0.942776 0.333428i \(-0.108205\pi\)
−0.760145 + 0.649754i \(0.774872\pi\)
\(200\) 20.1672 + 55.4090i 0.100836 + 0.277045i
\(201\) −59.3961 23.0443i −0.295503 0.114648i
\(202\) −132.767 + 111.405i −0.657264 + 0.551510i
\(203\) −233.296 278.031i −1.14924 1.36961i
\(204\) 51.2379 132.064i 0.251166 0.647374i
\(205\) −30.2782 + 11.0204i −0.147699 + 0.0537579i
\(206\) 152.829 88.2361i 0.741890 0.428331i
\(207\) −119.503 + 289.790i −0.577311 + 1.39995i
\(208\) −17.4803 + 30.2768i −0.0840399 + 0.145561i
\(209\) −19.0867 3.36550i −0.0913239 0.0161029i
\(210\) −83.6167 73.2141i −0.398175 0.348638i
\(211\) 96.7940 + 35.2301i 0.458739 + 0.166967i 0.561045 0.827786i \(-0.310400\pi\)
−0.102305 + 0.994753i \(0.532622\pi\)
\(212\) 0.564726 0.0995764i 0.00266380 0.000469700i
\(213\) 264.910 + 160.467i 1.24371 + 0.753368i
\(214\) −92.7547 77.8304i −0.433433 0.363694i
\(215\) 106.851i 0.496981i
\(216\) 63.5968 + 42.2782i 0.294430 + 0.195733i
\(217\) −44.4600 −0.204885
\(218\) −81.6343 + 97.2879i −0.374469 + 0.446275i
\(219\) −71.8292 1.51104i −0.327987 0.00689974i
\(220\) −2.65423 15.0529i −0.0120647 0.0684222i
\(221\) −70.5753 + 193.904i −0.319345 + 0.877394i
\(222\) 75.9799 + 223.255i 0.342252 + 1.00565i
\(223\) 7.39155 41.9196i 0.0331460 0.187980i −0.963739 0.266846i \(-0.914019\pi\)
0.996885 + 0.0788655i \(0.0251298\pi\)
\(224\) −62.9756 36.3590i −0.281141 0.162317i
\(225\) −178.853 + 56.7003i −0.794903 + 0.252001i
\(226\) 37.6208 + 65.1612i 0.166464 + 0.288324i
\(227\) −76.0581 208.968i −0.335058 0.920563i −0.986774 0.162101i \(-0.948173\pi\)
0.651716 0.758463i \(-0.274049\pi\)
\(228\) −4.74087 30.6423i −0.0207933 0.134396i
\(229\) −84.5044 + 70.9076i −0.369015 + 0.309640i −0.808372 0.588672i \(-0.799651\pi\)
0.439357 + 0.898313i \(0.355206\pi\)
\(230\) 64.5198 + 76.8917i 0.280521 + 0.334312i
\(231\) −90.6160 112.724i −0.392277 0.487983i
\(232\) 75.0417 27.3130i 0.323456 0.117728i
\(233\) 30.0900 17.3725i 0.129142 0.0745600i −0.434037 0.900895i \(-0.642911\pi\)
0.563179 + 0.826335i \(0.309578\pi\)
\(234\) −93.9157 59.6243i −0.401349 0.254805i
\(235\) −55.0541 + 95.3565i −0.234273 + 0.405772i
\(236\) −21.0119 3.70497i −0.0890337 0.0156990i
\(237\) −7.26405 + 36.6689i −0.0306500 + 0.154721i
\(238\) −403.320 146.797i −1.69462 0.616792i
\(239\) −43.8258 + 7.72767i −0.183371 + 0.0323333i −0.264580 0.964364i \(-0.585233\pi\)
0.0812083 + 0.996697i \(0.474122\pi\)
\(240\) 21.4301 11.7788i 0.0892922 0.0490784i
\(241\) −29.2796 24.5685i −0.121492 0.101944i 0.580017 0.814604i \(-0.303046\pi\)
−0.701509 + 0.712660i \(0.747490\pi\)
\(242\) 151.229i 0.624912i
\(243\) −142.920 + 196.527i −0.588148 + 0.808754i
\(244\) 189.112 0.775050
\(245\) −152.271 + 181.469i −0.621512 + 0.740690i
\(246\) −32.3123 58.7884i −0.131351 0.238977i
\(247\) 7.84326 + 44.4813i 0.0317541 + 0.180086i
\(248\) 3.34580 9.19250i 0.0134911 0.0370665i
\(249\) −213.551 42.3041i −0.857634 0.169896i
\(250\) −22.9438 + 130.121i −0.0917751 + 0.520483i
\(251\) 246.971 + 142.589i 0.983946 + 0.568082i 0.903459 0.428674i \(-0.141019\pi\)
0.0804871 + 0.996756i \(0.474352\pi\)
\(252\) 124.018 195.345i 0.492137 0.775177i
\(253\) 65.3109 + 113.122i 0.258146 + 0.447122i
\(254\) 31.5138 + 86.5834i 0.124070 + 0.340880i
\(255\) 112.493 90.4304i 0.441150 0.354629i
\(256\) 12.2567 10.2846i 0.0478778 0.0401742i
\(257\) 57.4488 + 68.4649i 0.223536 + 0.266400i 0.866143 0.499796i \(-0.166592\pi\)
−0.642607 + 0.766196i \(0.722147\pi\)
\(258\) 219.842 34.0132i 0.852102 0.131834i
\(259\) 671.453 244.389i 2.59248 0.943586i
\(260\) −30.8493 + 17.8109i −0.118651 + 0.0685033i
\(261\) 76.7906 + 242.225i 0.294217 + 0.928065i
\(262\) 172.715 299.151i 0.659216 1.14180i
\(263\) 287.776 + 50.7427i 1.09421 + 0.192938i 0.691489 0.722387i \(-0.256955\pi\)
0.402717 + 0.915325i \(0.368066\pi\)
\(264\) 30.1259 10.2527i 0.114113 0.0388359i
\(265\) 0.549045 + 0.199836i 0.00207187 + 0.000754099i
\(266\) −92.5211 + 16.3140i −0.347824 + 0.0613307i
\(267\) 4.12316 195.999i 0.0154425 0.734079i
\(268\) −32.5363 27.3012i −0.121404 0.101870i
\(269\) 269.220i 1.00082i 0.865790 + 0.500408i \(0.166817\pi\)
−0.865790 + 0.500408i \(0.833183\pi\)
\(270\) 34.5791 + 69.7062i 0.128071 + 0.258171i
\(271\) −196.043 −0.723407 −0.361704 0.932293i \(-0.617805\pi\)
−0.361704 + 0.932293i \(0.617805\pi\)
\(272\) 60.7029 72.3429i 0.223173 0.265967i
\(273\) −174.632 + 288.293i −0.639677 + 1.05602i
\(274\) −49.0959 278.437i −0.179182 1.01619i
\(275\) −26.7407 + 73.4695i −0.0972389 + 0.267162i
\(276\) −137.664 + 157.224i −0.498783 + 0.569652i
\(277\) 5.99182 33.9813i 0.0216311 0.122676i −0.972080 0.234649i \(-0.924606\pi\)
0.993711 + 0.111973i \(0.0357170\pi\)
\(278\) −212.346 122.598i −0.763833 0.440999i
\(279\) 28.7768 + 11.8670i 0.103142 + 0.0425339i
\(280\) −37.0466 64.1666i −0.132309 0.229166i
\(281\) −144.516 397.056i −0.514294 1.41301i −0.876722 0.480998i \(-0.840274\pi\)
0.362428 0.932012i \(-0.381948\pi\)
\(282\) −213.718 82.9178i −0.757866 0.294035i
\(283\) 28.7015 24.0834i 0.101419 0.0851004i −0.590668 0.806914i \(-0.701136\pi\)
0.692087 + 0.721814i \(0.256691\pi\)
\(284\) 132.723 + 158.173i 0.467335 + 0.556948i
\(285\) 11.4275 29.4541i 0.0400967 0.103348i
\(286\) −43.5604 + 15.8547i −0.152309 + 0.0554359i
\(287\) −176.025 + 101.628i −0.613329 + 0.354106i
\(288\) 31.0563 + 40.3424i 0.107834 + 0.140078i
\(289\) 134.198 232.438i 0.464354 0.804285i
\(290\) 80.1318 + 14.1294i 0.276317 + 0.0487221i
\(291\) 76.1988 + 66.7191i 0.261852 + 0.229275i
\(292\) −45.0082 16.3816i −0.154138 0.0561015i
\(293\) 144.314 25.4465i 0.492540 0.0868481i 0.0781389 0.996942i \(-0.475102\pi\)
0.414401 + 0.910094i \(0.363991\pi\)
\(294\) −421.838 255.526i −1.43482 0.869136i
\(295\) −16.6535 13.9739i −0.0564525 0.0473693i
\(296\) 157.220i 0.531149i
\(297\) 28.5636 + 97.1473i 0.0961739 + 0.327095i
\(298\) −113.129 −0.379627
\(299\) 195.673 233.194i 0.654424 0.779912i
\(300\) −125.056 2.63076i −0.416853 0.00876919i
\(301\) −117.044 663.789i −0.388850 2.20528i
\(302\) 130.975 359.852i 0.433693 1.19156i
\(303\) −118.452 348.054i −0.390932 1.14869i
\(304\) 3.58953 20.3572i 0.0118077 0.0669646i
\(305\) 166.873 + 96.3442i 0.547125 + 0.315883i
\(306\) 221.867 + 202.665i 0.725056 + 0.662305i
\(307\) −44.2657 76.6704i −0.144188 0.249741i 0.784882 0.619646i \(-0.212724\pi\)
−0.929070 + 0.369905i \(0.879390\pi\)
\(308\) −32.9777 90.6055i −0.107070 0.294174i
\(309\) 57.2377 + 369.952i 0.185235 + 1.19726i
\(310\) 7.63551 6.40695i 0.0246307 0.0206676i
\(311\) 347.817 + 414.512i 1.11838 + 1.33284i 0.936962 + 0.349432i \(0.113625\pi\)
0.181421 + 0.983405i \(0.441930\pi\)
\(312\) −46.4654 57.8019i −0.148928 0.185263i
\(313\) −195.682 + 71.2223i −0.625181 + 0.227547i −0.635132 0.772403i \(-0.719055\pi\)
0.00995150 + 0.999950i \(0.496832\pi\)
\(314\) 2.51244 1.45056i 0.00800139 0.00461960i
\(315\) 208.954 109.191i 0.663345 0.346637i
\(316\) −12.4605 + 21.5822i −0.0394319 + 0.0682981i
\(317\) −472.889 83.3831i −1.49176 0.263038i −0.632496 0.774564i \(-0.717969\pi\)
−0.859268 + 0.511526i \(0.829080\pi\)
\(318\) −0.236382 + 1.19326i −0.000743340 + 0.00375238i
\(319\) 99.5015 + 36.2156i 0.311917 + 0.113529i
\(320\) 16.0549 2.83091i 0.0501716 0.00884660i
\(321\) 225.095 123.721i 0.701230 0.385423i
\(322\) 485.043 + 406.999i 1.50634 + 1.26397i
\(323\) 122.008i 0.377735i
\(324\) −132.411 + 93.3346i −0.408676 + 0.288070i
\(325\) 182.208 0.560641
\(326\) 34.0920 40.6293i 0.104577 0.124630i
\(327\) −129.767 236.096i −0.396842 0.722006i
\(328\) −7.76593 44.0428i −0.0236766 0.134277i
\(329\) −237.559 + 652.689i −0.722065 + 1.98386i
\(330\) 31.8065 + 6.30082i 0.0963833 + 0.0190934i
\(331\) 65.1675 369.583i 0.196881 1.11657i −0.712834 0.701333i \(-0.752589\pi\)
0.909715 0.415234i \(-0.136300\pi\)
\(332\) −125.690 72.5669i −0.378583 0.218575i
\(333\) −499.828 21.0387i −1.50099 0.0631793i
\(334\) 106.530 + 184.516i 0.318953 + 0.552444i
\(335\) −14.8014 40.6665i −0.0441833 0.121393i
\(336\) 120.228 96.6480i 0.357821 0.287643i
\(337\) −93.3224 + 78.3068i −0.276921 + 0.232364i −0.770661 0.637245i \(-0.780074\pi\)
0.493740 + 0.869610i \(0.335629\pi\)
\(338\) −84.1859 100.329i −0.249071 0.296831i
\(339\) −157.735 + 24.4042i −0.465295 + 0.0719888i
\(340\) 90.4199 32.9102i 0.265941 0.0967946i
\(341\) 11.2332 6.48552i 0.0329421 0.0190191i
\(342\) 64.2387 + 14.1359i 0.187832 + 0.0413329i
\(343\) −432.226 + 748.637i −1.26013 + 2.18261i
\(344\) 146.052 + 25.7530i 0.424571 + 0.0748633i
\(345\) −201.574 + 68.6011i −0.584272 + 0.198844i
\(346\) 187.411 + 68.2121i 0.541651 + 0.197145i
\(347\) 208.683 36.7964i 0.601392 0.106042i 0.135340 0.990799i \(-0.456787\pi\)
0.466051 + 0.884758i \(0.345676\pi\)
\(348\) −3.56290 + 169.366i −0.0102382 + 0.486685i
\(349\) 108.035 + 90.6521i 0.309556 + 0.259748i 0.784308 0.620371i \(-0.213018\pi\)
−0.474753 + 0.880119i \(0.657462\pi\)
\(350\) 378.993i 1.08284i
\(351\) 189.980 139.986i 0.541253 0.398821i
\(352\) 21.2152 0.0602704
\(353\) 49.0352 58.4379i 0.138910 0.165546i −0.692104 0.721797i \(-0.743316\pi\)
0.831014 + 0.556251i \(0.187761\pi\)
\(354\) 23.4497 38.7123i 0.0662422 0.109357i
\(355\) 36.5330 + 207.189i 0.102910 + 0.583631i
\(356\) 44.7003 122.813i 0.125563 0.344980i
\(357\) 599.785 685.005i 1.68007 1.91878i
\(358\) 44.2208 250.789i 0.123522 0.700527i
\(359\) 144.922 + 83.6709i 0.403683 + 0.233067i 0.688072 0.725642i \(-0.258457\pi\)
−0.284389 + 0.958709i \(0.591791\pi\)
\(360\) 6.85152 + 51.4200i 0.0190320 + 0.142833i
\(361\) 167.147 + 289.507i 0.463011 + 0.801958i
\(362\) 22.0283 + 60.5223i 0.0608517 + 0.167189i
\(363\) −299.083 116.038i −0.823921 0.319663i
\(364\) −172.135 + 144.439i −0.472899 + 0.396809i
\(365\) −31.3696 37.3849i −0.0859442 0.102424i
\(366\) −145.105 + 374.005i −0.396463 + 1.02187i
\(367\) −93.9774 + 34.2050i −0.256069 + 0.0932016i −0.466865 0.884329i \(-0.654617\pi\)
0.210796 + 0.977530i \(0.432394\pi\)
\(368\) −120.652 + 69.6585i −0.327859 + 0.189289i
\(369\) 141.058 18.7955i 0.382272 0.0509363i
\(370\) −80.0966 + 138.731i −0.216477 + 0.374950i
\(371\) 3.62973 + 0.640020i 0.00978365 + 0.00172512i
\(372\) 15.6127 + 13.6703i 0.0419696 + 0.0367482i
\(373\) −481.489 175.248i −1.29086 0.469833i −0.396848 0.917884i \(-0.629896\pi\)
−0.894008 + 0.448051i \(0.852118\pi\)
\(374\) 123.316 21.7440i 0.329723 0.0581390i
\(375\) −239.733 145.217i −0.639289 0.387246i
\(376\) −117.072 98.2349i −0.311361 0.261263i
\(377\) 246.769i 0.654560i
\(378\) 291.171 + 395.158i 0.770295 + 1.04539i
\(379\) −207.305 −0.546979 −0.273489 0.961875i \(-0.588178\pi\)
−0.273489 + 0.961875i \(0.588178\pi\)
\(380\) 13.5385 16.1346i 0.0356277 0.0424594i
\(381\) −195.416 4.11088i −0.512902 0.0107897i
\(382\) 11.0465 + 62.6476i 0.0289174 + 0.163999i
\(383\) 206.290 566.776i 0.538615 1.47983i −0.309956 0.950751i \(-0.600314\pi\)
0.848571 0.529082i \(-0.177463\pi\)
\(384\) 10.9352 + 32.1313i 0.0284770 + 0.0836753i
\(385\) 17.0599 96.7512i 0.0443113 0.251302i
\(386\) −308.155 177.913i −0.798329 0.460916i
\(387\) −101.417 + 460.878i −0.262060 + 1.19090i
\(388\) 33.7601 + 58.4742i 0.0870105 + 0.150707i
\(389\) 14.8087 + 40.6865i 0.0380686 + 0.104593i 0.957271 0.289194i \(-0.0933872\pi\)
−0.919202 + 0.393786i \(0.871165\pi\)
\(390\) −11.5537 74.6766i −0.0296249 0.191479i
\(391\) −629.912 + 528.559i −1.61103 + 1.35181i
\(392\) −211.346 251.873i −0.539149 0.642532i
\(393\) 459.103 + 571.114i 1.16820 + 1.45322i
\(394\) −71.3909 + 25.9842i −0.181195 + 0.0659497i
\(395\) −21.9904 + 12.6961i −0.0556718 + 0.0321421i
\(396\) −2.83895 + 67.4466i −0.00716907 + 0.170320i
\(397\) −65.2019 + 112.933i −0.164236 + 0.284466i −0.936384 0.350978i \(-0.885849\pi\)
0.772147 + 0.635443i \(0.219183\pi\)
\(398\) −101.233 17.8502i −0.254355 0.0448497i
\(399\) 38.7274 195.496i 0.0970611 0.489964i
\(400\) −78.3601 28.5208i −0.195900 0.0713019i
\(401\) 65.9004 11.6200i 0.164340 0.0289776i −0.0908725 0.995863i \(-0.528966\pi\)
0.255213 + 0.966885i \(0.417854\pi\)
\(402\) 78.9584 43.3986i 0.196414 0.107957i
\(403\) −23.1566 19.4307i −0.0574607 0.0482152i
\(404\) 245.105i 0.606696i
\(405\) −164.390 + 14.9012i −0.405900 + 0.0367932i
\(406\) 513.280 1.26424
\(407\) −133.999 + 159.694i −0.329236 + 0.392369i
\(408\) 96.4945 + 175.560i 0.236506 + 0.430294i
\(409\) −95.6784 542.619i −0.233933 1.32670i −0.844850 0.535003i \(-0.820310\pi\)
0.610917 0.791694i \(-0.290801\pi\)
\(410\) 15.5851 42.8198i 0.0380126 0.104439i
\(411\) 588.332 + 116.548i 1.43146 + 0.283571i
\(412\) −43.3373 + 245.778i −0.105188 + 0.596548i
\(413\) −118.763 68.5680i −0.287563 0.166024i
\(414\) −205.311 392.894i −0.495919 0.949020i
\(415\) −73.9393 128.067i −0.178167 0.308594i
\(416\) −16.9101 46.4600i −0.0406492 0.111683i
\(417\) 405.393 325.884i 0.972165 0.781498i
\(418\) 20.9966 17.6182i 0.0502310 0.0421488i
\(419\) −38.0213 45.3120i −0.0907430 0.108143i 0.718762 0.695256i \(-0.244709\pi\)
−0.809505 + 0.587113i \(0.800265\pi\)
\(420\) 155.327 24.0317i 0.369827 0.0572183i
\(421\) −124.731 + 45.3982i −0.296272 + 0.107834i −0.485880 0.874026i \(-0.661501\pi\)
0.189608 + 0.981860i \(0.439278\pi\)
\(422\) −126.156 + 72.8363i −0.298948 + 0.172598i
\(423\) 327.971 359.045i 0.775346 0.848806i
\(424\) −0.405482 + 0.702315i −0.000956325 + 0.00165640i
\(425\) −484.711 85.4677i −1.14050 0.201100i
\(426\) −414.656 + 141.119i −0.973370 + 0.331265i
\(427\) 1142.20 + 415.727i 2.67494 + 0.973599i
\(428\) 168.635 29.7349i 0.394008 0.0694742i
\(429\) 2.06820 98.3141i 0.00482097 0.229170i
\(430\) 115.757 + 97.1316i 0.269202 + 0.225887i
\(431\) 225.339i 0.522829i 0.965227 + 0.261415i \(0.0841890\pi\)
−0.965227 + 0.261415i \(0.915811\pi\)
\(432\) −103.614 + 30.4650i −0.239847 + 0.0705209i
\(433\) −136.913 −0.316196 −0.158098 0.987423i \(-0.550536\pi\)
−0.158098 + 0.987423i \(0.550536\pi\)
\(434\) 40.4159 48.1658i 0.0931242 0.110981i
\(435\) −89.4286 + 147.634i −0.205583 + 0.339389i
\(436\) −31.1882 176.877i −0.0715326 0.405681i
\(437\) −61.5606 + 169.136i −0.140871 + 0.387040i
\(438\) 66.9325 76.4426i 0.152814 0.174526i
\(439\) 57.0136 323.340i 0.129872 0.736538i −0.848423 0.529319i \(-0.822447\pi\)
0.978294 0.207219i \(-0.0664414\pi\)
\(440\) 18.7203 + 10.8082i 0.0425462 + 0.0245641i
\(441\) 829.027 638.200i 1.87988 1.44717i
\(442\) −145.910 252.724i −0.330114 0.571774i
\(443\) −38.7141 106.366i −0.0873907 0.240104i 0.888297 0.459270i \(-0.151889\pi\)
−0.975688 + 0.219165i \(0.929667\pi\)
\(444\) −310.932 120.635i −0.700298 0.271700i
\(445\) 102.011 85.5978i 0.229239 0.192355i
\(446\) 38.6944 + 46.1141i 0.0867587 + 0.103395i
\(447\) 86.8036 223.734i 0.194191 0.500522i
\(448\) 96.6368 35.1729i 0.215707 0.0785110i
\(449\) −450.020 + 259.819i −1.00227 + 0.578661i −0.908919 0.416972i \(-0.863091\pi\)
−0.0933515 + 0.995633i \(0.529758\pi\)
\(450\) 101.158 245.303i 0.224796 0.545118i
\(451\) 29.6497 51.3547i 0.0657421 0.113869i
\(452\) −104.791 18.4775i −0.231839 0.0408795i
\(453\) 611.177 + 535.142i 1.34918 + 1.18133i
\(454\) 295.525 + 107.562i 0.650937 + 0.236922i
\(455\) −225.478 + 39.7578i −0.495555 + 0.0873798i
\(456\) 37.5060 + 22.7191i 0.0822501 + 0.0498225i
\(457\) −203.183 170.491i −0.444601 0.373065i 0.392827 0.919613i \(-0.371497\pi\)
−0.837428 + 0.546548i \(0.815942\pi\)
\(458\) 156.006i 0.340624i
\(459\) −571.047 + 283.279i −1.24411 + 0.617166i
\(460\) −141.952 −0.308590
\(461\) 425.520 507.115i 0.923037 1.10003i −0.0716856 0.997427i \(-0.522838\pi\)
0.994722 0.102605i \(-0.0327177\pi\)
\(462\) 204.493 + 4.30185i 0.442626 + 0.00931136i
\(463\) 40.8741 + 231.808i 0.0882810 + 0.500666i 0.996600 + 0.0823887i \(0.0262549\pi\)
−0.908319 + 0.418277i \(0.862634\pi\)
\(464\) −38.6264 + 106.125i −0.0832465 + 0.228718i
\(465\) 6.81224 + 20.0167i 0.0146500 + 0.0430467i
\(466\) −8.53252 + 48.3903i −0.0183101 + 0.103842i
\(467\) −444.948 256.891i −0.952780 0.550088i −0.0588364 0.998268i \(-0.518739\pi\)
−0.893943 + 0.448180i \(0.852072\pi\)
\(468\) 149.967 47.5428i 0.320442 0.101587i
\(469\) −136.497 236.419i −0.291037 0.504092i
\(470\) −53.2582 146.326i −0.113315 0.311331i
\(471\) 0.940958 + 6.08182i 0.00199779 + 0.0129126i
\(472\) 23.1145 19.3953i 0.0489713 0.0410918i
\(473\) 126.401 + 150.639i 0.267233 + 0.318476i
\(474\) −33.1220 41.2030i −0.0698776 0.0869261i
\(475\) −101.238 + 36.8475i −0.213132 + 0.0775738i
\(476\) 525.666 303.493i 1.10434 0.637591i
\(477\) −2.17851 1.38307i −0.00456712 0.00289953i
\(478\) 31.4676 54.5034i 0.0658317 0.114024i
\(479\) 476.222 + 83.9707i 0.994200 + 0.175304i 0.647003 0.762488i \(-0.276022\pi\)
0.347197 + 0.937792i \(0.387133\pi\)
\(480\) −6.72024 + 33.9238i −0.0140005 + 0.0706745i
\(481\) 456.528 + 166.163i 0.949123 + 0.345452i
\(482\) 53.2326 9.38634i 0.110441 0.0194737i
\(483\) −1177.09 + 646.973i −2.43704 + 1.33949i
\(484\) −163.834 137.473i −0.338499 0.284035i
\(485\) 68.7970i 0.141850i
\(486\) −82.9881 333.483i −0.170757 0.686179i
\(487\) −420.969 −0.864413 −0.432206 0.901775i \(-0.642265\pi\)
−0.432206 + 0.901775i \(0.642265\pi\)
\(488\) −171.910 + 204.875i −0.352275 + 0.419825i
\(489\) 54.1933 + 98.5982i 0.110825 + 0.201632i
\(490\) −58.1746 329.925i −0.118724 0.673316i
\(491\) 231.119 634.994i 0.470711 1.29327i −0.446471 0.894798i \(-0.647319\pi\)
0.917182 0.398469i \(-0.130458\pi\)
\(492\) 93.0616 + 18.4354i 0.189150 + 0.0374702i
\(493\) −115.751 + 656.456i −0.234789 + 1.33155i
\(494\) −55.3187 31.9383i −0.111981 0.0646523i
\(495\) −36.8661 + 58.0687i −0.0744770 + 0.117311i
\(496\) 6.91724 + 11.9810i 0.0139460 + 0.0241553i
\(497\) 453.908 + 1247.10i 0.913296 + 2.50926i
\(498\) 239.956 192.894i 0.481840 0.387338i
\(499\) −4.02772 + 3.37966i −0.00807159 + 0.00677287i −0.646814 0.762647i \(-0.723899\pi\)
0.638743 + 0.769420i \(0.279455\pi\)
\(500\) −120.109 143.141i −0.240219 0.286282i
\(501\) −446.656 + 69.1051i −0.891529 + 0.137934i
\(502\) −378.979 + 137.937i −0.754939 + 0.274775i
\(503\) 99.8385 57.6418i 0.198486 0.114596i −0.397463 0.917618i \(-0.630109\pi\)
0.595949 + 0.803022i \(0.296776\pi\)
\(504\) 98.8889 + 311.931i 0.196208 + 0.618911i
\(505\) 124.870 216.282i 0.247268 0.428280i
\(506\) −181.921 32.0775i −0.359527 0.0633943i
\(507\) 263.015 89.5113i 0.518767 0.176551i
\(508\) −122.447 44.5672i −0.241038 0.0877308i
\(509\) −283.458 + 49.9813i −0.556893 + 0.0981952i −0.445009 0.895526i \(-0.646799\pi\)
−0.111884 + 0.993721i \(0.535688\pi\)
\(510\) −4.29304 + 204.074i −0.00841772 + 0.400146i
\(511\) −235.829 197.884i −0.461504 0.387248i
\(512\) 22.6274i 0.0441942i
\(513\) −77.2466 + 116.198i −0.150578 + 0.226506i
\(514\) −126.395 −0.245904
\(515\) −163.454 + 194.797i −0.317386 + 0.378246i
\(516\) −162.997 + 269.086i −0.315886 + 0.521484i
\(517\) −35.1881 199.561i −0.0680620 0.385999i
\(518\) −345.618 + 949.578i −0.667216 + 1.83316i
\(519\) −278.703 + 318.302i −0.536999 + 0.613298i
\(520\) 8.74783 49.6114i 0.0168227 0.0954066i
\(521\) 620.496 + 358.243i 1.19097 + 0.687607i 0.958527 0.285003i \(-0.0919945\pi\)
0.232444 + 0.972610i \(0.425328\pi\)
\(522\) −332.220 137.001i −0.636437 0.262454i
\(523\) 181.209 + 313.864i 0.346480 + 0.600122i 0.985622 0.168968i \(-0.0540434\pi\)
−0.639141 + 0.769089i \(0.720710\pi\)
\(524\) 167.081 + 459.050i 0.318856 + 0.876050i
\(525\) −749.530 290.801i −1.42768 0.553907i
\(526\) −316.572 + 265.635i −0.601848 + 0.505010i
\(527\) 52.4871 + 62.5517i 0.0995960 + 0.118694i
\(528\) −16.2784 + 41.9570i −0.0308303 + 0.0794641i
\(529\) 642.821 233.968i 1.21516 0.442283i
\(530\) −0.715596 + 0.413150i −0.00135018 + 0.000779528i
\(531\) 58.5679 + 76.0801i 0.110297 + 0.143277i
\(532\) 66.4315 115.063i 0.124871 0.216283i
\(533\) −136.097 23.9976i −0.255341 0.0450236i
\(534\) 208.588 + 182.638i 0.390613 + 0.342018i
\(535\) 163.953 + 59.6740i 0.306454 + 0.111540i
\(536\) 59.1536 10.4304i 0.110361 0.0194597i
\(537\) 462.051 + 279.885i 0.860430 + 0.521201i
\(538\) −291.659 244.731i −0.542118 0.454891i
\(539\) 435.967i 0.808845i
\(540\) −106.950 25.9043i −0.198055 0.0479710i
\(541\) 955.760 1.76665 0.883327 0.468757i \(-0.155298\pi\)
0.883327 + 0.468757i \(0.155298\pi\)
\(542\) 178.211 212.384i 0.328803 0.391852i
\(543\) −136.596 2.87353i −0.251559 0.00529195i
\(544\) 23.1914 + 131.525i 0.0426313 + 0.241774i
\(545\) 62.5904 171.966i 0.114845 0.315534i
\(546\) −153.575 451.257i −0.281274 0.826479i
\(547\) −140.379 + 796.129i −0.256635 + 1.45545i 0.535207 + 0.844721i \(0.320233\pi\)
−0.791842 + 0.610726i \(0.790878\pi\)
\(548\) 346.274 + 199.922i 0.631888 + 0.364821i
\(549\) −628.326 573.947i −1.14449 1.04544i
\(550\) −55.2849 95.7562i −0.100518 0.174102i
\(551\) 49.9035 + 137.109i 0.0905690 + 0.248836i
\(552\) −45.1867 292.061i −0.0818599 0.529096i
\(553\) −122.703 + 102.960i −0.221887 + 0.186185i
\(554\) 31.3669 + 37.3816i 0.0566189 + 0.0674758i
\(555\) −212.909 264.855i −0.383621 0.477215i
\(556\) 325.847 118.599i 0.586056 0.213307i
\(557\) 905.625 522.863i 1.62590 0.938713i 0.640599 0.767876i \(-0.278686\pi\)
0.985299 0.170837i \(-0.0546472\pi\)
\(558\) −39.0153 + 20.3878i −0.0699198 + 0.0365373i
\(559\) 229.140 396.882i 0.409910 0.709986i
\(560\) 103.192 + 18.1955i 0.184271 + 0.0324919i
\(561\) −51.6176 + 260.565i −0.0920100 + 0.464466i
\(562\) 561.522 + 204.377i 0.999149 + 0.363660i
\(563\) −794.540 + 140.099i −1.41126 + 0.248843i −0.826762 0.562552i \(-0.809820\pi\)
−0.584498 + 0.811395i \(0.698709\pi\)
\(564\) 284.107 156.156i 0.503736 0.276872i
\(565\) −83.0546 69.6911i −0.146999 0.123347i
\(566\) 52.9865i 0.0936157i
\(567\) −1004.91 + 272.643i −1.77234 + 0.480851i
\(568\) −292.008 −0.514098
\(569\) −449.679 + 535.906i −0.790296 + 0.941838i −0.999349 0.0360660i \(-0.988517\pi\)
0.209053 + 0.977904i \(0.432962\pi\)
\(570\) 21.5211 + 39.1550i 0.0377563 + 0.0686930i
\(571\) −165.128 936.488i −0.289191 1.64008i −0.689919 0.723886i \(-0.742354\pi\)
0.400728 0.916197i \(-0.368757\pi\)
\(572\) 22.4219 61.6037i 0.0391991 0.107699i
\(573\) −132.373 26.2230i −0.231018 0.0457643i
\(574\) 49.9149 283.081i 0.0869597 0.493173i
\(575\) 628.817 + 363.048i 1.09359 + 0.631387i
\(576\) −71.9363 3.02793i −0.124889 0.00525683i
\(577\) −493.211 854.266i −0.854785 1.48053i −0.876845 0.480774i \(-0.840356\pi\)
0.0220601 0.999757i \(-0.492977\pi\)
\(578\) 129.821 + 356.679i 0.224603 + 0.617092i
\(579\) 588.304 472.922i 1.01607 0.816791i
\(580\) −88.1500 + 73.9666i −0.151983 + 0.127529i
\(581\) −599.616 714.595i −1.03204 1.22994i
\(582\) −141.548 + 21.8998i −0.243209 + 0.0376285i
\(583\) −1.01045 + 0.367773i −0.00173319 + 0.000630828i
\(584\) 58.6613 33.8681i 0.100447 0.0579933i
\(585\) 156.552 + 34.4496i 0.267611 + 0.0588883i
\(586\) −103.620 + 179.475i −0.176826 + 0.306271i
\(587\) 401.070 + 70.7195i 0.683254 + 0.120476i 0.504492 0.863416i \(-0.331680\pi\)
0.178762 + 0.983892i \(0.442791\pi\)
\(588\) 660.292 224.716i 1.12294 0.382169i
\(589\) 16.7956 + 6.11310i 0.0285155 + 0.0103788i
\(590\) 30.2773 5.33871i 0.0513175 0.00904866i
\(591\) 3.38956 161.127i 0.00573530 0.272634i
\(592\) −170.324 142.919i −0.287710 0.241417i
\(593\) 1081.76i 1.82421i −0.409956 0.912105i \(-0.634456\pi\)
0.409956 0.912105i \(-0.365544\pi\)
\(594\) −131.210 57.3662i −0.220892 0.0965762i
\(595\) 618.465 1.03944
\(596\) 102.838 122.558i 0.172548 0.205634i
\(597\) 112.978 186.512i 0.189244 0.312415i
\(598\) 74.7564 + 423.964i 0.125011 + 0.708970i
\(599\) −164.606 + 452.252i −0.274802 + 0.755012i 0.723129 + 0.690713i \(0.242703\pi\)
−0.997931 + 0.0642990i \(0.979519\pi\)
\(600\) 116.531 133.088i 0.194218 0.221813i
\(601\) 37.6355 213.442i 0.0626215 0.355144i −0.937356 0.348374i \(-0.886734\pi\)
0.999977 0.00676998i \(-0.00215497\pi\)
\(602\) 825.514 + 476.611i 1.37129 + 0.791712i
\(603\) 25.2441 + 189.455i 0.0418642 + 0.314187i
\(604\) 270.784 + 469.011i 0.448318 + 0.776509i
\(605\) −74.5311 204.772i −0.123192 0.338467i
\(606\) 484.742 + 188.069i 0.799904 + 0.310345i
\(607\) −266.484 + 223.607i −0.439019 + 0.368381i −0.835342 0.549730i \(-0.814730\pi\)
0.396323 + 0.918111i \(0.370286\pi\)
\(608\) 18.7910 + 22.3942i 0.0309062 + 0.0368326i
\(609\) −393.839 + 1015.11i −0.646698 + 1.66684i
\(610\) −256.069 + 93.2014i −0.419785 + 0.152789i
\(611\) −408.981 + 236.125i −0.669363 + 0.386457i
\(612\) −421.243 + 56.1291i −0.688306 + 0.0917142i
\(613\) 552.987 957.801i 0.902099 1.56248i 0.0773349 0.997005i \(-0.475359\pi\)
0.824764 0.565477i \(-0.191308\pi\)
\(614\) 123.300 + 21.7411i 0.200815 + 0.0354090i
\(615\) 72.7259 + 63.6782i 0.118253 + 0.103542i
\(616\) 128.136 + 46.6375i 0.208012 + 0.0757103i
\(617\) 564.719 99.5753i 0.915266 0.161386i 0.303873 0.952713i \(-0.401720\pi\)
0.611394 + 0.791327i \(0.290609\pi\)
\(618\) −452.819 274.293i −0.732718 0.443839i
\(619\) 382.711 + 321.132i 0.618273 + 0.518792i 0.897260 0.441502i \(-0.145554\pi\)
−0.278987 + 0.960295i \(0.589999\pi\)
\(620\) 14.0961i 0.0227357i
\(621\) 934.557 104.573i 1.50492 0.168395i
\(622\) −765.241 −1.23029
\(623\) 539.962 643.502i 0.866713 1.03291i
\(624\) 104.859 + 2.20587i 0.168043 + 0.00353505i
\(625\) 57.4413 + 325.766i 0.0919061 + 0.521225i
\(626\) 100.724 276.736i 0.160900 0.442070i
\(627\) 18.7327 + 55.0431i 0.0298767 + 0.0877880i
\(628\) −0.712442 + 4.04046i −0.00113446 + 0.00643385i
\(629\) −1136.52 656.168i −1.80686 1.04319i
\(630\) −71.6552 + 325.629i −0.113738 + 0.516871i
\(631\) −50.5825 87.6115i −0.0801625 0.138846i 0.823157 0.567814i \(-0.192211\pi\)
−0.903320 + 0.428968i \(0.858877\pi\)
\(632\) −12.0540 33.1182i −0.0190728 0.0524021i
\(633\) −47.2480 305.385i −0.0746415 0.482440i
\(634\) 520.208 436.506i 0.820517 0.688495i
\(635\) −85.3430 101.708i −0.134398 0.160170i
\(636\) −1.07783 1.34080i −0.00169471 0.00210818i
\(637\) −954.744 + 347.498i −1.49881 + 0.545523i
\(638\) −129.685 + 74.8736i −0.203268 + 0.117357i
\(639\) 39.0756 928.340i 0.0611511 1.45280i
\(640\) −11.5277 + 19.9665i −0.0180120 + 0.0311977i
\(641\) −653.181 115.173i −1.01900 0.179678i −0.360899 0.932605i \(-0.617530\pi\)
−0.658104 + 0.752927i \(0.728641\pi\)
\(642\) −70.5872 + 356.324i −0.109949 + 0.555021i
\(643\) −363.283 132.224i −0.564981 0.205636i 0.0437094 0.999044i \(-0.486082\pi\)
−0.608690 + 0.793408i \(0.708305\pi\)
\(644\) −881.845 + 155.493i −1.36933 + 0.241449i
\(645\) −280.916 + 154.402i −0.435529 + 0.239383i
\(646\) 132.178 + 110.910i 0.204610 + 0.171688i
\(647\) 1077.93i 1.66604i 0.553245 + 0.833018i \(0.313389\pi\)
−0.553245 + 0.833018i \(0.686611\pi\)
\(648\) 19.2526 228.292i 0.0297108 0.352303i
\(649\) 40.0089 0.0616470
\(650\) −165.634 + 197.396i −0.254822 + 0.303685i
\(651\) 64.2459 + 116.888i 0.0986880 + 0.179551i
\(652\) 13.0248 + 73.8672i 0.0199767 + 0.113293i
\(653\) −145.722 + 400.367i −0.223157 + 0.613120i −0.999860 0.0167481i \(-0.994669\pi\)
0.776702 + 0.629868i \(0.216891\pi\)
\(654\) 373.738 + 74.0370i 0.571465 + 0.113206i
\(655\) −86.4332 + 490.187i −0.131959 + 0.748378i
\(656\) 54.7733 + 31.6234i 0.0834958 + 0.0482063i
\(657\) 99.8224 + 191.026i 0.151937 + 0.290755i
\(658\) −491.140 850.679i −0.746413 1.29283i
\(659\) 19.8338 + 54.4930i 0.0300969 + 0.0826904i 0.953831 0.300344i \(-0.0971014\pi\)
−0.923734 + 0.383034i \(0.874879\pi\)
\(660\) −35.7393 + 28.7299i −0.0541505 + 0.0435301i
\(661\) −124.607 + 104.558i −0.188514 + 0.158182i −0.732160 0.681133i \(-0.761488\pi\)
0.543646 + 0.839314i \(0.317043\pi\)
\(662\) 341.149 + 406.565i 0.515330 + 0.614147i
\(663\) 611.766 94.6503i 0.922725 0.142761i
\(664\) 192.872 70.1997i 0.290470 0.105722i
\(665\) 117.239 67.6878i 0.176299 0.101786i
\(666\) 477.156 522.364i 0.716450 0.784331i
\(667\) 491.684 851.622i 0.737158 1.27679i
\(668\) −296.736 52.3226i −0.444216 0.0783272i
\(669\) −120.890 + 41.1421i −0.180702 + 0.0614979i
\(670\) 57.5111 + 20.9323i 0.0858375 + 0.0312423i
\(671\) −349.231 + 61.5788i −0.520463 + 0.0917717i
\(672\) −4.58821 + 218.106i −0.00682769 + 0.324562i
\(673\) 846.960 + 710.683i 1.25848 + 1.05599i 0.995842 + 0.0910998i \(0.0290382\pi\)
0.262642 + 0.964893i \(0.415406\pi\)
\(674\) 172.285i 0.255615i
\(675\) 407.515 + 388.280i 0.603726 + 0.575230i
\(676\) 185.220 0.273993
\(677\) 228.197 271.955i 0.337071 0.401706i −0.570709 0.821153i \(-0.693331\pi\)
0.907780 + 0.419447i \(0.137776\pi\)
\(678\) 116.949 193.067i 0.172491 0.284759i
\(679\) 75.3600 + 427.388i 0.110987 + 0.629437i
\(680\) −46.5420 + 127.873i −0.0684441 + 0.188049i
\(681\) −439.481 + 501.924i −0.645347 + 0.737040i
\(682\) −3.18537 + 18.0651i −0.00467063 + 0.0264885i
\(683\) −698.995 403.565i −1.02342 0.590871i −0.108326 0.994115i \(-0.534549\pi\)
−0.915092 + 0.403244i \(0.867882\pi\)
\(684\) −73.7095 + 56.7430i −0.107762 + 0.0829575i
\(685\) 203.702 + 352.823i 0.297376 + 0.515070i
\(686\) −418.126 1148.79i −0.609513 1.67462i
\(687\) 308.531 + 119.703i 0.449099 + 0.174240i
\(688\) −160.667 + 134.815i −0.233527 + 0.195953i
\(689\) 1.61080 + 1.91968i 0.00233789 + 0.00278618i
\(690\) 108.919 280.736i 0.157854 0.406864i
\(691\) −1157.65 + 421.352i −1.67533 + 0.609771i −0.992658 0.120953i \(-0.961405\pi\)
−0.682673 + 0.730724i \(0.739183\pi\)
\(692\) −244.262 + 141.024i −0.352979 + 0.203793i
\(693\) −165.415 + 401.123i −0.238694 + 0.578821i
\(694\) −149.837 + 259.526i −0.215904 + 0.373957i
\(695\) 347.949 + 61.3528i 0.500646 + 0.0882774i
\(696\) −180.244 157.821i −0.258972 0.226754i
\(697\) 350.789 + 127.677i 0.503284 + 0.183180i
\(698\) −196.416 + 34.6334i −0.281398 + 0.0496181i
\(699\) −89.1540 54.0045i −0.127545 0.0772597i
\(700\) −410.582 344.520i −0.586546 0.492171i
\(701\) 912.288i 1.30141i 0.759331 + 0.650705i \(0.225526\pi\)
−0.759331 + 0.650705i \(0.774474\pi\)
\(702\) −21.0447 + 333.068i −0.0299782 + 0.474455i
\(703\) −287.257 −0.408615
\(704\) −19.2854 + 22.9835i −0.0273941 + 0.0326470i
\(705\) 330.251 + 6.94737i 0.468442 + 0.00985443i
\(706\) 18.7338 + 106.245i 0.0265351 + 0.150488i
\(707\) 538.817 1480.39i 0.762117 2.09390i
\(708\) 20.6222 + 60.5952i 0.0291275 + 0.0855865i
\(709\) 48.7199 276.304i 0.0687163 0.389710i −0.930980 0.365070i \(-0.881045\pi\)
0.999696 0.0246396i \(-0.00784383\pi\)
\(710\) −257.668 148.765i −0.362913 0.209528i
\(711\) 106.901 33.8900i 0.150353 0.0476652i
\(712\) 92.4153 + 160.068i 0.129797 + 0.224815i
\(713\) −41.2001 113.196i −0.0577842 0.158761i
\(714\) 196.873 + 1272.47i 0.275732 + 1.78218i
\(715\) 51.1695 42.9363i 0.0715657 0.0600507i
\(716\) 231.493 + 275.883i 0.323315 + 0.385312i
\(717\) 83.6458 + 104.053i 0.116661 + 0.145123i
\(718\) −222.385 + 80.9415i −0.309728 + 0.112732i
\(719\) 575.407 332.211i 0.800287 0.462046i −0.0432843 0.999063i \(-0.513782\pi\)
0.843572 + 0.537017i \(0.180449\pi\)
\(720\) −61.9342 39.3202i −0.0860197 0.0546114i
\(721\) −802.044 + 1389.18i −1.11241 + 1.92674i
\(722\) −465.580 82.0944i −0.644848 0.113704i
\(723\) −22.2820 + 112.480i −0.0308188 + 0.155573i
\(724\) −85.5914 31.1527i −0.118220 0.0430286i
\(725\) 579.660 102.210i 0.799530 0.140979i
\(726\) 397.588 218.529i 0.547642 0.301005i
\(727\) 182.224 + 152.904i 0.250652 + 0.210322i 0.759453 0.650562i \(-0.225467\pi\)
−0.508801 + 0.860884i \(0.669911\pi\)
\(728\) 317.783i 0.436515i
\(729\) 723.202 + 91.7566i 0.992047 + 0.125866i
\(730\) 69.0171 0.0945440
\(731\) −795.722 + 948.305i −1.08854 + 1.29727i
\(732\) −273.272 497.185i −0.373322 0.679215i
\(733\) 39.7563 + 225.469i 0.0542378 + 0.307598i 0.999843 0.0177186i \(-0.00564029\pi\)
−0.945605 + 0.325316i \(0.894529\pi\)
\(734\) 48.3731 132.904i 0.0659035 0.181068i
\(735\) 697.126 + 138.100i 0.948470 + 0.187890i
\(736\) 34.2128 194.031i 0.0464848 0.263629i
\(737\) 68.9743 + 39.8223i 0.0935879 + 0.0540330i
\(738\) −107.865 + 169.902i −0.146159 + 0.230219i
\(739\) 409.364 + 709.039i 0.553943 + 0.959457i 0.997985 + 0.0634509i \(0.0202106\pi\)
−0.444042 + 0.896006i \(0.646456\pi\)
\(740\) −77.4838 212.885i −0.104708 0.287682i
\(741\) 105.610 84.8969i 0.142523 0.114571i
\(742\) −3.99293 + 3.35047i −0.00538131 + 0.00451546i
\(743\) −376.831 449.090i −0.507175 0.604428i 0.450323 0.892866i \(-0.351309\pi\)
−0.957499 + 0.288437i \(0.906864\pi\)
\(744\) −29.0023 + 4.48713i −0.0389816 + 0.00603109i
\(745\) 153.183 55.7540i 0.205615 0.0748376i
\(746\) 627.547 362.314i 0.841216 0.485676i
\(747\) 197.367 + 622.567i 0.264213 + 0.833422i
\(748\) −88.5429 + 153.361i −0.118373 + 0.205028i
\(749\) 1083.89 + 191.119i 1.44712 + 0.255166i
\(750\) 375.248 127.707i 0.500331 0.170276i
\(751\) −565.095 205.678i −0.752456 0.273872i −0.0628174 0.998025i \(-0.520009\pi\)
−0.689639 + 0.724153i \(0.742231\pi\)
\(752\) 212.846 37.5304i 0.283039 0.0499075i
\(753\) 17.9935 855.342i 0.0238958 1.13591i
\(754\) 267.338 + 224.323i 0.354559 + 0.297510i
\(755\) 551.809i 0.730873i
\(756\) −692.780 43.7729i −0.916376 0.0579007i
\(757\) −1129.66 −1.49229 −0.746143 0.665785i \(-0.768097\pi\)
−0.746143 + 0.665785i \(0.768097\pi\)
\(758\) 188.448 224.584i 0.248612 0.296285i
\(759\) 203.027 335.170i 0.267493 0.441594i
\(760\) 5.17236 + 29.3339i 0.00680574 + 0.0385973i
\(761\) −341.118 + 937.215i −0.448250 + 1.23156i 0.485691 + 0.874131i \(0.338568\pi\)
−0.933941 + 0.357427i \(0.883654\pi\)
\(762\) 182.094 207.967i 0.238968 0.272922i
\(763\) 200.460 1136.86i 0.262726 1.48999i
\(764\) −77.9110 44.9819i −0.101978 0.0588769i
\(765\) −400.302 165.076i −0.523270 0.215786i
\(766\) 426.492 + 738.705i 0.556778 + 0