Properties

Label 54.21.d.a.35.9
Level $54$
Weight $21$
Character 54.35
Analytic conductor $136.897$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,21,Mod(17,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.17"); S:= CuspForms(chi, 21); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 21, names="a")
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 54.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(136.897433155\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 35.9
Character \(\chi\) \(=\) 54.35
Dual form 54.21.d.a.17.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-627.069 - 362.039i) q^{2} +(262144. + 454047. i) q^{4} +(1.42842e7 - 8.24698e6i) q^{5} +(-5.08606e6 + 8.80931e6i) q^{7} -3.79625e8i q^{8} -1.19429e10 q^{10} +(-2.97586e10 - 1.71811e10i) q^{11} +(6.84602e10 + 1.18577e11i) q^{13} +(6.37862e9 - 3.68270e9i) q^{14} +(-1.37439e11 + 2.38051e11i) q^{16} +2.59494e12i q^{17} -1.15951e13 q^{19} +(7.48903e12 + 4.32379e12i) q^{20} +(1.24405e13 + 2.15475e13i) q^{22} +(2.77990e13 - 1.60498e13i) q^{23} +(8.83415e13 - 1.53012e14i) q^{25} -9.91409e13i q^{26} -5.33312e12 q^{28} +(5.44840e14 + 3.14564e14i) q^{29} +(-8.32813e12 - 1.44248e13i) q^{31} +(1.72368e14 - 9.95164e13i) q^{32} +(9.39469e14 - 1.62721e15i) q^{34} +1.67778e14i q^{35} +1.18057e15 q^{37} +(7.27094e15 + 4.19788e15i) q^{38} +(-3.13076e15 - 5.42263e15i) q^{40} +(5.47886e15 - 3.16322e15i) q^{41} +(1.57849e16 - 2.73402e16i) q^{43} -1.80157e16i q^{44} -2.32425e16 q^{46} +(-7.73213e15 - 4.46415e15i) q^{47} +(3.98444e16 + 6.90125e16i) q^{49} +(-1.10793e17 + 6.39661e16i) q^{50} +(-3.58928e16 + 6.21682e16i) q^{52} +3.42729e16i q^{53} -5.66769e17 q^{55} +(3.34424e15 + 1.93080e15i) q^{56} +(-2.27768e17 - 3.94507e17i) q^{58} +(5.59623e17 - 3.23098e17i) q^{59} +(-2.60145e17 + 4.50584e17i) q^{61} +1.20604e16i q^{62} -1.44115e17 q^{64} +(1.95580e18 + 1.12918e18i) q^{65} +(8.36439e17 + 1.44876e18i) q^{67} +(-1.17822e18 + 6.80248e17i) q^{68} +(6.07423e16 - 1.05209e17i) q^{70} +3.29004e18i q^{71} +6.31809e18 q^{73} +(-7.40297e17 - 4.27411e17i) q^{74} +(-3.03959e18 - 5.26472e18i) q^{76} +(3.02708e17 - 1.74768e17i) q^{77} +(-1.46957e18 + 2.54537e18i) q^{79} +4.53382e18i q^{80} -4.58083e18 q^{82} +(-1.69299e19 - 9.77449e18i) q^{83} +(2.14004e19 + 3.70666e19i) q^{85} +(-1.97964e19 + 1.14295e19i) q^{86} +(-6.52238e18 + 1.12971e19i) q^{88} -5.21129e19i q^{89} -1.39277e18 q^{91} +(1.45747e19 + 8.41469e18i) q^{92} +(3.23239e18 + 5.59866e18i) q^{94} +(-1.65627e20 + 9.56247e19i) q^{95} +(-4.99196e18 + 8.64633e18i) q^{97} -5.77009e19i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 10485760 q^{4} - 29763918 q^{5} + 133479866 q^{7} + 35793208728 q^{11} + 39827158550 q^{13} - 187564400640 q^{14} - 5497558138880 q^{16} - 10560819523540 q^{19} - 15604865040384 q^{20} + 10829007458304 q^{22}+ \cdots - 66\!\cdots\!16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −627.069 362.039i −0.612372 0.353553i
\(3\) 0 0
\(4\) 262144. + 454047.i 0.250000 + 0.433013i
\(5\) 1.42842e7 8.24698e6i 1.46270 0.844490i 0.463565 0.886063i \(-0.346570\pi\)
0.999135 + 0.0415726i \(0.0132368\pi\)
\(6\) 0 0
\(7\) −5.08606e6 + 8.80931e6i −0.0180053 + 0.0311861i −0.874888 0.484326i \(-0.839065\pi\)
0.856882 + 0.515512i \(0.172398\pi\)
\(8\) 3.79625e8i 0.353553i
\(9\) 0 0
\(10\) −1.19429e10 −1.19429
\(11\) −2.97586e10 1.71811e10i −1.14732 0.662406i −0.199088 0.979982i \(-0.563798\pi\)
−0.948233 + 0.317575i \(0.897131\pi\)
\(12\) 0 0
\(13\) 6.84602e10 + 1.18577e11i 0.496597 + 0.860132i 0.999992 0.00392447i \(-0.00124920\pi\)
−0.503395 + 0.864056i \(0.667916\pi\)
\(14\) 6.37862e9 3.68270e9i 0.0220519 0.0127317i
\(15\) 0 0
\(16\) −1.37439e11 + 2.38051e11i −0.125000 + 0.216506i
\(17\) 2.59494e12i 1.28718i 0.765372 + 0.643588i \(0.222555\pi\)
−0.765372 + 0.643588i \(0.777445\pi\)
\(18\) 0 0
\(19\) −1.15951e13 −1.89121 −0.945604 0.325321i \(-0.894528\pi\)
−0.945604 + 0.325321i \(0.894528\pi\)
\(20\) 7.48903e12 + 4.32379e12i 0.731350 + 0.422245i
\(21\) 0 0
\(22\) 1.24405e13 + 2.15475e13i 0.468392 + 0.811279i
\(23\) 2.77990e13 1.60498e13i 0.671043 0.387427i −0.125428 0.992103i \(-0.540031\pi\)
0.796472 + 0.604676i \(0.206697\pi\)
\(24\) 0 0
\(25\) 8.83415e13 1.53012e14i 0.926328 1.60445i
\(26\) 9.91409e13i 0.702295i
\(27\) 0 0
\(28\) −5.33312e12 −0.0180053
\(29\) 5.44840e14 + 3.14564e14i 1.29506 + 0.747702i 0.979546 0.201220i \(-0.0644905\pi\)
0.315512 + 0.948922i \(0.397824\pi\)
\(30\) 0 0
\(31\) −8.32813e12 1.44248e13i −0.0101609 0.0175991i 0.860900 0.508774i \(-0.169901\pi\)
−0.871061 + 0.491175i \(0.836568\pi\)
\(32\) 1.72368e14 9.95164e13i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 9.39469e14 1.62721e15i 0.455086 0.788231i
\(35\) 1.67778e14i 0.0608213i
\(36\) 0 0
\(37\) 1.18057e15 0.245512 0.122756 0.992437i \(-0.460827\pi\)
0.122756 + 0.992437i \(0.460827\pi\)
\(38\) 7.27094e15 + 4.19788e15i 1.15812 + 0.668643i
\(39\) 0 0
\(40\) −3.13076e15 5.42263e15i −0.298572 0.517143i
\(41\) 5.47886e15 3.16322e15i 0.408180 0.235663i −0.281828 0.959465i \(-0.590941\pi\)
0.690007 + 0.723802i \(0.257607\pi\)
\(42\) 0 0
\(43\) 1.57849e16 2.73402e16i 0.730393 1.26508i −0.226323 0.974052i \(-0.572670\pi\)
0.956716 0.291025i \(-0.0939962\pi\)
\(44\) 1.80157e16i 0.662406i
\(45\) 0 0
\(46\) −2.32425e16 −0.547905
\(47\) −7.73213e15 4.46415e15i −0.147001 0.0848711i 0.424695 0.905336i \(-0.360381\pi\)
−0.571696 + 0.820465i \(0.693715\pi\)
\(48\) 0 0
\(49\) 3.98444e16 + 6.90125e16i 0.499352 + 0.864902i
\(50\) −1.10793e17 + 6.39661e16i −1.13452 + 0.655013i
\(51\) 0 0
\(52\) −3.58928e16 + 6.21682e16i −0.248299 + 0.430066i
\(53\) 3.42729e16i 0.195971i 0.995188 + 0.0979856i \(0.0312399\pi\)
−0.995188 + 0.0979856i \(0.968760\pi\)
\(54\) 0 0
\(55\) −5.66769e17 −2.23758
\(56\) 3.34424e15 + 1.93080e15i 0.0110260 + 0.00636585i
\(57\) 0 0
\(58\) −2.27768e17 3.94507e17i −0.528705 0.915744i
\(59\) 5.59623e17 3.23098e17i 1.09490 0.632142i 0.160025 0.987113i \(-0.448843\pi\)
0.934877 + 0.354971i \(0.115509\pi\)
\(60\) 0 0
\(61\) −2.60145e17 + 4.50584e17i −0.364684 + 0.631651i −0.988725 0.149740i \(-0.952156\pi\)
0.624042 + 0.781391i \(0.285490\pi\)
\(62\) 1.20604e16i 0.0143696i
\(63\) 0 0
\(64\) −1.44115e17 −0.125000
\(65\) 1.95580e18 + 1.12918e18i 1.45275 + 0.838744i
\(66\) 0 0
\(67\) 8.36439e17 + 1.44876e18i 0.458867 + 0.794780i 0.998901 0.0468625i \(-0.0149222\pi\)
−0.540035 + 0.841643i \(0.681589\pi\)
\(68\) −1.17822e18 + 6.80248e17i −0.557364 + 0.321794i
\(69\) 0 0
\(70\) 6.07423e16 1.05209e17i 0.0215036 0.0372453i
\(71\) 3.29004e18i 1.01069i 0.862918 + 0.505345i \(0.168635\pi\)
−0.862918 + 0.505345i \(0.831365\pi\)
\(72\) 0 0
\(73\) 6.31809e18 1.47013 0.735067 0.677995i \(-0.237151\pi\)
0.735067 + 0.677995i \(0.237151\pi\)
\(74\) −7.40297e17 4.27411e17i −0.150345 0.0868017i
\(75\) 0 0
\(76\) −3.03959e18 5.26472e18i −0.472802 0.818917i
\(77\) 3.02708e17 1.74768e17i 0.0413158 0.0238537i
\(78\) 0 0
\(79\) −1.46957e18 + 2.54537e18i −0.155210 + 0.268831i −0.933135 0.359525i \(-0.882939\pi\)
0.777926 + 0.628356i \(0.216272\pi\)
\(80\) 4.53382e18i 0.422245i
\(81\) 0 0
\(82\) −4.58083e18 −0.333277
\(83\) −1.69299e19 9.77449e18i −1.09112 0.629960i −0.157248 0.987559i \(-0.550262\pi\)
−0.933875 + 0.357599i \(0.883596\pi\)
\(84\) 0 0
\(85\) 2.14004e19 + 3.70666e19i 1.08701 + 1.88275i
\(86\) −1.97964e19 + 1.14295e19i −0.894545 + 0.516466i
\(87\) 0 0
\(88\) −6.52238e18 + 1.12971e19i −0.234196 + 0.405639i
\(89\) 5.21129e19i 1.67126i −0.549289 0.835632i \(-0.685101\pi\)
0.549289 0.835632i \(-0.314899\pi\)
\(90\) 0 0
\(91\) −1.39277e18 −0.0357656
\(92\) 1.45747e19 + 8.41469e18i 0.335522 + 0.193714i
\(93\) 0 0
\(94\) 3.23239e18 + 5.59866e18i 0.0600129 + 0.103945i
\(95\) −1.65627e20 + 9.56247e19i −2.76627 + 1.59711i
\(96\) 0 0
\(97\) −4.99196e18 + 8.64633e18i −0.0676946 + 0.117250i −0.897886 0.440228i \(-0.854898\pi\)
0.830192 + 0.557478i \(0.188231\pi\)
\(98\) 5.77009e19i 0.706190i
\(99\) 0 0
\(100\) 9.26328e19 0.926328
\(101\) 8.14501e19 + 4.70252e19i 0.737357 + 0.425713i 0.821107 0.570774i \(-0.193357\pi\)
−0.0837507 + 0.996487i \(0.526690\pi\)
\(102\) 0 0
\(103\) 2.36508e19 + 4.09644e19i 0.175984 + 0.304814i 0.940502 0.339790i \(-0.110356\pi\)
−0.764517 + 0.644603i \(0.777023\pi\)
\(104\) 4.50146e19 2.59892e19i 0.304103 0.175574i
\(105\) 0 0
\(106\) 1.24081e19 2.14915e19i 0.0692863 0.120007i
\(107\) 1.49808e20i 0.761546i −0.924669 0.380773i \(-0.875658\pi\)
0.924669 0.380773i \(-0.124342\pi\)
\(108\) 0 0
\(109\) −1.41604e19 −0.0598149 −0.0299074 0.999553i \(-0.509521\pi\)
−0.0299074 + 0.999553i \(0.509521\pi\)
\(110\) 3.55403e20 + 2.05192e20i 1.37023 + 0.791105i
\(111\) 0 0
\(112\) −1.39805e18 2.42149e18i −0.00450133 0.00779654i
\(113\) 1.23139e20 7.10944e19i 0.362754 0.209436i −0.307534 0.951537i \(-0.599504\pi\)
0.670288 + 0.742101i \(0.266171\pi\)
\(114\) 0 0
\(115\) 2.64724e20 4.58515e20i 0.654357 1.13338i
\(116\) 3.29844e20i 0.747702i
\(117\) 0 0
\(118\) −4.67896e20 −0.893984
\(119\) −2.28596e19 1.31980e19i −0.0401421 0.0231760i
\(120\) 0 0
\(121\) 2.54006e20 + 4.39951e20i 0.377564 + 0.653960i
\(122\) 3.26257e20 1.88365e20i 0.446645 0.257870i
\(123\) 0 0
\(124\) 4.36634e18 7.56272e18i 0.00508043 0.00879957i
\(125\) 1.34122e21i 1.44012i
\(126\) 0 0
\(127\) −6.25908e20 −0.573421 −0.286711 0.958017i \(-0.592562\pi\)
−0.286711 + 0.958017i \(0.592562\pi\)
\(128\) 9.03702e19 + 5.21753e19i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −8.17613e20 1.41615e21i −0.593081 1.02725i
\(131\) 6.15926e20 3.55605e20i 0.413824 0.238921i −0.278608 0.960405i \(-0.589873\pi\)
0.692431 + 0.721484i \(0.256540\pi\)
\(132\) 0 0
\(133\) 5.89735e19 1.02145e20i 0.0340518 0.0589795i
\(134\) 1.21129e21i 0.648935i
\(135\) 0 0
\(136\) 9.85104e20 0.455086
\(137\) −3.58323e20 2.06878e20i −0.153840 0.0888194i 0.421104 0.907012i \(-0.361643\pi\)
−0.574944 + 0.818193i \(0.694976\pi\)
\(138\) 0 0
\(139\) 2.76363e20 + 4.78674e20i 0.102644 + 0.177784i 0.912773 0.408467i \(-0.133937\pi\)
−0.810129 + 0.586251i \(0.800603\pi\)
\(140\) −7.61793e19 + 4.39821e19i −0.0263364 + 0.0152053i
\(141\) 0 0
\(142\) 1.19112e21 2.06308e21i 0.357333 0.618918i
\(143\) 4.70489e21i 1.31580i
\(144\) 0 0
\(145\) 1.03768e22 2.52571
\(146\) −3.96188e21 2.28739e21i −0.900270 0.519771i
\(147\) 0 0
\(148\) 3.09479e20 + 5.36033e20i 0.0613781 + 0.106310i
\(149\) 7.93211e21 4.57961e21i 1.47071 0.849113i 0.471248 0.882001i \(-0.343804\pi\)
0.999459 + 0.0328878i \(0.0104704\pi\)
\(150\) 0 0
\(151\) 5.11106e21 8.85262e21i 0.829357 1.43649i −0.0691858 0.997604i \(-0.522040\pi\)
0.898543 0.438885i \(-0.144627\pi\)
\(152\) 4.40180e21i 0.668643i
\(153\) 0 0
\(154\) −2.53092e20 −0.0337342
\(155\) −2.37921e20 1.37364e20i −0.0297246 0.0171615i
\(156\) 0 0
\(157\) 5.06508e21 + 8.77298e21i 0.556660 + 0.964163i 0.997772 + 0.0667115i \(0.0212507\pi\)
−0.441112 + 0.897452i \(0.645416\pi\)
\(158\) 1.84304e21 1.06408e21i 0.190092 0.109750i
\(159\) 0 0
\(160\) 1.64142e21 2.84302e21i 0.149286 0.258571i
\(161\) 3.26520e20i 0.0279030i
\(162\) 0 0
\(163\) 2.13313e21 0.161117 0.0805583 0.996750i \(-0.474330\pi\)
0.0805583 + 0.996750i \(0.474330\pi\)
\(164\) 2.87250e21 + 1.65844e21i 0.204090 + 0.117831i
\(165\) 0 0
\(166\) 7.07749e21 + 1.22586e22i 0.445449 + 0.771541i
\(167\) 1.07878e22 6.22833e21i 0.639392 0.369153i −0.144988 0.989433i \(-0.546314\pi\)
0.784380 + 0.620280i \(0.212981\pi\)
\(168\) 0 0
\(169\) 1.28890e20 2.23245e20i 0.00678194 0.0117467i
\(170\) 3.09911e22i 1.53726i
\(171\) 0 0
\(172\) 1.65516e22 0.730393
\(173\) −2.99802e22 1.73091e22i −1.24845 0.720796i −0.277654 0.960681i \(-0.589557\pi\)
−0.970801 + 0.239885i \(0.922890\pi\)
\(174\) 0 0
\(175\) 8.98621e20 + 1.55646e21i 0.0333577 + 0.0577772i
\(176\) 8.17997e21 4.72271e21i 0.286830 0.165602i
\(177\) 0 0
\(178\) −1.88669e22 + 3.26784e22i −0.590881 + 1.02344i
\(179\) 1.65998e22i 0.491556i 0.969326 + 0.245778i \(0.0790434\pi\)
−0.969326 + 0.245778i \(0.920957\pi\)
\(180\) 0 0
\(181\) −3.19946e22 −0.847795 −0.423898 0.905710i \(-0.639338\pi\)
−0.423898 + 0.905710i \(0.639338\pi\)
\(182\) 8.73364e20 + 5.04237e20i 0.0219019 + 0.0126451i
\(183\) 0 0
\(184\) −6.09289e21 1.05532e22i −0.136976 0.237250i
\(185\) 1.68634e22 9.73611e21i 0.359111 0.207333i
\(186\) 0 0
\(187\) 4.45839e22 7.72217e22i 0.852634 1.47680i
\(188\) 4.68100e21i 0.0848711i
\(189\) 0 0
\(190\) 1.38479e23 2.25865
\(191\) 4.19498e22 + 2.42197e22i 0.649227 + 0.374831i 0.788160 0.615471i \(-0.211034\pi\)
−0.138933 + 0.990302i \(0.544367\pi\)
\(192\) 0 0
\(193\) 4.66854e21 + 8.08614e21i 0.0651040 + 0.112763i 0.896740 0.442558i \(-0.145929\pi\)
−0.831636 + 0.555321i \(0.812595\pi\)
\(194\) 6.26061e21 3.61457e21i 0.0829086 0.0478673i
\(195\) 0 0
\(196\) −2.08899e22 + 3.61824e22i −0.249676 + 0.432451i
\(197\) 1.37214e23i 1.55861i −0.626645 0.779305i \(-0.715572\pi\)
0.626645 0.779305i \(-0.284428\pi\)
\(198\) 0 0
\(199\) 1.43381e23 1.47218 0.736091 0.676882i \(-0.236669\pi\)
0.736091 + 0.676882i \(0.236669\pi\)
\(200\) −5.80872e22 3.35367e22i −0.567258 0.327506i
\(201\) 0 0
\(202\) −3.40499e22 5.89761e22i −0.301025 0.521390i
\(203\) −5.54218e21 + 3.19978e21i −0.0466359 + 0.0269252i
\(204\) 0 0
\(205\) 5.21740e22 9.03680e22i 0.398030 0.689408i
\(206\) 3.42501e22i 0.248880i
\(207\) 0 0
\(208\) −3.76364e22 −0.248299
\(209\) 3.45054e23 + 1.99217e23i 2.16982 + 1.25275i
\(210\) 0 0
\(211\) 7.18868e22 + 1.24512e23i 0.410984 + 0.711845i 0.994998 0.0998987i \(-0.0318519\pi\)
−0.584014 + 0.811744i \(0.698519\pi\)
\(212\) −1.55615e22 + 8.98444e21i −0.0848580 + 0.0489928i
\(213\) 0 0
\(214\) −5.42361e22 + 9.39397e22i −0.269247 + 0.466350i
\(215\) 5.20710e23i 2.46724i
\(216\) 0 0
\(217\) 1.69430e20 0.000731799
\(218\) 8.87952e21 + 5.12659e21i 0.0366290 + 0.0211477i
\(219\) 0 0
\(220\) −1.48575e23 2.57340e23i −0.559396 0.968902i
\(221\) −3.07699e23 + 1.77650e23i −1.10714 + 0.639208i
\(222\) 0 0
\(223\) −1.76076e22 + 3.04973e22i −0.0578965 + 0.100280i −0.893521 0.449021i \(-0.851773\pi\)
0.835624 + 0.549301i \(0.185106\pi\)
\(224\) 2.02459e21i 0.00636585i
\(225\) 0 0
\(226\) −1.02956e23 −0.296187
\(227\) −4.82205e23 2.78401e23i −1.32731 0.766324i −0.342429 0.939544i \(-0.611250\pi\)
−0.984883 + 0.173220i \(0.944583\pi\)
\(228\) 0 0
\(229\) 2.55636e23 + 4.42775e23i 0.644567 + 1.11642i 0.984401 + 0.175937i \(0.0562956\pi\)
−0.339835 + 0.940485i \(0.610371\pi\)
\(230\) −3.32000e23 + 1.91681e23i −0.801420 + 0.462700i
\(231\) 0 0
\(232\) 1.19416e23 2.06835e23i 0.264353 0.457872i
\(233\) 3.15530e23i 0.669086i 0.942381 + 0.334543i \(0.108582\pi\)
−0.942381 + 0.334543i \(0.891418\pi\)
\(234\) 0 0
\(235\) −1.47263e23 −0.286691
\(236\) 2.93404e23 + 1.69397e23i 0.547451 + 0.316071i
\(237\) 0 0
\(238\) 9.55639e21 + 1.65521e22i 0.0163879 + 0.0283847i
\(239\) 5.02829e23 2.90308e23i 0.826877 0.477398i −0.0259049 0.999664i \(-0.508247\pi\)
0.852782 + 0.522267i \(0.174913\pi\)
\(240\) 0 0
\(241\) 1.82221e23 3.15617e23i 0.275695 0.477518i −0.694615 0.719382i \(-0.744425\pi\)
0.970310 + 0.241864i \(0.0777586\pi\)
\(242\) 3.67840e23i 0.533956i
\(243\) 0 0
\(244\) −2.72781e23 −0.364684
\(245\) 1.13829e24 + 6.57192e23i 1.46080 + 0.843395i
\(246\) 0 0
\(247\) −7.93804e23 1.37491e24i −0.939169 1.62669i
\(248\) −5.47600e21 + 3.16157e21i −0.00622223 + 0.00359241i
\(249\) 0 0
\(250\) −4.85572e23 + 8.41036e23i −0.509159 + 0.881890i
\(251\) 7.60101e23i 0.765833i 0.923783 + 0.382916i \(0.125080\pi\)
−0.923783 + 0.382916i \(0.874920\pi\)
\(252\) 0 0
\(253\) −1.10301e24 −1.02654
\(254\) 3.92488e23 + 2.26603e23i 0.351147 + 0.202735i
\(255\) 0 0
\(256\) −3.77789e22 6.54350e22i −0.0312500 0.0541266i
\(257\) −6.02580e23 + 3.47899e23i −0.479384 + 0.276772i −0.720160 0.693808i \(-0.755931\pi\)
0.240776 + 0.970581i \(0.422598\pi\)
\(258\) 0 0
\(259\) −6.00443e21 + 1.04000e22i −0.00442053 + 0.00765658i
\(260\) 1.18403e24i 0.838744i
\(261\) 0 0
\(262\) −5.14971e23 −0.337886
\(263\) −5.94105e23 3.43007e23i −0.375237 0.216643i 0.300507 0.953780i \(-0.402844\pi\)
−0.675744 + 0.737136i \(0.736178\pi\)
\(264\) 0 0
\(265\) 2.82648e23 + 4.89560e23i 0.165496 + 0.286647i
\(266\) −7.39609e22 + 4.27013e22i −0.0417048 + 0.0240783i
\(267\) 0 0
\(268\) −4.38535e23 + 7.59565e23i −0.229433 + 0.397390i
\(269\) 2.19375e24i 1.10577i 0.833257 + 0.552886i \(0.186473\pi\)
−0.833257 + 0.552886i \(0.813527\pi\)
\(270\) 0 0
\(271\) −6.09570e23 −0.285319 −0.142660 0.989772i \(-0.545565\pi\)
−0.142660 + 0.989772i \(0.545565\pi\)
\(272\) −6.17729e23 3.56646e23i −0.278682 0.160897i
\(273\) 0 0
\(274\) 1.49795e23 + 2.59453e23i 0.0628048 + 0.108781i
\(275\) −5.25783e24 + 3.03561e24i −2.12559 + 1.22721i
\(276\) 0 0
\(277\) −2.47319e24 + 4.28369e24i −0.929950 + 1.61072i −0.146550 + 0.989203i \(0.546817\pi\)
−0.783400 + 0.621518i \(0.786516\pi\)
\(278\) 4.00216e23i 0.145160i
\(279\) 0 0
\(280\) 6.36929e22 0.0215036
\(281\) 2.08963e24 + 1.20645e24i 0.680780 + 0.393049i 0.800149 0.599801i \(-0.204754\pi\)
−0.119369 + 0.992850i \(0.538087\pi\)
\(282\) 0 0
\(283\) 6.33454e23 + 1.09717e24i 0.192243 + 0.332975i 0.945993 0.324186i \(-0.105090\pi\)
−0.753750 + 0.657161i \(0.771757\pi\)
\(284\) −1.49383e24 + 8.62464e23i −0.437641 + 0.252672i
\(285\) 0 0
\(286\) −1.70335e24 + 2.95029e24i −0.465204 + 0.805758i
\(287\) 6.43533e22i 0.0169727i
\(288\) 0 0
\(289\) −2.66948e24 −0.656823
\(290\) −6.50697e24 3.75680e24i −1.54667 0.892973i
\(291\) 0 0
\(292\) 1.65625e24 + 2.86871e24i 0.367533 + 0.636587i
\(293\) 2.75361e24 1.58979e24i 0.590508 0.340930i −0.174791 0.984606i \(-0.555925\pi\)
0.765298 + 0.643676i \(0.222592\pi\)
\(294\) 0 0
\(295\) 5.32917e24 9.23039e24i 1.06768 1.84927i
\(296\) 4.48173e23i 0.0868017i
\(297\) 0 0
\(298\) −6.63198e24 −1.20083
\(299\) 3.80625e24 + 2.19754e24i 0.666477 + 0.384791i
\(300\) 0 0
\(301\) 1.60566e23 + 2.78108e23i 0.0263019 + 0.0455563i
\(302\) −6.40998e24 + 3.70080e24i −1.01575 + 0.586444i
\(303\) 0 0
\(304\) 1.59362e24 2.76023e24i 0.236401 0.409458i
\(305\) 8.58162e24i 1.23189i
\(306\) 0 0
\(307\) 9.57726e24 1.28783 0.643913 0.765099i \(-0.277310\pi\)
0.643913 + 0.765099i \(0.277310\pi\)
\(308\) 1.58706e23 + 9.16289e22i 0.0206579 + 0.0119268i
\(309\) 0 0
\(310\) 9.94620e22 + 1.72273e23i 0.0121350 + 0.0210185i
\(311\) 1.03734e25 5.98907e24i 1.22551 0.707547i 0.259421 0.965764i \(-0.416468\pi\)
0.966087 + 0.258217i \(0.0831350\pi\)
\(312\) 0 0
\(313\) −2.01007e24 + 3.48155e24i −0.222725 + 0.385771i −0.955634 0.294555i \(-0.904828\pi\)
0.732910 + 0.680326i \(0.238162\pi\)
\(314\) 7.33502e24i 0.787236i
\(315\) 0 0
\(316\) −1.54095e24 −0.155210
\(317\) 1.50505e25 + 8.68940e24i 1.46878 + 0.848002i 0.999388 0.0349858i \(-0.0111386\pi\)
0.469395 + 0.882988i \(0.344472\pi\)
\(318\) 0 0
\(319\) −1.08091e25 1.87219e25i −0.990565 1.71571i
\(320\) −2.05857e24 + 1.18851e24i −0.182838 + 0.105561i
\(321\) 0 0
\(322\) 1.18213e23 2.04751e23i 0.00986520 0.0170870i
\(323\) 3.00886e25i 2.43432i
\(324\) 0 0
\(325\) 2.41915e25 1.84005
\(326\) −1.33762e24 7.72274e23i −0.0986634 0.0569634i
\(327\) 0 0
\(328\) −1.20084e24 2.07991e24i −0.0833194 0.144313i
\(329\) 7.86521e22 4.54098e22i 0.00529360 0.00305626i
\(330\) 0 0
\(331\) −2.50586e24 + 4.34028e24i −0.158737 + 0.274940i −0.934413 0.356191i \(-0.884075\pi\)
0.775677 + 0.631130i \(0.217409\pi\)
\(332\) 1.02493e25i 0.629960i
\(333\) 0 0
\(334\) −9.01958e24 −0.522061
\(335\) 2.38957e25 + 1.37962e25i 1.34237 + 0.775017i
\(336\) 0 0
\(337\) −1.57132e25 2.72161e25i −0.831699 1.44055i −0.896690 0.442660i \(-0.854035\pi\)
0.0649903 0.997886i \(-0.479298\pi\)
\(338\) −1.61647e23 + 9.33267e22i −0.00830614 + 0.00479555i
\(339\) 0 0
\(340\) −1.12200e25 + 1.94336e25i −0.543504 + 0.941377i
\(341\) 5.72346e23i 0.0269225i
\(342\) 0 0
\(343\) −1.62226e24 −0.0719746
\(344\) −1.03790e25 5.99233e24i −0.447272 0.258233i
\(345\) 0 0
\(346\) 1.25331e25 + 2.17080e25i 0.509680 + 0.882791i
\(347\) −2.17089e25 + 1.25336e25i −0.857715 + 0.495202i −0.863246 0.504783i \(-0.831573\pi\)
0.00553154 + 0.999985i \(0.498239\pi\)
\(348\) 0 0
\(349\) 1.04729e25 1.81396e25i 0.390674 0.676666i −0.601865 0.798598i \(-0.705575\pi\)
0.992539 + 0.121931i \(0.0389088\pi\)
\(350\) 1.30134e24i 0.0471749i
\(351\) 0 0
\(352\) −6.83921e24 −0.234196
\(353\) −4.24608e25 2.45148e25i −1.41332 0.815982i −0.417623 0.908621i \(-0.637137\pi\)
−0.995700 + 0.0926383i \(0.970470\pi\)
\(354\) 0 0
\(355\) 2.71329e25 + 4.69955e25i 0.853517 + 1.47834i
\(356\) 2.36617e25 1.36611e25i 0.723679 0.417816i
\(357\) 0 0
\(358\) 6.00978e24 1.04092e25i 0.173791 0.301015i
\(359\) 2.99198e25i 0.841422i −0.907195 0.420711i \(-0.861781\pi\)
0.907195 0.420711i \(-0.138219\pi\)
\(360\) 0 0
\(361\) 9.68567e25 2.57666
\(362\) 2.00628e25 + 1.15833e25i 0.519167 + 0.299741i
\(363\) 0 0
\(364\) −3.65106e23 6.32383e23i −0.00894140 0.0154870i
\(365\) 9.02487e25 5.21051e25i 2.15037 1.24151i
\(366\) 0 0
\(367\) 1.23715e25 2.14280e25i 0.279100 0.483416i −0.692061 0.721839i \(-0.743297\pi\)
0.971161 + 0.238423i \(0.0766304\pi\)
\(368\) 8.82344e24i 0.193714i
\(369\) 0 0
\(370\) −1.40994e25 −0.293213
\(371\) −3.01921e23 1.74314e23i −0.00611159 0.00352853i
\(372\) 0 0
\(373\) −1.34753e25 2.33398e25i −0.258493 0.447723i 0.707345 0.706868i \(-0.249893\pi\)
−0.965838 + 0.259145i \(0.916559\pi\)
\(374\) −5.59144e25 + 3.22822e25i −1.04426 + 0.602903i
\(375\) 0 0
\(376\) −1.69470e24 + 2.93531e24i −0.0300065 + 0.0519727i
\(377\) 8.61403e25i 1.48523i
\(378\) 0 0
\(379\) 9.18649e25 1.50230 0.751152 0.660130i \(-0.229499\pi\)
0.751152 + 0.660130i \(0.229499\pi\)
\(380\) −8.68361e25 5.01349e25i −1.38313 0.798553i
\(381\) 0 0
\(382\) −1.75370e25 3.03749e25i −0.265046 0.459073i
\(383\) 7.72606e25 4.46065e25i 1.13755 0.656765i 0.191727 0.981448i \(-0.438591\pi\)
0.945823 + 0.324683i \(0.105258\pi\)
\(384\) 0 0
\(385\) 2.88262e24 4.99284e24i 0.0402884 0.0697816i
\(386\) 6.76076e24i 0.0920710i
\(387\) 0 0
\(388\) −5.23445e24 −0.0676946
\(389\) −5.35622e25 3.09242e25i −0.675091 0.389764i 0.122912 0.992418i \(-0.460777\pi\)
−0.798003 + 0.602654i \(0.794110\pi\)
\(390\) 0 0
\(391\) 4.16481e25 + 7.21367e25i 0.498687 + 0.863751i
\(392\) 2.61989e25 1.51259e25i 0.305789 0.176547i
\(393\) 0 0
\(394\) −4.96769e25 + 8.60430e25i −0.551052 + 0.954450i
\(395\) 4.84780e25i 0.524293i
\(396\) 0 0
\(397\) 3.61977e25 0.372200 0.186100 0.982531i \(-0.440415\pi\)
0.186100 + 0.982531i \(0.440415\pi\)
\(398\) −8.99100e25 5.19096e25i −0.901524 0.520495i
\(399\) 0 0
\(400\) 2.42831e25 + 4.20596e25i 0.231582 + 0.401112i
\(401\) −6.25638e25 + 3.61212e25i −0.581941 + 0.335984i −0.761904 0.647689i \(-0.775735\pi\)
0.179963 + 0.983673i \(0.442402\pi\)
\(402\) 0 0
\(403\) 1.14029e24 1.97504e24i 0.0100917 0.0174794i
\(404\) 4.93095e25i 0.425713i
\(405\) 0 0
\(406\) 4.63378e24 0.0380780
\(407\) −3.51320e25 2.02834e25i −0.281682 0.162629i
\(408\) 0 0
\(409\) −4.78708e25 8.29147e25i −0.365458 0.632992i 0.623391 0.781910i \(-0.285754\pi\)
−0.988850 + 0.148918i \(0.952421\pi\)
\(410\) −6.54335e25 + 3.77780e25i −0.487485 + 0.281450i
\(411\) 0 0
\(412\) −1.23998e25 + 2.14772e25i −0.0879922 + 0.152407i
\(413\) 6.57319e24i 0.0455277i
\(414\) 0 0
\(415\) −3.22440e26 −2.12798
\(416\) 2.36006e25 + 1.36258e25i 0.152051 + 0.0877869i
\(417\) 0 0
\(418\) −1.44248e26 2.49846e26i −0.885826 1.53430i
\(419\) 2.31795e26 1.33827e26i 1.38984 0.802423i 0.396541 0.918017i \(-0.370211\pi\)
0.993296 + 0.115594i \(0.0368773\pi\)
\(420\) 0 0
\(421\) 2.20291e25 3.81555e25i 0.125943 0.218140i −0.796158 0.605089i \(-0.793138\pi\)
0.922101 + 0.386949i \(0.126471\pi\)
\(422\) 1.04103e26i 0.581219i
\(423\) 0 0
\(424\) 1.30109e25 0.0692863
\(425\) 3.97057e26 + 2.29241e26i 2.06521 + 1.19235i
\(426\) 0 0
\(427\) −2.64622e24 4.58339e24i −0.0131325 0.0227462i
\(428\) 6.80196e25 3.92712e25i 0.329759 0.190386i
\(429\) 0 0
\(430\) −1.88517e26 + 3.26521e26i −0.872300 + 1.51087i
\(431\) 2.84749e26i 1.28733i 0.765309 + 0.643663i \(0.222586\pi\)
−0.765309 + 0.643663i \(0.777414\pi\)
\(432\) 0 0
\(433\) 7.32156e25 0.316027 0.158014 0.987437i \(-0.449491\pi\)
0.158014 + 0.987437i \(0.449491\pi\)
\(434\) −1.06244e23 6.13400e22i −0.000448134 0.000258730i
\(435\) 0 0
\(436\) −3.71205e24 6.42946e24i −0.0149537 0.0259006i
\(437\) −3.22332e26 + 1.86099e26i −1.26908 + 0.732705i
\(438\) 0 0
\(439\) −1.42450e26 + 2.46731e26i −0.535819 + 0.928066i 0.463304 + 0.886199i \(0.346664\pi\)
−0.999123 + 0.0418668i \(0.986669\pi\)
\(440\) 2.15160e26i 0.791105i
\(441\) 0 0
\(442\) 2.57265e26 0.903977
\(443\) 1.55284e26 + 8.96533e25i 0.533445 + 0.307985i 0.742418 0.669937i \(-0.233679\pi\)
−0.208973 + 0.977921i \(0.567012\pi\)
\(444\) 0 0
\(445\) −4.29774e26 7.44390e26i −1.41137 2.44456i
\(446\) 2.20824e25 1.27493e25i 0.0709085 0.0409390i
\(447\) 0 0
\(448\) 7.32978e23 1.26956e24i 0.00225067 0.00389827i
\(449\) 1.46837e26i 0.440931i −0.975395 0.220466i \(-0.929242\pi\)
0.975395 0.220466i \(-0.0707577\pi\)
\(450\) 0 0
\(451\) −2.17391e26 −0.624418
\(452\) 6.45604e25 + 3.72740e25i 0.181377 + 0.104718i
\(453\) 0 0
\(454\) 2.01584e26 + 3.49154e26i 0.541873 + 0.938551i
\(455\) −1.98946e25 + 1.14861e25i −0.0523144 + 0.0302037i
\(456\) 0 0
\(457\) 3.57346e26 6.18941e26i 0.899345 1.55771i 0.0710124 0.997475i \(-0.477377\pi\)
0.828333 0.560236i \(-0.189290\pi\)
\(458\) 3.70201e26i 0.911555i
\(459\) 0 0
\(460\) 2.77583e26 0.654357
\(461\) −6.08292e26 3.51197e26i −1.40314 0.810106i −0.408431 0.912789i \(-0.633924\pi\)
−0.994714 + 0.102683i \(0.967257\pi\)
\(462\) 0 0
\(463\) 1.10633e26 + 1.91623e26i 0.244386 + 0.423289i 0.961959 0.273195i \(-0.0880803\pi\)
−0.717573 + 0.696483i \(0.754747\pi\)
\(464\) −1.49765e26 + 8.64666e25i −0.323765 + 0.186926i
\(465\) 0 0
\(466\) 1.14234e26 1.97859e26i 0.236558 0.409730i
\(467\) 2.76662e26i 0.560766i 0.959888 + 0.280383i \(0.0904614\pi\)
−0.959888 + 0.280383i \(0.909539\pi\)
\(468\) 0 0
\(469\) −1.70167e25 −0.0330482
\(470\) 9.23440e25 + 5.33148e25i 0.175562 + 0.101361i
\(471\) 0 0
\(472\) −1.22656e26 2.12447e26i −0.223496 0.387106i
\(473\) −9.39470e26 + 5.42403e26i −1.67599 + 0.967633i
\(474\) 0 0
\(475\) −1.02433e27 + 1.77419e27i −1.75188 + 3.03434i
\(476\) 1.38391e25i 0.0231760i
\(477\) 0 0
\(478\) −4.20411e26 −0.675143
\(479\) −3.01969e26 1.74342e26i −0.474905 0.274186i 0.243386 0.969930i \(-0.421742\pi\)
−0.718291 + 0.695743i \(0.755075\pi\)
\(480\) 0 0
\(481\) 8.08218e25 + 1.39987e26i 0.121921 + 0.211173i
\(482\) −2.28531e26 + 1.31942e26i −0.337656 + 0.194946i
\(483\) 0 0
\(484\) −1.33172e26 + 2.30661e26i −0.188782 + 0.326980i
\(485\) 1.64674e26i 0.228670i
\(486\) 0 0
\(487\) 9.82619e26 1.30947 0.654735 0.755858i \(-0.272780\pi\)
0.654735 + 0.755858i \(0.272780\pi\)
\(488\) 1.71053e26 + 9.87574e25i 0.223322 + 0.128935i
\(489\) 0 0
\(490\) −4.75858e26 8.24209e26i −0.596371 1.03294i
\(491\) 1.10669e26 6.38949e25i 0.135898 0.0784606i −0.430510 0.902586i \(-0.641666\pi\)
0.566407 + 0.824125i \(0.308333\pi\)
\(492\) 0 0
\(493\) −8.16274e26 + 1.41383e27i −0.962424 + 1.66697i
\(494\) 1.14955e27i 1.32819i
\(495\) 0 0
\(496\) 4.57844e24 0.00508043
\(497\) −2.89830e25 1.67333e25i −0.0315195 0.0181978i
\(498\) 0 0
\(499\) −4.51078e26 7.81290e26i −0.471244 0.816219i 0.528215 0.849111i \(-0.322862\pi\)
−0.999459 + 0.0328920i \(0.989528\pi\)
\(500\) 6.08975e26 3.51592e26i 0.623590 0.360030i
\(501\) 0 0
\(502\) 2.75186e26 4.76636e26i 0.270763 0.468975i
\(503\) 1.47701e27i 1.42464i −0.701857 0.712318i \(-0.747645\pi\)
0.701857 0.712318i \(-0.252355\pi\)
\(504\) 0 0
\(505\) 1.55126e27 1.43804
\(506\) 6.91664e26 + 3.99332e26i 0.628623 + 0.362935i
\(507\) 0 0
\(508\) −1.64078e26 2.84192e26i −0.143355 0.248299i
\(509\) 7.49057e26 4.32468e26i 0.641708 0.370490i −0.143564 0.989641i \(-0.545856\pi\)
0.785272 + 0.619151i \(0.212523\pi\)
\(510\) 0 0
\(511\) −3.21342e25 + 5.56580e25i −0.0264702 + 0.0458478i
\(512\) 5.47097e25i 0.0441942i
\(513\) 0 0
\(514\) 5.03812e26 0.391415
\(515\) 6.75666e26 + 3.90096e26i 0.514825 + 0.297234i
\(516\) 0 0
\(517\) 1.53398e26 + 2.65693e26i 0.112438 + 0.194749i
\(518\) 7.53039e24 4.34767e24i 0.00541402 0.00312579i
\(519\) 0 0
\(520\) 4.28665e26 7.42469e26i 0.296541 0.513623i
\(521\) 4.90761e26i 0.333037i 0.986038 + 0.166519i \(0.0532526\pi\)
−0.986038 + 0.166519i \(0.946747\pi\)
\(522\) 0 0
\(523\) 1.78863e27 1.16816 0.584082 0.811695i \(-0.301455\pi\)
0.584082 + 0.811695i \(0.301455\pi\)
\(524\) 3.22922e26 + 1.86439e26i 0.206912 + 0.119461i
\(525\) 0 0
\(526\) 2.48363e26 + 4.30178e26i 0.153190 + 0.265333i
\(527\) 3.74314e25 2.16110e25i 0.0226532 0.0130788i
\(528\) 0 0
\(529\) −3.42889e26 + 5.93901e26i −0.199801 + 0.346065i
\(530\) 4.09318e26i 0.234046i
\(531\) 0 0
\(532\) 6.18382e25 0.0340518
\(533\) 7.50167e26 + 4.33109e26i 0.405402 + 0.234059i
\(534\) 0 0
\(535\) −1.23546e27 2.13988e27i −0.643118 1.11391i
\(536\) 5.49984e26 3.17533e26i 0.280997 0.162234i
\(537\) 0 0
\(538\) 7.94224e26 1.37564e27i 0.390949 0.677144i
\(539\) 2.73828e27i 1.32309i
\(540\) 0 0
\(541\) −1.87369e27 −0.872421 −0.436211 0.899845i \(-0.643680\pi\)
−0.436211 + 0.899845i \(0.643680\pi\)
\(542\) 3.82243e26 + 2.20688e26i 0.174722 + 0.100876i
\(543\) 0 0
\(544\) 2.58239e26 + 4.47283e26i 0.113771 + 0.197058i
\(545\) −2.02269e26 + 1.16780e26i −0.0874912 + 0.0505131i
\(546\) 0 0
\(547\) −1.41727e27 + 2.45479e27i −0.590991 + 1.02363i 0.403109 + 0.915152i \(0.367930\pi\)
−0.994099 + 0.108474i \(0.965404\pi\)
\(548\) 2.16927e26i 0.0888194i
\(549\) 0 0
\(550\) 4.39603e27 1.73554
\(551\) −6.31749e27 3.64740e27i −2.44922 1.41406i
\(552\) 0 0
\(553\) −1.49486e25 2.58918e25i −0.00558921 0.00968079i
\(554\) 3.10172e27 1.79078e27i 1.13895 0.657574i
\(555\) 0 0
\(556\) −1.44894e26 + 2.50963e26i −0.0513218 + 0.0888919i
\(557\) 1.69901e27i 0.591078i −0.955331 0.295539i \(-0.904501\pi\)
0.955331 0.295539i \(-0.0954992\pi\)
\(558\) 0 0
\(559\) 4.32254e27 1.45084
\(560\) −3.99399e25 2.30593e25i −0.0131682 0.00760266i
\(561\) 0 0
\(562\) −8.73564e26 1.51306e27i −0.277927 0.481384i
\(563\) −1.43694e27 + 8.29616e26i −0.449111 + 0.259294i −0.707455 0.706759i \(-0.750157\pi\)
0.258344 + 0.966053i \(0.416823\pi\)
\(564\) 0 0
\(565\) 1.17263e27 2.03105e27i 0.353733 0.612684i
\(566\) 9.17340e26i 0.271873i
\(567\) 0 0
\(568\) 1.24898e27 0.357333
\(569\) −3.13664e26 1.81094e26i −0.0881743 0.0509075i 0.455265 0.890356i \(-0.349545\pi\)
−0.543439 + 0.839449i \(0.682878\pi\)
\(570\) 0 0
\(571\) −1.96930e27 3.41093e27i −0.534505 0.925790i −0.999187 0.0403121i \(-0.987165\pi\)
0.464682 0.885477i \(-0.346169\pi\)
\(572\) 2.13624e27 1.23336e27i 0.569757 0.328949i
\(573\) 0 0
\(574\) 2.32984e25 4.03540e25i 0.00600077 0.0103936i
\(575\) 5.67144e27i 1.43554i
\(576\) 0 0
\(577\) 7.18896e26 0.175755 0.0878776 0.996131i \(-0.471992\pi\)
0.0878776 + 0.996131i \(0.471992\pi\)
\(578\) 1.67395e27 + 9.66455e26i 0.402220 + 0.232222i
\(579\) 0 0
\(580\) 2.72022e27 + 4.71155e27i 0.631427 + 1.09366i
\(581\) 1.72213e26 9.94273e25i 0.0392921 0.0226853i
\(582\) 0 0
\(583\) 5.88847e26 1.01991e27i 0.129813 0.224842i
\(584\) 2.39850e27i 0.519771i
\(585\) 0 0
\(586\) −2.30227e27 −0.482147
\(587\) 6.27666e27 + 3.62383e27i 1.29225 + 0.746083i 0.979053 0.203604i \(-0.0652654\pi\)
0.313201 + 0.949687i \(0.398599\pi\)
\(588\) 0 0
\(589\) 9.65657e25 + 1.67257e26i 0.0192163 + 0.0332836i
\(590\) −6.68352e27 + 3.85873e27i −1.30763 + 0.754961i
\(591\) 0 0
\(592\) −1.62256e26 + 2.81035e26i −0.0306890 + 0.0531550i
\(593\) 6.43054e27i 1.19592i 0.801527 + 0.597958i \(0.204021\pi\)
−0.801527 + 0.597958i \(0.795979\pi\)
\(594\) 0 0
\(595\) −4.35375e26 −0.0782878
\(596\) 4.15871e27 + 2.40103e27i 0.735353 + 0.424557i
\(597\) 0 0
\(598\) −1.59119e27 2.75602e27i −0.272088 0.471270i
\(599\) −6.18517e26 + 3.57101e26i −0.104012 + 0.0600513i −0.551104 0.834437i \(-0.685793\pi\)
0.447092 + 0.894488i \(0.352460\pi\)
\(600\) 0 0
\(601\) −3.35334e27 + 5.80816e27i −0.545423 + 0.944700i 0.453157 + 0.891431i \(0.350298\pi\)
−0.998580 + 0.0532694i \(0.983036\pi\)
\(602\) 2.32524e26i 0.0371965i
\(603\) 0 0
\(604\) 5.35934e27 0.829357
\(605\) 7.25654e27 + 4.18956e27i 1.10453 + 0.637698i
\(606\) 0 0
\(607\) −1.56164e27 2.70484e27i −0.229982 0.398341i 0.727820 0.685768i \(-0.240533\pi\)
−0.957803 + 0.287427i \(0.907200\pi\)
\(608\) −1.99862e27 + 1.15390e27i −0.289531 + 0.167161i
\(609\) 0 0
\(610\) 3.10688e27 5.38127e27i 0.435538 0.754374i
\(611\) 1.22246e27i 0.168587i
\(612\) 0 0
\(613\) 4.73153e27 0.631534 0.315767 0.948837i \(-0.397738\pi\)
0.315767 + 0.948837i \(0.397738\pi\)
\(614\) −6.00560e27 3.46734e27i −0.788629 0.455315i
\(615\) 0 0
\(616\) −6.63464e25 1.14915e26i −0.00843355 0.0146073i
\(617\) −3.33324e27 + 1.92444e27i −0.416883 + 0.240688i −0.693743 0.720223i \(-0.744040\pi\)
0.276860 + 0.960910i \(0.410706\pi\)
\(618\) 0 0
\(619\) −7.59616e27 + 1.31569e28i −0.919788 + 1.59312i −0.120053 + 0.992768i \(0.538306\pi\)
−0.799736 + 0.600352i \(0.795027\pi\)
\(620\) 1.44036e26i 0.0171615i
\(621\) 0 0
\(622\) −8.67310e27 −1.00062
\(623\) 4.59079e26 + 2.65049e26i 0.0521203 + 0.0300917i
\(624\) 0 0
\(625\) −2.63607e27 4.56581e27i −0.289839 0.502017i
\(626\) 2.52091e27 1.45545e27i 0.272781 0.157490i
\(627\) 0 0
\(628\) −2.65556e27 + 4.59957e27i −0.278330 + 0.482082i
\(629\) 3.06350e27i 0.316018i
\(630\) 0 0
\(631\) −4.43236e27 −0.442936 −0.221468 0.975168i \(-0.571085\pi\)
−0.221468 + 0.975168i \(0.571085\pi\)
\(632\) 9.66286e26 + 5.57885e26i 0.0950462 + 0.0548749i
\(633\) 0 0
\(634\) −6.29180e27 1.08977e28i −0.599628 1.03859i
\(635\) −8.94059e27 + 5.16185e27i −0.838743 + 0.484249i
\(636\) 0 0
\(637\) −5.45551e27 + 9.44922e27i −0.495953 + 0.859017i
\(638\) 1.56533e28i 1.40087i
\(639\) 0 0
\(640\) 1.72115e27 0.149286
\(641\) −9.12912e27 5.27070e27i −0.779559 0.450078i 0.0567153 0.998390i \(-0.481937\pi\)
−0.836274 + 0.548312i \(0.815271\pi\)
\(642\) 0 0
\(643\) 2.39714e26 + 4.15196e26i 0.0198419 + 0.0343672i 0.875776 0.482718i \(-0.160350\pi\)
−0.855934 + 0.517085i \(0.827017\pi\)
\(644\) −1.48255e26 + 8.55953e25i −0.0120824 + 0.00697575i
\(645\) 0 0
\(646\) −1.08932e28 + 1.88677e28i −0.860661 + 1.49071i
\(647\) 1.79252e28i 1.39451i 0.716823 + 0.697255i \(0.245595\pi\)
−0.716823 + 0.697255i \(0.754405\pi\)
\(648\) 0 0
\(649\) −2.22048e28 −1.67494
\(650\) −1.51698e28 8.75826e27i −1.12680 0.650555i
\(651\) 0 0
\(652\) 5.59186e26 + 9.68539e26i 0.0402792 + 0.0697656i
\(653\) 2.20534e27 1.27326e27i 0.156439 0.0903199i −0.419737 0.907646i \(-0.637878\pi\)
0.576176 + 0.817326i \(0.304544\pi\)
\(654\) 0 0
\(655\) 5.86533e27 1.01590e28i 0.403533 0.698940i
\(656\) 1.73900e27i 0.117831i
\(657\) 0 0
\(658\) −6.57605e25 −0.00432221
\(659\) −6.74038e27 3.89156e27i −0.436345 0.251924i 0.265701 0.964056i \(-0.414397\pi\)
−0.702046 + 0.712131i \(0.747730\pi\)
\(660\) 0 0
\(661\) 9.66007e27 + 1.67317e28i 0.606689 + 1.05082i 0.991782 + 0.127938i \(0.0408358\pi\)
−0.385094 + 0.922878i \(0.625831\pi\)
\(662\) 3.14270e27 1.81444e27i 0.194412 0.112244i
\(663\) 0 0
\(664\) −3.71064e27 + 6.42702e27i −0.222725 + 0.385770i
\(665\) 1.94541e27i 0.115026i
\(666\) 0 0
\(667\) 2.01947e28 1.15872
\(668\) 5.65590e27 + 3.26544e27i 0.319696 + 0.184577i
\(669\) 0 0
\(670\) −9.98951e27 1.73023e28i −0.548020 0.949198i
\(671\) 1.54831e28 8.93914e27i 0.836819 0.483137i
\(672\) 0 0
\(673\) 1.63888e28 2.83863e28i 0.859800 1.48922i −0.0123185 0.999924i \(-0.503921\pi\)
0.872119 0.489294i \(-0.162745\pi\)
\(674\) 2.27552e28i 1.17620i
\(675\) 0 0
\(676\) 1.35151e26 0.00678194
\(677\) −9.74252e27 5.62485e27i −0.481709 0.278115i 0.239419 0.970916i \(-0.423043\pi\)
−0.721128 + 0.692801i \(0.756376\pi\)
\(678\) 0 0
\(679\) −5.07788e25 8.79515e25i −0.00243773 0.00422227i
\(680\) 1.40714e28 8.12413e27i 0.665654 0.384315i
\(681\) 0 0
\(682\) 2.07211e26 3.58901e26i 0.00951853 0.0164866i
\(683\) 3.22277e28i 1.45889i 0.684040 + 0.729445i \(0.260222\pi\)
−0.684040 + 0.729445i \(0.739778\pi\)
\(684\) 0 0
\(685\) −6.82446e27 −0.300029
\(686\) 1.01727e27 + 5.87321e26i 0.0440753 + 0.0254469i
\(687\) 0 0
\(688\) 4.33891e27 + 7.51521e27i 0.182598 + 0.316269i
\(689\) −4.06396e27 + 2.34633e27i −0.168561 + 0.0973188i
\(690\) 0 0
\(691\) 1.49956e28 2.59732e28i 0.604204 1.04651i −0.387973 0.921671i \(-0.626824\pi\)
0.992177 0.124841i \(-0.0398422\pi\)
\(692\) 1.81499e28i 0.720796i
\(693\) 0 0
\(694\) 1.81506e28 0.700321
\(695\) 7.89523e27 + 4.55831e27i 0.300273 + 0.173363i
\(696\) 0 0
\(697\) 8.20837e27 + 1.42173e28i 0.303340 + 0.525399i
\(698\) −1.31345e28 + 7.58321e27i −0.478475 + 0.276248i
\(699\) 0 0
\(700\) −4.71136e26 + 8.16032e26i −0.0166788 + 0.0288886i
\(701\) 3.44034e28i 1.20066i −0.799751 0.600332i \(-0.795035\pi\)
0.799751 0.600332i \(-0.204965\pi\)
\(702\) 0 0
\(703\) −1.36888e28 −0.464315
\(704\) 4.28866e27 + 2.47606e27i 0.143415 + 0.0828008i
\(705\) 0 0
\(706\) 1.77506e28 + 3.07449e28i 0.576987 + 0.999370i
\(707\) −8.28520e26 + 4.78346e26i −0.0265527 + 0.0153302i
\(708\) 0 0
\(709\) −7.50851e27 + 1.30051e28i −0.233933 + 0.405184i −0.958962 0.283534i \(-0.908493\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(710\) 3.92926e28i 1.20706i
\(711\) 0 0
\(712\) −1.97834e28 −0.590881
\(713\) −4.63027e26 2.67329e26i −0.0136368 0.00787319i
\(714\) 0 0
\(715\) −3.88011e28 6.72055e28i −1.11118 1.92462i
\(716\) −7.53709e27 + 4.35154e27i −0.212850 + 0.122889i
\(717\) 0 0
\(718\) −1.08321e28 + 1.87618e28i −0.297488 + 0.515264i
\(719\) 5.73497e28i 1.55325i 0.629961 + 0.776627i \(0.283071\pi\)
−0.629961 + 0.776627i \(0.716929\pi\)
\(720\) 0 0
\(721\) −4.81158e26 −0.0126746
\(722\) −6.07359e28 3.50659e28i −1.57788 0.910988i
\(723\) 0 0
\(724\) −8.38720e27 1.45270e28i −0.211949 0.367106i
\(725\) 9.62640e28 5.55781e28i 2.39930 1.38523i
\(726\) 0 0
\(727\) −1.94524e28 + 3.36925e28i −0.471659 + 0.816938i −0.999474 0.0324216i \(-0.989678\pi\)
0.527815 + 0.849359i \(0.323011\pi\)
\(728\) 5.28730e26i 0.0126451i
\(729\) 0 0
\(730\) −7.54563e28 −1.75577
\(731\) 7.09461e28 + 4.09608e28i 1.62838 + 0.940144i
\(732\) 0 0
\(733\) 1.43366e28 + 2.48318e28i 0.320190 + 0.554585i 0.980527 0.196384i \(-0.0629199\pi\)
−0.660337 + 0.750969i \(0.729587\pi\)
\(734\) −1.55155e28 + 8.95790e27i −0.341827 + 0.197354i
\(735\) 0 0
\(736\) 3.19443e27 5.53291e27i 0.0684881 0.118625i
\(737\) 5.74838e28i 1.21582i
\(738\) 0 0
\(739\) 5.53418e28 1.13922 0.569612 0.821914i \(-0.307094\pi\)
0.569612 + 0.821914i \(0.307094\pi\)
\(740\) 8.84130e27 + 5.10452e27i 0.179556 + 0.103666i
\(741\) 0 0
\(742\) 1.26217e26 + 2.18614e26i 0.00249504 + 0.00432154i
\(743\) −9.71906e27 + 5.61130e27i −0.189555 + 0.109440i −0.591774 0.806104i \(-0.701572\pi\)
0.402219 + 0.915543i \(0.368239\pi\)
\(744\) 0 0
\(745\) 7.55358e28 1.30832e29i 1.43414 2.48400i
\(746\) 1.95143e28i 0.365564i
\(747\) 0 0
\(748\) 4.67497e28 0.852634
\(749\) 1.31970e27 + 7.61930e26i 0.0237497 + 0.0137119i
\(750\) 0 0
\(751\) 3.50210e28 + 6.06582e28i 0.613662 + 1.06289i 0.990618 + 0.136662i \(0.0436376\pi\)
−0.376956 + 0.926231i \(0.623029\pi\)
\(752\) 2.12539e27 1.22710e27i 0.0367503 0.0212178i
\(753\) 0 0
\(754\) 3.11861e28 5.40160e28i 0.525107 0.909513i
\(755\) 1.68603e29i 2.80154i
\(756\) 0 0
\(757\) 4.39619e28 0.711407 0.355703 0.934599i \(-0.384241\pi\)
0.355703 + 0.934599i \(0.384241\pi\)
\(758\) −5.76057e28 3.32587e28i −0.919969 0.531144i
\(759\) 0 0
\(760\) 3.63015e28 + 6.28761e28i 0.564662 + 0.978024i
\(761\) −7.54570e28 + 4.35651e28i −1.15838 + 0.668794i −0.950916 0.309448i \(-0.899856\pi\)
−0.207468 + 0.978242i \(0.566522\pi\)
\(762\) 0 0
\(763\) 7.20204e25 1.24743e26i 0.00107699 0.00186539i
\(764\) 2.53962e28i 0.374831i
\(765\) 0 0
\(766\) −6.45970e28 −0.928806
\(767\) 7.66238e28 + 4.42387e28i 1.08745 + 0.627840i
\(768\) 0 0
\(769\) 2.32555e28 + 4.02797e28i 0.321560 + 0.556958i 0.980810 0.194966i \(-0.0624595\pi\)
−0.659250 + 0.751924i \(0.729126\pi\)
\(770\) −3.61521e27 + 2.08724e27i −0.0493430 + 0.0284882i
\(771\) 0 0
\(772\) −2.44766e27 + 4.23947e27i −0.0325520 + 0.0563817i
\(773\) 5.82042e28i 0.764116i 0.924138 + 0.382058i \(0.124785\pi\)
−0.924138 + 0.382058i \(0.875215\pi\)
\(774\) 0 0
\(775\) −2.94288e27 −0.0376492
\(776\) 3.28236e27 + 1.89507e27i 0.0414543 + 0.0239336i
\(777\) 0 0
\(778\) 2.23915e28 + 3.87832e28i 0.275605 + 0.477362i
\(779\) −6.35280e28 + 3.66779e28i −0.771953 + 0.445687i
\(780\) 0 0
\(781\) 5.65265e28 9.79068e28i 0.669487 1.15959i
\(782\) 6.03129e28i 0.705250i
\(783\) 0 0
\(784\) −2.19047e28 −0.249676
\(785\) 1.44701e29 + 8.35432e28i 1.62845 + 0.940188i
\(786\) 0 0
\(787\) 4.67861e28 + 8.10358e28i 0.513297 + 0.889057i 0.999881 + 0.0154233i \(0.00490958\pi\)
−0.486584 + 0.873634i \(0.661757\pi\)
\(788\) 6.23018e28 3.59699e28i 0.674898 0.389653i
\(789\) 0 0
\(790\) 1.75509e28 3.03991e28i 0.185365 0.321062i
\(791\) 1.44636e27i 0.0150839i
\(792\) 0 0
\(793\) −7.12382e28 −0.724404
\(794\) −2.26985e28 1.31050e28i −0.227925 0.131593i
\(795\) 0 0
\(796\) 3.75865e28 + 6.51018e28i 0.368046 + 0.637474i
\(797\) −9.97801e27 + 5.76081e27i −0.0964852 + 0.0557058i −0.547466 0.836828i \(-0.684408\pi\)
0.450981 + 0.892534i \(0.351074\pi\)
\(798\) 0 0
\(799\) 1.15842e28 2.00644e28i 0.109244 0.189216i
\(800\) 3.51657e28i 0.327506i
\(801\) 0 0
\(802\) 5.23091e28 0.475153
\(803\) −1.88017e29 1.08552e29i −1.68672 0.973826i
\(804\) 0 0
\(805\) 2.69280e27 + 4.66407e27i 0.0235638 + 0.0408137i
\(806\) −1.43008e27 + 8.25659e26i −0.0123598 + 0.00713592i
\(807\) 0 0
\(808\) 1.78519e28 3.09205e28i 0.150512 0.260695i
\(809\) 9.08321e28i 0.756404i −0.925723 0.378202i \(-0.876542\pi\)
0.925723 0.378202i \(-0.123458\pi\)
\(810\) 0 0
\(811\) 1.00676e28 0.0817932 0.0408966 0.999163i \(-0.486979\pi\)
0.0408966 + 0.999163i \(0.486979\pi\)
\(812\) −2.90570e27 1.67761e27i −0.0233179 0.0134626i
\(813\) 0 0
\(814\) 1.46868e28 + 2.54383e28i 0.114996 + 0.199179i
\(815\) 3.04700e28 1.75918e28i 0.235665 0.136062i
\(816\) 0 0
\(817\) −1.83027e29 + 3.17013e29i −1.38132 + 2.39252i
\(818\) 6.93243e28i 0.516836i
\(819\) 0 0
\(820\) 5.47084e28 0.398030
\(821\) −2.02346e29 1.16824e29i −1.45433 0.839656i −0.455604 0.890183i \(-0.650577\pi\)
−0.998723 + 0.0505266i \(0.983910\pi\)
\(822\) 0 0
\(823\) −1.04115e29 1.80332e29i −0.730320 1.26495i −0.956746 0.290923i \(-0.906038\pi\)
0.226427 0.974028i \(-0.427296\pi\)
\(824\) 1.55511e28 8.97845e27i 0.107768 0.0622199i
\(825\) 0 0
\(826\) 2.37975e27 4.12185e27i 0.0160965 0.0278799i
\(827\) 1.53369e28i 0.102490i 0.998686 + 0.0512450i \(0.0163189\pi\)
−0.998686 + 0.0512450i \(0.983681\pi\)
\(828\) 0 0
\(829\) −1.08449e29 −0.707426 −0.353713 0.935354i \(-0.615081\pi\)
−0.353713 + 0.935354i \(0.615081\pi\)
\(830\) 2.02192e29 + 1.16736e29i 1.30312 + 0.752355i
\(831\) 0 0
\(832\) −9.86615e27 1.70887e28i −0.0620747 0.107517i
\(833\) −1.79083e29 + 1.03394e29i −1.11328 + 0.642754i
\(834\) 0 0
\(835\) 1.02730e29 1.77933e29i 0.623493 1.07992i
\(836\) 2.08894e29i 1.25275i
\(837\) 0 0
\(838\) −1.93802e29 −1.13480
\(839\) 7.78720e27 + 4.49594e27i 0.0450569 + 0.0260136i 0.522359 0.852726i \(-0.325052\pi\)
−0.477302 + 0.878739i \(0.658385\pi\)
\(840\) 0 0
\(841\) 1.09403e29 + 1.89492e29i 0.618117 + 1.07061i
\(842\) −2.76275e28 + 1.59507e28i −0.154248 + 0.0890554i
\(843\) 0 0
\(844\) −3.76894e28 + 6.52800e28i −0.205492 + 0.355923i
\(845\) 4.25183e27i 0.0229091i
\(846\) 0 0
\(847\) −5.16756e27 −0.0271926
\(848\) −8.15871e27 4.71043e27i −0.0424290 0.0244964i
\(849\) 0 0
\(850\) −1.65988e29 2.87500e29i −0.843117 1.46032i
\(851\) 3.28186e28 1.89478e28i 0.164749 0.0951181i
\(852\) 0 0
\(853\) 1.41583e29 2.45230e29i 0.694259 1.20249i −0.276170 0.961109i \(-0.589065\pi\)
0.970430 0.241384i \(-0.0776013\pi\)
\(854\) 3.83214e27i 0.0185722i
\(855\) 0 0
\(856\) −5.68707e28 −0.269247
\(857\) 3.28323e29 + 1.89557e29i 1.53636 + 0.887017i 0.999048 + 0.0436324i \(0.0138930\pi\)
0.537311 + 0.843384i \(0.319440\pi\)
\(858\) 0 0
\(859\) −4.85967e28 8.41719e28i −0.222165 0.384800i 0.733300 0.679905i \(-0.237979\pi\)
−0.955465 + 0.295104i \(0.904646\pi\)
\(860\) 2.36427e29 1.36501e29i 1.06835 0.616810i
\(861\) 0 0
\(862\) 1.03090e29 1.78557e29i 0.455139 0.788323i
\(863\) 1.84519e28i 0.0805255i −0.999189 0.0402627i \(-0.987181\pi\)
0.999189 0.0402627i \(-0.0128195\pi\)
\(864\) 0 0
\(865\) −5.70989e29 −2.43482
\(866\) −4.59113e28 2.65069e28i −0.193527 0.111733i
\(867\) 0 0
\(868\) 4.44149e25 + 7.69289e25i 0.000182950 + 0.000316878i
\(869\) 8.74645e28 5.04977e28i 0.356151 0.205624i
\(870\) 0 0
\(871\) −1.14526e29 + 1.98364e29i −0.455744 + 0.789372i
\(872\) 5.37562e27i 0.0211477i
\(873\) 0 0
\(874\) 2.69500e29 1.03620
\(875\) 1.18152e28 + 6.82151e27i 0.0449118 + 0.0259298i
\(876\) 0 0
\(877\) 7.63785e28 + 1.32291e29i 0.283776 + 0.491514i 0.972312 0.233688i \(-0.0750796\pi\)
−0.688536 + 0.725202i \(0.741746\pi\)
\(878\) 1.78653e29 1.03145e29i 0.656242 0.378881i
\(879\) 0 0
\(880\) 7.78961e28 1.34920e29i 0.279698 0.484451i
\(881\) 1.67615e29i 0.595050i 0.954714 + 0.297525i \(0.0961611\pi\)
−0.954714 + 0.297525i \(0.903839\pi\)
\(882\) 0 0
\(883\) −2.47883e29 −0.860279 −0.430140 0.902762i \(-0.641536\pi\)
−0.430140 + 0.902762i \(0.641536\pi\)
\(884\) −1.61323e29 9.31398e28i −0.553571 0.319604i
\(885\) 0 0
\(886\) −6.49159e28 1.12438e29i −0.217778 0.377203i
\(887\) −2.15678e29 + 1.24522e29i −0.715433 + 0.413055i −0.813069 0.582167i \(-0.802205\pi\)
0.0976366 + 0.995222i \(0.468872\pi\)
\(888\) 0 0
\(889\) 3.18341e27 5.51382e27i 0.0103246 0.0178828i
\(890\) 6.22379e29i 1.99597i
\(891\) 0 0
\(892\) −1.84629e28 −0.0578965
\(893\) 8.96549e28 + 5.17623e28i 0.278009 + 0.160509i
\(894\) 0 0
\(895\) 1.36898e29 + 2.37115e29i 0.415114 + 0.718999i
\(896\) −9.19257e26 + 5.30733e26i −0.00275649 + 0.00159146i
\(897\) 0 0
\(898\) −5.31605e28 + 9.20767e28i −0.155893 + 0.270014i
\(899\) 1.04789e28i 0.0303892i
\(900\) 0 0
\(901\) −8.89361e28 −0.252250
\(902\) 1.36319e29 + 7.87038e28i 0.382376 + 0.220765i
\(903\) 0 0
\(904\) −2.69892e28 4.67467e28i −0.0740468 0.128253i
\(905\) −4.57017e29 + 2.63859e29i −1.24007 + 0.715955i
\(906\) 0 0
\(907\) −2.60794e29 + 4.51708e29i −0.692188 + 1.19891i 0.278931 + 0.960311i \(0.410020\pi\)
−0.971119 + 0.238594i \(0.923313\pi\)
\(908\) 2.91925e29i 0.766324i
\(909\) 0 0
\(910\) 1.66337e28 0.0427145
\(911\) −1.94996e29 1.12581e29i −0.495269 0.285944i 0.231488 0.972838i \(-0.425640\pi\)
−0.726758 + 0.686894i \(0.758974\pi\)
\(912\) 0 0
\(913\) 3.35873e29 + 5.81749e29i 0.834579 + 1.44553i
\(914\) −4.48161e29 + 2.58746e29i −1.10147 + 0.635933i
\(915\) 0 0
\(916\) −1.34027e29 + 2.32142e29i −0.322283 + 0.558211i
\(917\) 7.23451e27i 0.0172074i
\(918\) 0 0
\(919\) −6.75044e29 −1.57100 −0.785501 0.618860i \(-0.787595\pi\)
−0.785501 + 0.618860i \(0.787595\pi\)
\(920\) −1.74064e29 1.00496e29i −0.400710 0.231350i
\(921\) 0 0
\(922\) 2.54294e29 + 4.40450e29i 0.572832 + 0.992173i
\(923\) −3.90121e29 + 2.25237e29i −0.869326 + 0.501906i
\(924\) 0 0
\(925\) 1.04293e29 1.80641e29i 0.227425 0.393912i
\(926\) 1.60214e29i 0.345614i
\(927\) 0 0
\(928\) 1.25217e29 0.264353
\(929\) 1.51840e29 + 8.76649e28i 0.317124 + 0.183092i 0.650110 0.759840i \(-0.274723\pi\)
−0.332986 + 0.942932i \(0.608056\pi\)
\(930\) 0 0
\(931\) −4.62000e29 8.00208e29i −0.944377 1.63571i
\(932\) −1.43266e29 + 8.27144e28i −0.289723 + 0.167271i
\(933\) 0 0
\(934\) 1.00162e29 1.73487e29i 0.198261 0.343397i
\(935\) 1.47073e30i 2.88016i
\(936\) 0 0
\(937\) 3.25202e29 0.623387 0.311693 0.950183i \(-0.399104\pi\)
0.311693 + 0.950183i \(0.399104\pi\)
\(938\) 1.06707e28 + 6.16071e27i 0.0202378 + 0.0116843i
\(939\) 0 0
\(940\) −3.86041e28 6.68642e28i −0.0716728 0.124141i
\(941\) −5.13514e29 + 2.96478e29i −0.943314 + 0.544623i −0.890998 0.454008i \(-0.849994\pi\)
−0.0523164 + 0.998631i \(0.516660\pi\)
\(942\) 0 0
\(943\) 1.01538e29 1.75869e29i 0.182604 0.316280i
\(944\) 1.77625e29i 0.316071i
\(945\) 0 0
\(946\) 7.85483e29 1.36844
\(947\) −1.58974e29 9.17838e28i −0.274048 0.158222i 0.356678 0.934227i \(-0.383909\pi\)
−0.630726 + 0.776006i \(0.717243\pi\)
\(948\) 0 0
\(949\) 4.32537e29 + 7.49176e29i 0.730065 + 1.26451i
\(950\) 1.28465e30 7.41694e29i 2.14560 1.23876i
\(951\) 0 0
\(952\) −5.01030e27 + 8.67809e27i −0.00819397 + 0.0141924i
\(953\) 1.07797e30i 1.74453i 0.489032 + 0.872266i \(0.337350\pi\)
−0.489032 + 0.872266i \(0.662650\pi\)
\(954\) 0 0
\(955\) 7.98958e29 1.26617
\(956\) 2.63627e29 + 1.52205e29i 0.413439 + 0.238699i
\(957\) 0 0
\(958\) 1.26237e29 + 2.18649e29i 0.193879 + 0.335808i
\(959\) 3.64490e27 2.10438e27i 0.00553987 0.00319845i
\(960\) 0 0
\(961\) 3.35757e29 5.81547e29i 0.499794 0.865668i
\(962\) 1.17042e29i 0.172422i
\(963\) 0 0
\(964\) 1.91073e29 0.275695
\(965\) 1.33372e29 + 7.70026e28i 0.190455 + 0.109959i
\(966\) 0 0
\(967\) −2.72141e29 4.71362e29i −0.380653 0.659311i 0.610503 0.792014i \(-0.290967\pi\)
−0.991156 + 0.132704i \(0.957634\pi\)
\(968\) 1.67017e29 9.64271e28i 0.231210 0.133489i
\(969\) 0 0
\(970\) 5.96185e28 1.03262e29i 0.0808469 0.140031i
\(971\) 1.22935e29i 0.164999i 0.996591 + 0.0824997i \(0.0262903\pi\)
−0.996591 + 0.0824997i \(0.973710\pi\)
\(972\) 0 0
\(973\) −5.62239e27 −0.00739252
\(974\) −6.16170e29 3.55746e29i −0.801883 0.462968i
\(975\) 0 0
\(976\) −7.15080e28 1.23855e29i −0.0911709 0.157913i
\(977\) 2.66367e29 1.53787e29i 0.336151 0.194077i −0.322418 0.946597i \(-0.604496\pi\)
0.658569 + 0.752521i \(0.271162\pi\)
\(978\) 0 0
\(979\) −8.95358e29 + 1.55080e30i −1.10706 + 1.91748i
\(980\) 6.89115e29i 0.843395i
\(981\) 0 0
\(982\) −9.25297e28 −0.110960
\(983\) −2.02787e29 1.17079e29i −0.240716 0.138977i 0.374790 0.927110i \(-0.377715\pi\)
−0.615506 + 0.788133i \(0.711048\pi\)
\(984\) 0 0
\(985\) −1.13160e30 1.96000e30i −1.31623 2.27978i
\(986\) 1.02372e30 5.91045e29i 1.17872 0.680537i
\(987\) 0 0
\(988\) 4.16182e29 7.20848e29i 0.469584 0.813344i
\(989\) 1.01337e30i 1.13190i
\(990\) 0 0
\(991\) 1.59921e30 1.75053 0.875265 0.483644i \(-0.160687\pi\)
0.875265 + 0.483644i \(0.160687\pi\)
\(992\) −2.87100e27 1.65757e27i −0.00311112 0.00179620i
\(993\) 0 0
\(994\) 1.21162e28 + 2.09859e28i 0.0128678 + 0.0222877i
\(995\) 2.04808e30 1.18246e30i 2.15336 1.24324i
\(996\) 0 0
\(997\) 8.93236e29 1.54713e30i 0.920480 1.59432i 0.121807 0.992554i \(-0.461131\pi\)
0.798674 0.601764i \(-0.205535\pi\)
\(998\) 6.53230e29i 0.666440i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.21.d.a.35.9 40
3.2 odd 2 18.21.d.a.11.12 yes 40
9.4 even 3 18.21.d.a.5.12 40
9.5 odd 6 inner 54.21.d.a.17.9 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.21.d.a.5.12 40 9.4 even 3
18.21.d.a.11.12 yes 40 3.2 odd 2
54.21.d.a.17.9 40 9.5 odd 6 inner
54.21.d.a.35.9 40 1.1 even 1 trivial