Properties

Label 54.2.e.b.7.2
Level $54$
Weight $2$
Character 54.7
Analytic conductor $0.431$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,2,Mod(7,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 54.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.431192170915\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 318 x^{8} - 678 x^{7} + 1225 x^{6} - 1698 x^{5} + 1905 x^{4} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 7.2
Root \(0.500000 + 0.677980i\) of defining polynomial
Character \(\chi\) \(=\) 54.7
Dual form 54.2.e.b.31.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 0.342020i) q^{2} +(0.552775 - 1.64147i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.177398 - 1.00607i) q^{5} +(0.0419788 + 1.73154i) q^{6} +(2.04289 + 1.71418i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-2.38888 - 1.81473i) q^{9} +O(q^{10})\) \(q+(-0.939693 + 0.342020i) q^{2} +(0.552775 - 1.64147i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.177398 - 1.00607i) q^{5} +(0.0419788 + 1.73154i) q^{6} +(2.04289 + 1.71418i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-2.38888 - 1.81473i) q^{9} +(0.510796 + 0.884725i) q^{10} +(-0.720058 + 4.08365i) q^{11} +(-0.631669 - 1.61276i) q^{12} +(-3.68356 - 1.34071i) q^{13} +(-2.50597 - 0.912098i) q^{14} +(-1.74950 - 0.264938i) q^{15} +(0.173648 - 0.984808i) q^{16} +(0.925795 + 1.60352i) q^{17} +(2.86549 + 0.888246i) q^{18} +(-3.21653 + 5.57120i) q^{19} +(-0.782585 - 0.656667i) q^{20} +(3.94305 - 2.40579i) q^{21} +(-0.720058 - 4.08365i) q^{22} +(6.69746 - 5.61984i) q^{23} +(1.14517 + 1.29945i) q^{24} +(3.71775 - 1.35315i) q^{25} +3.91997 q^{26} +(-4.29935 + 2.91815i) q^{27} +2.66680 q^{28} +(-1.17759 + 0.428609i) q^{29} +(1.73461 - 0.349405i) q^{30} +(-2.56758 + 2.15445i) q^{31} +(0.173648 + 0.984808i) q^{32} +(6.30518 + 3.43930i) q^{33} +(-1.41840 - 1.19018i) q^{34} +(1.36219 - 2.35938i) q^{35} +(-2.99648 + 0.145376i) q^{36} +(-4.58887 - 7.94816i) q^{37} +(1.11709 - 6.33533i) q^{38} +(-4.23692 + 5.30537i) q^{39} +(0.959983 + 0.349405i) q^{40} +(-3.53914 - 1.28814i) q^{41} +(-2.88242 + 3.60930i) q^{42} +(0.536567 - 3.04303i) q^{43} +(2.07332 + 3.59110i) q^{44} +(-1.40197 + 2.72531i) q^{45} +(-4.37146 + 7.57159i) q^{46} +(-2.11809 - 1.77729i) q^{47} +(-1.52055 - 0.829416i) q^{48} +(0.0194152 + 0.110109i) q^{49} +(-3.03074 + 2.54309i) q^{50} +(3.14390 - 0.633281i) q^{51} +(-3.68356 + 1.34071i) q^{52} -0.231576 q^{53} +(3.04200 - 4.21263i) q^{54} +4.23618 q^{55} +(-2.50597 + 0.912098i) q^{56} +(7.36696 + 8.35948i) q^{57} +(0.959983 - 0.805521i) q^{58} +(0.613793 + 3.48099i) q^{59} +(-1.51050 + 0.921605i) q^{60} +(0.405075 + 0.339899i) q^{61} +(1.67587 - 2.90269i) q^{62} +(-1.76942 - 7.80227i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-0.695393 + 3.94377i) q^{65} +(-7.10124 - 1.07538i) q^{66} +(7.67276 + 2.79266i) q^{67} +(1.73993 + 0.633281i) q^{68} +(-5.52263 - 14.1002i) q^{69} +(-0.473084 + 2.68299i) q^{70} +(-4.03086 - 6.98165i) q^{71} +(2.76604 - 1.16146i) q^{72} +(1.57397 - 2.72620i) q^{73} +(7.03056 + 5.89934i) q^{74} +(-0.166083 - 6.85058i) q^{75} +(1.11709 + 6.33533i) q^{76} +(-8.47113 + 7.10812i) q^{77} +(2.16686 - 6.43453i) q^{78} +(2.43473 - 0.886167i) q^{79} -1.02159 q^{80} +(2.41349 + 8.67036i) q^{81} +3.76627 q^{82} +(7.55488 - 2.74975i) q^{83} +(1.47414 - 4.37748i) q^{84} +(1.44903 - 1.21588i) q^{85} +(0.536567 + 3.04303i) q^{86} +(0.0526065 + 2.16991i) q^{87} +(-3.17652 - 2.66541i) q^{88} +(-6.12693 + 10.6122i) q^{89} +(0.385309 - 3.04046i) q^{90} +(-5.22688 - 9.05322i) q^{91} +(1.51819 - 8.61009i) q^{92} +(2.11719 + 5.40555i) q^{93} +(2.59823 + 0.945677i) q^{94} +(6.17564 + 2.24775i) q^{95} +(1.71253 + 0.259338i) q^{96} +(-1.51264 + 8.57862i) q^{97} +(-0.0559038 - 0.0968282i) q^{98} +(9.13087 - 8.44864i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9} - 3 q^{10} - 12 q^{11} - 3 q^{12} + 12 q^{13} - 3 q^{14} - 18 q^{15} - 6 q^{17} + 6 q^{18} - 9 q^{19} + 6 q^{20} + 24 q^{21} - 12 q^{22} + 30 q^{23} - 9 q^{25} + 18 q^{26} + 12 q^{28} + 15 q^{29} + 27 q^{30} + 36 q^{33} - 15 q^{34} + 3 q^{35} - 3 q^{36} - 15 q^{37} + 3 q^{38} - 42 q^{39} - 3 q^{40} - 12 q^{41} - 15 q^{42} + 9 q^{43} - 3 q^{44} + 18 q^{45} + 3 q^{46} - 9 q^{47} + 3 q^{48} - 39 q^{49} - 27 q^{50} - 27 q^{51} + 12 q^{52} - 12 q^{53} - 36 q^{54} + 18 q^{55} - 3 q^{56} + 18 q^{57} - 3 q^{58} + 12 q^{59} - 18 q^{60} - 36 q^{61} - 12 q^{62} + 3 q^{63} - 6 q^{64} - 15 q^{65} - 18 q^{66} + 36 q^{67} + 3 q^{68} + 18 q^{69} + 39 q^{70} + 12 q^{71} + 24 q^{72} - 21 q^{73} + 33 q^{74} + 30 q^{75} + 3 q^{76} + 3 q^{77} + 18 q^{78} + 39 q^{79} + 6 q^{80} + 6 q^{82} + 18 q^{83} - 9 q^{84} + 45 q^{85} + 9 q^{86} + 27 q^{87} + 6 q^{88} + 12 q^{89} + 27 q^{90} - 6 q^{91} - 6 q^{92} - 33 q^{93} + 36 q^{94} - 15 q^{95} + 6 q^{96} + 39 q^{97} - 12 q^{98} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 0.342020i −0.664463 + 0.241845i
\(3\) 0.552775 1.64147i 0.319145 0.947706i
\(4\) 0.766044 0.642788i 0.383022 0.321394i
\(5\) −0.177398 1.00607i −0.0793347 0.449929i −0.998436 0.0559078i \(-0.982195\pi\)
0.919101 0.394021i \(-0.128916\pi\)
\(6\) 0.0419788 + 1.73154i 0.0171378 + 0.706899i
\(7\) 2.04289 + 1.71418i 0.772138 + 0.647901i 0.941256 0.337695i \(-0.109647\pi\)
−0.169118 + 0.985596i \(0.554092\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) −2.38888 1.81473i −0.796293 0.604911i
\(10\) 0.510796 + 0.884725i 0.161528 + 0.279775i
\(11\) −0.720058 + 4.08365i −0.217106 + 1.23127i 0.660109 + 0.751169i \(0.270510\pi\)
−0.877215 + 0.480098i \(0.840601\pi\)
\(12\) −0.631669 1.61276i −0.182347 0.465564i
\(13\) −3.68356 1.34071i −1.02164 0.371845i −0.223746 0.974647i \(-0.571829\pi\)
−0.797891 + 0.602802i \(0.794051\pi\)
\(14\) −2.50597 0.912098i −0.669749 0.243769i
\(15\) −1.74950 0.264938i −0.451720 0.0684067i
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) 0.925795 + 1.60352i 0.224538 + 0.388912i 0.956181 0.292777i \(-0.0945793\pi\)
−0.731643 + 0.681688i \(0.761246\pi\)
\(18\) 2.86549 + 0.888246i 0.675402 + 0.209362i
\(19\) −3.21653 + 5.57120i −0.737923 + 1.27812i 0.215505 + 0.976503i \(0.430860\pi\)
−0.953429 + 0.301618i \(0.902473\pi\)
\(20\) −0.782585 0.656667i −0.174991 0.146835i
\(21\) 3.94305 2.40579i 0.860443 0.524986i
\(22\) −0.720058 4.08365i −0.153517 0.870637i
\(23\) 6.69746 5.61984i 1.39652 1.17182i 0.433897 0.900963i \(-0.357138\pi\)
0.962620 0.270854i \(-0.0873062\pi\)
\(24\) 1.14517 + 1.29945i 0.233757 + 0.265250i
\(25\) 3.71775 1.35315i 0.743550 0.270630i
\(26\) 3.91997 0.768769
\(27\) −4.29935 + 2.91815i −0.827411 + 0.561598i
\(28\) 2.66680 0.503977
\(29\) −1.17759 + 0.428609i −0.218674 + 0.0795907i −0.449034 0.893515i \(-0.648232\pi\)
0.230360 + 0.973105i \(0.426010\pi\)
\(30\) 1.73461 0.349405i 0.316695 0.0637924i
\(31\) −2.56758 + 2.15445i −0.461151 + 0.386952i −0.843554 0.537044i \(-0.819541\pi\)
0.382403 + 0.923995i \(0.375096\pi\)
\(32\) 0.173648 + 0.984808i 0.0306970 + 0.174091i
\(33\) 6.30518 + 3.43930i 1.09759 + 0.598705i
\(34\) −1.41840 1.19018i −0.243254 0.204114i
\(35\) 1.36219 2.35938i 0.230252 0.398808i
\(36\) −2.99648 + 0.145376i −0.499413 + 0.0242293i
\(37\) −4.58887 7.94816i −0.754406 1.30667i −0.945669 0.325131i \(-0.894592\pi\)
0.191263 0.981539i \(-0.438742\pi\)
\(38\) 1.11709 6.33533i 0.181216 1.02773i
\(39\) −4.23692 + 5.30537i −0.678450 + 0.849539i
\(40\) 0.959983 + 0.349405i 0.151787 + 0.0552458i
\(41\) −3.53914 1.28814i −0.552720 0.201174i 0.0505345 0.998722i \(-0.483908\pi\)
−0.603255 + 0.797549i \(0.706130\pi\)
\(42\) −2.88242 + 3.60930i −0.444768 + 0.556927i
\(43\) 0.536567 3.04303i 0.0818258 0.464057i −0.916171 0.400788i \(-0.868736\pi\)
0.997997 0.0632688i \(-0.0201526\pi\)
\(44\) 2.07332 + 3.59110i 0.312565 + 0.541379i
\(45\) −1.40197 + 2.72531i −0.208993 + 0.406266i
\(46\) −4.37146 + 7.57159i −0.644536 + 1.11637i
\(47\) −2.11809 1.77729i −0.308956 0.259244i 0.475105 0.879929i \(-0.342410\pi\)
−0.784060 + 0.620685i \(0.786855\pi\)
\(48\) −1.52055 0.829416i −0.219472 0.119716i
\(49\) 0.0194152 + 0.110109i 0.00277360 + 0.0157298i
\(50\) −3.03074 + 2.54309i −0.428611 + 0.359647i
\(51\) 3.14390 0.633281i 0.440234 0.0886771i
\(52\) −3.68356 + 1.34071i −0.510818 + 0.185923i
\(53\) −0.231576 −0.0318094 −0.0159047 0.999874i \(-0.505063\pi\)
−0.0159047 + 0.999874i \(0.505063\pi\)
\(54\) 3.04200 4.21263i 0.413964 0.573266i
\(55\) 4.23618 0.571207
\(56\) −2.50597 + 0.912098i −0.334874 + 0.121884i
\(57\) 7.36696 + 8.35948i 0.975778 + 1.10724i
\(58\) 0.959983 0.805521i 0.126052 0.105770i
\(59\) 0.613793 + 3.48099i 0.0799090 + 0.453187i 0.998339 + 0.0576042i \(0.0183462\pi\)
−0.918430 + 0.395582i \(0.870543\pi\)
\(60\) −1.51050 + 0.921605i −0.195004 + 0.118979i
\(61\) 0.405075 + 0.339899i 0.0518646 + 0.0435196i 0.668351 0.743846i \(-0.267000\pi\)
−0.616487 + 0.787365i \(0.711445\pi\)
\(62\) 1.67587 2.90269i 0.212835 0.368642i
\(63\) −1.76942 7.80227i −0.222926 0.982994i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −0.695393 + 3.94377i −0.0862529 + 0.489164i
\(66\) −7.10124 1.07538i −0.874102 0.132371i
\(67\) 7.67276 + 2.79266i 0.937377 + 0.341177i 0.765130 0.643876i \(-0.222675\pi\)
0.172247 + 0.985054i \(0.444897\pi\)
\(68\) 1.73993 + 0.633281i 0.210997 + 0.0767966i
\(69\) −5.52263 14.1002i −0.664847 1.69747i
\(70\) −0.473084 + 2.68299i −0.0565443 + 0.320679i
\(71\) −4.03086 6.98165i −0.478375 0.828570i 0.521318 0.853363i \(-0.325441\pi\)
−0.999693 + 0.0247929i \(0.992107\pi\)
\(72\) 2.76604 1.16146i 0.325981 0.136880i
\(73\) 1.57397 2.72620i 0.184219 0.319078i −0.759094 0.650981i \(-0.774358\pi\)
0.943313 + 0.331904i \(0.107691\pi\)
\(74\) 7.03056 + 5.89934i 0.817286 + 0.685784i
\(75\) −0.166083 6.85058i −0.0191776 0.791037i
\(76\) 1.11709 + 6.33533i 0.128139 + 0.726713i
\(77\) −8.47113 + 7.10812i −0.965374 + 0.810045i
\(78\) 2.16686 6.43453i 0.245349 0.728567i
\(79\) 2.43473 0.886167i 0.273928 0.0997016i −0.201404 0.979508i \(-0.564550\pi\)
0.475332 + 0.879807i \(0.342328\pi\)
\(80\) −1.02159 −0.114218
\(81\) 2.41349 + 8.67036i 0.268165 + 0.963373i
\(82\) 3.76627 0.415915
\(83\) 7.55488 2.74975i 0.829256 0.301824i 0.107702 0.994183i \(-0.465651\pi\)
0.721553 + 0.692359i \(0.243428\pi\)
\(84\) 1.47414 4.37748i 0.160842 0.477622i
\(85\) 1.44903 1.21588i 0.157169 0.131880i
\(86\) 0.536567 + 3.04303i 0.0578596 + 0.328138i
\(87\) 0.0526065 + 2.16991i 0.00564001 + 0.232639i
\(88\) −3.17652 2.66541i −0.338618 0.284134i
\(89\) −6.12693 + 10.6122i −0.649453 + 1.12489i 0.333800 + 0.942644i \(0.391669\pi\)
−0.983254 + 0.182242i \(0.941664\pi\)
\(90\) 0.385309 3.04046i 0.0406151 0.320493i
\(91\) −5.22688 9.05322i −0.547926 0.949035i
\(92\) 1.51819 8.61009i 0.158282 0.897664i
\(93\) 2.11719 + 5.40555i 0.219542 + 0.560529i
\(94\) 2.59823 + 0.945677i 0.267986 + 0.0975391i
\(95\) 6.17564 + 2.24775i 0.633607 + 0.230614i
\(96\) 1.71253 + 0.259338i 0.174784 + 0.0264686i
\(97\) −1.51264 + 8.57862i −0.153586 + 0.871027i 0.806482 + 0.591259i \(0.201369\pi\)
−0.960068 + 0.279768i \(0.909742\pi\)
\(98\) −0.0559038 0.0968282i −0.00564713 0.00978112i
\(99\) 9.13087 8.44864i 0.917687 0.849120i
\(100\) 1.97817 3.42630i 0.197817 0.342630i
\(101\) −4.14121 3.47489i −0.412066 0.345764i 0.413069 0.910700i \(-0.364457\pi\)
−0.825135 + 0.564935i \(0.808901\pi\)
\(102\) −2.73771 + 1.67037i −0.271073 + 0.165391i
\(103\) 1.87292 + 10.6218i 0.184544 + 1.04660i 0.926540 + 0.376197i \(0.122768\pi\)
−0.741996 + 0.670405i \(0.766120\pi\)
\(104\) 3.00287 2.51971i 0.294455 0.247077i
\(105\) −3.11988 3.54021i −0.304469 0.345489i
\(106\) 0.217610 0.0792037i 0.0211362 0.00769295i
\(107\) −14.8511 −1.43571 −0.717856 0.696191i \(-0.754876\pi\)
−0.717856 + 0.696191i \(0.754876\pi\)
\(108\) −1.41775 + 4.99900i −0.136423 + 0.481029i
\(109\) 17.6598 1.69150 0.845752 0.533576i \(-0.179152\pi\)
0.845752 + 0.533576i \(0.179152\pi\)
\(110\) −3.98071 + 1.44886i −0.379546 + 0.138143i
\(111\) −15.5833 + 3.13897i −1.47910 + 0.297938i
\(112\) 2.04289 1.71418i 0.193035 0.161975i
\(113\) 0.339716 + 1.92663i 0.0319578 + 0.181242i 0.996608 0.0822905i \(-0.0262235\pi\)
−0.964651 + 0.263532i \(0.915112\pi\)
\(114\) −9.78179 5.33569i −0.916149 0.499733i
\(115\) −6.84208 5.74118i −0.638027 0.535368i
\(116\) −0.626584 + 1.08528i −0.0581769 + 0.100765i
\(117\) 6.36656 + 9.88747i 0.588589 + 0.914097i
\(118\) −1.76735 3.06113i −0.162697 0.281800i
\(119\) −0.857442 + 4.86280i −0.0786016 + 0.445772i
\(120\) 1.10419 1.38265i 0.100799 0.126218i
\(121\) −5.82110 2.11871i −0.529191 0.192610i
\(122\) −0.496899 0.180856i −0.0449871 0.0163740i
\(123\) −4.07080 + 5.09735i −0.367051 + 0.459613i
\(124\) −0.582023 + 3.30082i −0.0522672 + 0.296422i
\(125\) −4.57487 7.92391i −0.409189 0.708736i
\(126\) 4.33124 + 6.72656i 0.385858 + 0.599249i
\(127\) −2.78998 + 4.83239i −0.247571 + 0.428805i −0.962851 0.270032i \(-0.912966\pi\)
0.715281 + 0.698837i \(0.246299\pi\)
\(128\) 0.766044 + 0.642788i 0.0677094 + 0.0568149i
\(129\) −4.69845 2.56287i −0.413675 0.225648i
\(130\) −0.695393 3.94377i −0.0609900 0.345891i
\(131\) 1.18532 0.994600i 0.103562 0.0868986i −0.589537 0.807742i \(-0.700690\pi\)
0.693098 + 0.720843i \(0.256245\pi\)
\(132\) 7.04079 1.41824i 0.612822 0.123442i
\(133\) −16.1211 + 5.86759i −1.39787 + 0.508785i
\(134\) −8.16518 −0.705364
\(135\) 3.69856 + 3.80779i 0.318321 + 0.327722i
\(136\) −1.85159 −0.158773
\(137\) 18.8496 6.86070i 1.61043 0.586149i 0.628906 0.777481i \(-0.283503\pi\)
0.981525 + 0.191332i \(0.0612807\pi\)
\(138\) 10.0121 + 11.3610i 0.852290 + 0.967114i
\(139\) 2.98779 2.50705i 0.253421 0.212645i −0.507223 0.861815i \(-0.669328\pi\)
0.760644 + 0.649170i \(0.224883\pi\)
\(140\) −0.473084 2.68299i −0.0399829 0.226754i
\(141\) −4.08821 + 2.49435i −0.344289 + 0.210062i
\(142\) 6.17564 + 5.18197i 0.518248 + 0.434862i
\(143\) 8.12736 14.0770i 0.679644 1.17718i
\(144\) −2.20199 + 2.03746i −0.183499 + 0.169788i
\(145\) 0.640114 + 1.10871i 0.0531586 + 0.0920734i
\(146\) −0.546635 + 3.10012i −0.0452398 + 0.256568i
\(147\) 0.191473 + 0.0289960i 0.0157925 + 0.00239155i
\(148\) −8.62426 3.13897i −0.708910 0.258022i
\(149\) 9.24128 + 3.36355i 0.757075 + 0.275553i 0.691580 0.722300i \(-0.256915\pi\)
0.0654951 + 0.997853i \(0.479137\pi\)
\(150\) 2.49910 + 6.38064i 0.204051 + 0.520977i
\(151\) 0.697011 3.95294i 0.0567219 0.321686i −0.943223 0.332160i \(-0.892223\pi\)
0.999945 + 0.0104735i \(0.00333387\pi\)
\(152\) −3.21653 5.57120i −0.260895 0.451884i
\(153\) 0.698355 5.51070i 0.0564587 0.445513i
\(154\) 5.52913 9.57674i 0.445550 0.771716i
\(155\) 2.62302 + 2.20098i 0.210686 + 0.176787i
\(156\) 0.164555 + 6.78759i 0.0131750 + 0.543442i
\(157\) −2.48817 14.1111i −0.198578 1.12619i −0.907231 0.420634i \(-0.861808\pi\)
0.708653 0.705557i \(-0.249303\pi\)
\(158\) −1.98481 + 1.66545i −0.157903 + 0.132496i
\(159\) −0.128010 + 0.380127i −0.0101518 + 0.0301460i
\(160\) 0.959983 0.349405i 0.0758933 0.0276229i
\(161\) 23.3156 1.83753
\(162\) −5.23337 7.32201i −0.411173 0.575271i
\(163\) −14.2911 −1.11937 −0.559683 0.828707i \(-0.689077\pi\)
−0.559683 + 0.828707i \(0.689077\pi\)
\(164\) −3.53914 + 1.28814i −0.276360 + 0.100587i
\(165\) 2.34166 6.95359i 0.182298 0.541336i
\(166\) −6.15879 + 5.16784i −0.478015 + 0.401102i
\(167\) −1.65921 9.40983i −0.128393 0.728154i −0.979234 0.202731i \(-0.935018\pi\)
0.850841 0.525423i \(-0.176093\pi\)
\(168\) 0.111949 + 4.61767i 0.00863704 + 0.356261i
\(169\) 1.81256 + 1.52092i 0.139428 + 0.116994i
\(170\) −0.945785 + 1.63815i −0.0725384 + 0.125640i
\(171\) 17.7941 7.47177i 1.36075 0.571381i
\(172\) −1.54498 2.67599i −0.117804 0.204042i
\(173\) 1.73345 9.83089i 0.131792 0.747429i −0.845248 0.534374i \(-0.820547\pi\)
0.977040 0.213055i \(-0.0683414\pi\)
\(174\) −0.791588 2.02106i −0.0600102 0.153216i
\(175\) 9.91449 + 3.60858i 0.749465 + 0.272783i
\(176\) 3.89657 + 1.41824i 0.293715 + 0.106904i
\(177\) 6.05325 + 0.916681i 0.454990 + 0.0689019i
\(178\) 2.12786 12.0677i 0.159490 0.904512i
\(179\) 11.2541 + 19.4927i 0.841174 + 1.45696i 0.888903 + 0.458096i \(0.151468\pi\)
−0.0477290 + 0.998860i \(0.515198\pi\)
\(180\) 0.677827 + 2.98888i 0.0505222 + 0.222778i
\(181\) −0.248078 + 0.429684i −0.0184395 + 0.0319382i −0.875098 0.483946i \(-0.839203\pi\)
0.856658 + 0.515884i \(0.172536\pi\)
\(182\) 8.00804 + 6.71954i 0.593595 + 0.498086i
\(183\) 0.781851 0.477034i 0.0577961 0.0352633i
\(184\) 1.51819 + 8.61009i 0.111923 + 0.634744i
\(185\) −7.18237 + 6.02672i −0.528058 + 0.443093i
\(186\) −3.83831 4.35543i −0.281439 0.319356i
\(187\) −7.21486 + 2.62599i −0.527603 + 0.192032i
\(188\) −2.76497 −0.201656
\(189\) −13.7853 1.40844i −1.00273 0.102449i
\(190\) −6.57197 −0.476781
\(191\) −6.75481 + 2.45855i −0.488761 + 0.177894i −0.574632 0.818412i \(-0.694855\pi\)
0.0858713 + 0.996306i \(0.472633\pi\)
\(192\) −1.69795 + 0.342020i −0.122539 + 0.0246832i
\(193\) −10.3185 + 8.65825i −0.742742 + 0.623234i −0.933572 0.358389i \(-0.883326\pi\)
0.190831 + 0.981623i \(0.438882\pi\)
\(194\) −1.51264 8.57862i −0.108601 0.615909i
\(195\) 6.08920 + 3.32149i 0.436057 + 0.237857i
\(196\) 0.0856496 + 0.0718685i 0.00611783 + 0.00513346i
\(197\) −2.53340 + 4.38797i −0.180497 + 0.312630i −0.942050 0.335473i \(-0.891104\pi\)
0.761553 + 0.648103i \(0.224437\pi\)
\(198\) −5.69060 + 11.0621i −0.404414 + 0.786147i
\(199\) 8.97242 + 15.5407i 0.636038 + 1.10165i 0.986294 + 0.164996i \(0.0527611\pi\)
−0.350256 + 0.936654i \(0.613906\pi\)
\(200\) −0.687013 + 3.89624i −0.0485791 + 0.275506i
\(201\) 8.82539 11.0509i 0.622495 0.779473i
\(202\) 5.07995 + 1.84895i 0.357424 + 0.130092i
\(203\) −3.14040 1.14301i −0.220413 0.0802238i
\(204\) 2.00130 2.50598i 0.140119 0.175454i
\(205\) −0.668128 + 3.78914i −0.0466641 + 0.264645i
\(206\) −5.39285 9.34070i −0.375738 0.650797i
\(207\) −26.1979 + 1.27101i −1.82088 + 0.0883413i
\(208\) −1.95998 + 3.39479i −0.135900 + 0.235386i
\(209\) −20.4347 17.1468i −1.41350 1.18607i
\(210\) 4.14255 + 2.25965i 0.285863 + 0.155930i
\(211\) −0.884489 5.01618i −0.0608907 0.345328i −0.999999 0.00170581i \(-0.999457\pi\)
0.939108 0.343623i \(-0.111654\pi\)
\(212\) −0.177398 + 0.148854i −0.0121837 + 0.0102234i
\(213\) −13.6884 + 2.75727i −0.937912 + 0.188925i
\(214\) 13.9555 5.07938i 0.953978 0.347220i
\(215\) −3.15669 −0.215284
\(216\) −0.377513 5.18242i −0.0256865 0.352619i
\(217\) −8.93840 −0.606778
\(218\) −16.5948 + 6.04001i −1.12394 + 0.409081i
\(219\) −3.60494 4.09061i −0.243599 0.276418i
\(220\) 3.24511 2.72297i 0.218785 0.183582i
\(221\) −1.26037 7.14790i −0.0847815 0.480820i
\(222\) 13.5699 8.27948i 0.910754 0.555682i
\(223\) 2.92334 + 2.45297i 0.195761 + 0.164263i 0.735399 0.677634i \(-0.236995\pi\)
−0.539638 + 0.841897i \(0.681439\pi\)
\(224\) −1.33340 + 2.30951i −0.0890914 + 0.154311i
\(225\) −11.3369 3.51421i −0.755791 0.234281i
\(226\) −0.978174 1.69425i −0.0650672 0.112700i
\(227\) −3.53875 + 20.0693i −0.234875 + 1.33204i 0.608001 + 0.793936i \(0.291972\pi\)
−0.842876 + 0.538108i \(0.819139\pi\)
\(228\) 11.0168 + 1.66834i 0.729605 + 0.110488i
\(229\) 1.41711 + 0.515787i 0.0936455 + 0.0340842i 0.388418 0.921483i \(-0.373022\pi\)
−0.294773 + 0.955567i \(0.595244\pi\)
\(230\) 8.39305 + 3.05482i 0.553421 + 0.201429i
\(231\) 6.98517 + 17.8343i 0.459590 + 1.17341i
\(232\) 0.217610 1.23413i 0.0142868 0.0810246i
\(233\) 10.0838 + 17.4656i 0.660610 + 1.14421i 0.980456 + 0.196741i \(0.0630357\pi\)
−0.319845 + 0.947470i \(0.603631\pi\)
\(234\) −9.36433 7.11369i −0.612165 0.465037i
\(235\) −1.41234 + 2.44624i −0.0921308 + 0.159575i
\(236\) 2.70773 + 2.27206i 0.176258 + 0.147898i
\(237\) −0.108766 4.48639i −0.00706512 0.291422i
\(238\) −0.857442 4.86280i −0.0555797 0.315208i
\(239\) −9.68541 + 8.12702i −0.626497 + 0.525693i −0.899838 0.436224i \(-0.856316\pi\)
0.273341 + 0.961917i \(0.411871\pi\)
\(240\) −0.564711 + 1.67692i −0.0364519 + 0.108245i
\(241\) 26.1605 9.52166i 1.68515 0.613344i 0.691148 0.722713i \(-0.257105\pi\)
0.994001 + 0.109369i \(0.0348831\pi\)
\(242\) 6.19469 0.398210
\(243\) 15.5663 + 0.831075i 0.998578 + 0.0533135i
\(244\) 0.528788 0.0338522
\(245\) 0.107333 0.0390661i 0.00685728 0.00249584i
\(246\) 2.08190 6.18224i 0.132737 0.394165i
\(247\) 19.3177 16.2094i 1.22915 1.03138i
\(248\) −0.582023 3.30082i −0.0369585 0.209602i
\(249\) −0.337498 13.9211i −0.0213881 0.882216i
\(250\) 7.00911 + 5.88134i 0.443295 + 0.371969i
\(251\) 0.336641 0.583079i 0.0212486 0.0368036i −0.855206 0.518289i \(-0.826569\pi\)
0.876454 + 0.481485i \(0.159903\pi\)
\(252\) −6.37066 4.83952i −0.401314 0.304861i
\(253\) 18.1269 + 31.3967i 1.13963 + 1.97389i
\(254\) 0.968950 5.49519i 0.0607973 0.344799i
\(255\) −1.19485 3.05065i −0.0748242 0.191039i
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) −28.7904 10.4789i −1.79590 0.653653i −0.998756 0.0498599i \(-0.984123\pi\)
−0.797141 0.603793i \(-0.793655\pi\)
\(258\) 5.29165 + 0.801347i 0.329444 + 0.0498897i
\(259\) 4.25007 24.1033i 0.264087 1.49771i
\(260\) 2.00230 + 3.46809i 0.124178 + 0.215082i
\(261\) 3.59094 + 1.11312i 0.222274 + 0.0689006i
\(262\) −0.773661 + 1.34002i −0.0477969 + 0.0827867i
\(263\) −4.54929 3.81731i −0.280521 0.235385i 0.491661 0.870787i \(-0.336390\pi\)
−0.772182 + 0.635402i \(0.780835\pi\)
\(264\) −6.13111 + 3.74080i −0.377344 + 0.230230i
\(265\) 0.0410811 + 0.232982i 0.00252359 + 0.0143120i
\(266\) 13.1420 11.0275i 0.805789 0.676137i
\(267\) 14.0328 + 15.9233i 0.858792 + 0.974492i
\(268\) 7.67276 2.79266i 0.468688 0.170589i
\(269\) 15.3624 0.936661 0.468330 0.883553i \(-0.344856\pi\)
0.468330 + 0.883553i \(0.344856\pi\)
\(270\) −4.77785 2.31317i −0.290771 0.140775i
\(271\) −14.5939 −0.886516 −0.443258 0.896394i \(-0.646177\pi\)
−0.443258 + 0.896394i \(0.646177\pi\)
\(272\) 1.73993 0.633281i 0.105498 0.0383983i
\(273\) −17.7499 + 3.57539i −1.07427 + 0.216393i
\(274\) −15.3663 + 12.8939i −0.928315 + 0.778949i
\(275\) 2.84880 + 16.1563i 0.171789 + 0.974264i
\(276\) −13.2940 7.25152i −0.800206 0.436490i
\(277\) 4.35786 + 3.65668i 0.261838 + 0.219709i 0.764250 0.644920i \(-0.223109\pi\)
−0.502412 + 0.864629i \(0.667554\pi\)
\(278\) −1.95014 + 3.37774i −0.116962 + 0.202584i
\(279\) 10.0434 0.487262i 0.601282 0.0291716i
\(280\) 1.36219 + 2.35938i 0.0814064 + 0.141000i
\(281\) 2.37136 13.4487i 0.141464 0.802281i −0.828675 0.559730i \(-0.810905\pi\)
0.970139 0.242551i \(-0.0779841\pi\)
\(282\) 2.98854 3.74217i 0.177965 0.222843i
\(283\) −24.3720 8.87068i −1.44876 0.527307i −0.506519 0.862229i \(-0.669068\pi\)
−0.942246 + 0.334922i \(0.891290\pi\)
\(284\) −7.57554 2.75727i −0.449525 0.163614i
\(285\) 7.10336 8.89465i 0.420767 0.526874i
\(286\) −2.82260 + 16.0078i −0.166904 + 0.946559i
\(287\) −5.02194 8.69825i −0.296436 0.513442i
\(288\) 1.37234 2.66771i 0.0808658 0.157196i
\(289\) 6.78581 11.7534i 0.399165 0.691374i
\(290\) −0.980712 0.822915i −0.0575894 0.0483232i
\(291\) 13.2454 + 7.22501i 0.776461 + 0.423538i
\(292\) −0.546635 3.10012i −0.0319894 0.181421i
\(293\) 15.2378 12.7860i 0.890199 0.746966i −0.0780511 0.996949i \(-0.524870\pi\)
0.968250 + 0.249984i \(0.0804253\pi\)
\(294\) −0.189843 + 0.0382404i −0.0110719 + 0.00223023i
\(295\) 3.39325 1.23504i 0.197562 0.0719068i
\(296\) 9.17774 0.533446
\(297\) −8.82091 19.6583i −0.511841 1.14069i
\(298\) −9.83436 −0.569689
\(299\) −32.2051 + 11.7217i −1.86247 + 0.677883i
\(300\) −4.53070 5.14110i −0.261580 0.296821i
\(301\) 6.31245 5.29678i 0.363844 0.305301i
\(302\) 0.697011 + 3.95294i 0.0401085 + 0.227466i
\(303\) −7.99310 + 4.87686i −0.459192 + 0.280168i
\(304\) 4.92802 + 4.13510i 0.282641 + 0.237164i
\(305\) 0.270103 0.467832i 0.0154661 0.0267880i
\(306\) 1.22853 + 5.41721i 0.0702304 + 0.309681i
\(307\) 4.75733 + 8.23993i 0.271515 + 0.470278i 0.969250 0.246078i \(-0.0791420\pi\)
−0.697735 + 0.716356i \(0.745809\pi\)
\(308\) −1.92025 + 10.8903i −0.109416 + 0.620531i
\(309\) 18.4708 + 2.79714i 1.05077 + 0.159124i
\(310\) −3.21761 1.17111i −0.182748 0.0665148i
\(311\) 13.5916 + 4.94693i 0.770707 + 0.280514i 0.697292 0.716787i \(-0.254388\pi\)
0.0734150 + 0.997301i \(0.476610\pi\)
\(312\) −2.47612 6.32196i −0.140183 0.357911i
\(313\) −2.32518 + 13.1867i −0.131427 + 0.745359i 0.845855 + 0.533414i \(0.179091\pi\)
−0.977281 + 0.211946i \(0.932020\pi\)
\(314\) 7.16441 + 12.4091i 0.404311 + 0.700287i
\(315\) −7.53576 + 3.16427i −0.424592 + 0.178286i
\(316\) 1.29549 2.24385i 0.0728770 0.126227i
\(317\) 19.2768 + 16.1751i 1.08269 + 0.908487i 0.996142 0.0877609i \(-0.0279711\pi\)
0.0865506 + 0.996247i \(0.472416\pi\)
\(318\) −0.00972129 0.400984i −0.000545143 0.0224861i
\(319\) −0.902354 5.11750i −0.0505221 0.286525i
\(320\) −0.782585 + 0.656667i −0.0437479 + 0.0367088i
\(321\) −8.20933 + 24.3777i −0.458200 + 1.36063i
\(322\) −21.9095 + 7.97440i −1.22097 + 0.444396i
\(323\) −11.9114 −0.662768
\(324\) 7.42204 + 5.09052i 0.412335 + 0.282806i
\(325\) −15.5088 −0.860271
\(326\) 13.4292 4.88784i 0.743777 0.270713i
\(327\) 9.76191 28.9882i 0.539835 1.60305i
\(328\) 2.88513 2.42091i 0.159305 0.133672i
\(329\) −1.28042 7.26160i −0.0705916 0.400345i
\(330\) 0.177830 + 7.33513i 0.00978921 + 0.403786i
\(331\) −16.1905 13.5855i −0.889912 0.746725i 0.0782802 0.996931i \(-0.475057\pi\)
−0.968193 + 0.250206i \(0.919502\pi\)
\(332\) 4.01987 6.96261i 0.220619 0.382123i
\(333\) −3.46152 + 27.3148i −0.189690 + 1.49684i
\(334\) 4.77749 + 8.27486i 0.261413 + 0.452780i
\(335\) 1.44848 8.21476i 0.0791392 0.448820i
\(336\) −1.68453 4.30090i −0.0918989 0.234633i
\(337\) −4.48414 1.63209i −0.244267 0.0889058i 0.216986 0.976175i \(-0.430378\pi\)
−0.461252 + 0.887269i \(0.652600\pi\)
\(338\) −2.22344 0.809266i −0.120939 0.0440183i
\(339\) 3.35030 + 0.507356i 0.181963 + 0.0275558i
\(340\) 0.328468 1.86283i 0.0178137 0.101026i
\(341\) −6.94924 12.0364i −0.376322 0.651809i
\(342\) −14.1655 + 13.1071i −0.765984 + 0.708752i
\(343\) 9.18471 15.9084i 0.495928 0.858972i
\(344\) 2.36705 + 1.98619i 0.127623 + 0.107088i
\(345\) −13.2061 + 8.05751i −0.710995 + 0.433802i
\(346\) 1.73345 + 9.83089i 0.0931909 + 0.528512i
\(347\) 12.0020 10.0708i 0.644299 0.540631i −0.261036 0.965329i \(-0.584064\pi\)
0.905335 + 0.424698i \(0.139620\pi\)
\(348\) 1.43509 + 1.62844i 0.0769291 + 0.0872933i
\(349\) −18.6170 + 6.77604i −0.996547 + 0.362713i −0.788252 0.615353i \(-0.789014\pi\)
−0.208295 + 0.978066i \(0.566791\pi\)
\(350\) −10.5508 −0.563963
\(351\) 19.7493 4.98500i 1.05414 0.266080i
\(352\) −4.14665 −0.221017
\(353\) 14.8445 5.40296i 0.790093 0.287570i 0.0847183 0.996405i \(-0.473001\pi\)
0.705375 + 0.708835i \(0.250779\pi\)
\(354\) −6.00172 + 1.20894i −0.318988 + 0.0642542i
\(355\) −6.30898 + 5.29387i −0.334846 + 0.280969i
\(356\) 2.12786 + 12.0677i 0.112776 + 0.639587i
\(357\) 7.50819 + 4.09550i 0.397375 + 0.216757i
\(358\) −17.2423 14.4680i −0.911286 0.764660i
\(359\) −2.43474 + 4.21710i −0.128501 + 0.222570i −0.923096 0.384570i \(-0.874350\pi\)
0.794595 + 0.607140i \(0.207683\pi\)
\(360\) −1.65921 2.57680i −0.0874479 0.135809i
\(361\) −11.1922 19.3854i −0.589062 1.02028i
\(362\) 0.0861567 0.488619i 0.00452830 0.0256812i
\(363\) −6.69557 + 8.38402i −0.351426 + 0.440047i
\(364\) −9.82332 3.57539i −0.514882 0.187402i
\(365\) −3.02197 1.09991i −0.158177 0.0575718i
\(366\) −0.571544 + 0.715674i −0.0298751 + 0.0374089i
\(367\) −1.47394 + 8.35914i −0.0769392 + 0.436344i 0.921868 + 0.387505i \(0.126663\pi\)
−0.998807 + 0.0488385i \(0.984448\pi\)
\(368\) −4.37146 7.57159i −0.227878 0.394696i
\(369\) 6.11694 + 9.49980i 0.318435 + 0.494540i
\(370\) 4.68796 8.11978i 0.243715 0.422127i
\(371\) −0.473084 0.396964i −0.0245613 0.0206094i
\(372\) 5.09648 + 2.77999i 0.264240 + 0.144136i
\(373\) 0.783900 + 4.44572i 0.0405888 + 0.230190i 0.998353 0.0573629i \(-0.0182692\pi\)
−0.957765 + 0.287553i \(0.907158\pi\)
\(374\) 5.88161 4.93525i 0.304131 0.255196i
\(375\) −15.5358 + 3.12940i −0.802264 + 0.161601i
\(376\) 2.59823 0.945677i 0.133993 0.0487695i
\(377\) 4.91238 0.253000
\(378\) 13.4357 3.39135i 0.691057 0.174432i
\(379\) 11.1018 0.570262 0.285131 0.958489i \(-0.407963\pi\)
0.285131 + 0.958489i \(0.407963\pi\)
\(380\) 6.17564 2.24775i 0.316803 0.115307i
\(381\) 6.39001 + 7.25091i 0.327370 + 0.371475i
\(382\) 5.50657 4.62056i 0.281741 0.236408i
\(383\) −3.82767 21.7078i −0.195585 1.10922i −0.911584 0.411114i \(-0.865140\pi\)
0.715999 0.698101i \(-0.245971\pi\)
\(384\) 1.47857 0.902126i 0.0754530 0.0460364i
\(385\) 8.65404 + 7.26160i 0.441051 + 0.370085i
\(386\) 6.73492 11.6652i 0.342798 0.593744i
\(387\) −6.80407 + 6.29569i −0.345870 + 0.320028i
\(388\) 4.35548 + 7.54391i 0.221116 + 0.382984i
\(389\) −2.95836 + 16.7777i −0.149995 + 0.850663i 0.813225 + 0.581949i \(0.197710\pi\)
−0.963220 + 0.268714i \(0.913401\pi\)
\(390\) −6.85799 1.03855i −0.347268 0.0525889i
\(391\) 15.2120 + 5.53672i 0.769305 + 0.280004i
\(392\) −0.105065 0.0382404i −0.00530657 0.00193143i
\(393\) −0.977396 2.49546i −0.0493031 0.125879i
\(394\) 0.879840 4.98982i 0.0443257 0.251383i
\(395\) −1.32346 2.29231i −0.0665907 0.115338i
\(396\) 1.56397 12.3412i 0.0785925 0.620171i
\(397\) 7.80452 13.5178i 0.391698 0.678441i −0.600976 0.799267i \(-0.705221\pi\)
0.992674 + 0.120827i \(0.0385545\pi\)
\(398\) −13.7465 11.5347i −0.689052 0.578183i
\(399\) 0.720175 + 29.7058i 0.0360538 + 1.48715i
\(400\) −0.687013 3.89624i −0.0343506 0.194812i
\(401\) −2.82242 + 2.36829i −0.140945 + 0.118267i −0.710534 0.703663i \(-0.751547\pi\)
0.569589 + 0.821929i \(0.307102\pi\)
\(402\) −4.51351 + 13.4029i −0.225113 + 0.668478i
\(403\) 12.3463 4.49370i 0.615015 0.223847i
\(404\) −5.40597 −0.268957
\(405\) 8.29486 3.96625i 0.412175 0.197084i
\(406\) 3.34195 0.165858
\(407\) 35.7618 13.0162i 1.77264 0.645190i
\(408\) −1.02351 + 3.03934i −0.0506714 + 0.150470i
\(409\) −10.3077 + 8.64918i −0.509682 + 0.427674i −0.861017 0.508576i \(-0.830172\pi\)
0.351335 + 0.936250i \(0.385728\pi\)
\(410\) −0.668128 3.78914i −0.0329965 0.187132i
\(411\) −0.842067 34.7336i −0.0415361 1.71328i
\(412\) 8.26233 + 6.93292i 0.407056 + 0.341560i
\(413\) −4.71316 + 8.16342i −0.231919 + 0.401696i
\(414\) 24.1833 10.1546i 1.18854 0.499070i
\(415\) −4.10667 7.11296i −0.201588 0.349161i
\(416\) 0.680695 3.86041i 0.0333738 0.189272i
\(417\) −2.46369 6.29022i −0.120647 0.308033i
\(418\) 25.0669 + 9.12361i 1.22606 + 0.446251i
\(419\) −1.29440 0.471124i −0.0632357 0.0230159i 0.310209 0.950668i \(-0.399601\pi\)
−0.373444 + 0.927653i \(0.621823\pi\)
\(420\) −4.66557 0.706536i −0.227657 0.0344754i
\(421\) −1.39368 + 7.90398i −0.0679240 + 0.385216i 0.931827 + 0.362903i \(0.118214\pi\)
−0.999751 + 0.0223134i \(0.992897\pi\)
\(422\) 2.54678 + 4.41116i 0.123975 + 0.214732i
\(423\) 1.83456 + 8.08950i 0.0891993 + 0.393325i
\(424\) 0.115788 0.200551i 0.00562317 0.00973961i
\(425\) 5.61168 + 4.70876i 0.272207 + 0.228409i
\(426\) 11.9198 7.27268i 0.577517 0.352363i
\(427\) 0.244874 + 1.38875i 0.0118503 + 0.0672062i
\(428\) −11.3766 + 9.54612i −0.549910 + 0.461429i
\(429\) −18.6144 21.1223i −0.898714 1.01979i
\(430\) 2.96632 1.07965i 0.143049 0.0520654i
\(431\) −34.6923 −1.67107 −0.835534 0.549438i \(-0.814842\pi\)
−0.835534 + 0.549438i \(0.814842\pi\)
\(432\) 2.12724 + 4.74077i 0.102347 + 0.228090i
\(433\) 0.605990 0.0291220 0.0145610 0.999894i \(-0.495365\pi\)
0.0145610 + 0.999894i \(0.495365\pi\)
\(434\) 8.39935 3.05711i 0.403182 0.146746i
\(435\) 2.17376 0.437864i 0.104224 0.0209940i
\(436\) 13.5282 11.3515i 0.647884 0.543639i
\(437\) 9.76663 + 55.3893i 0.467201 + 2.64963i
\(438\) 4.78660 + 2.61096i 0.228713 + 0.124756i
\(439\) −0.853735 0.716369i −0.0407466 0.0341904i 0.622187 0.782869i \(-0.286244\pi\)
−0.662934 + 0.748678i \(0.730689\pi\)
\(440\) −2.11809 + 3.66864i −0.100976 + 0.174896i
\(441\) 0.153438 0.298270i 0.00730656 0.0142033i
\(442\) 3.62908 + 6.28576i 0.172618 + 0.298983i
\(443\) 1.06252 6.02583i 0.0504817 0.286296i −0.949108 0.314952i \(-0.898012\pi\)
0.999589 + 0.0286559i \(0.00912271\pi\)
\(444\) −9.91982 + 12.4214i −0.470774 + 0.589491i
\(445\) 11.7635 + 4.28156i 0.557643 + 0.202966i
\(446\) −3.58600 1.30520i −0.169802 0.0618029i
\(447\) 10.6295 13.3100i 0.502759 0.629543i
\(448\) 0.463084 2.62628i 0.0218787 0.124080i
\(449\) −18.1443 31.4269i −0.856283 1.48313i −0.875450 0.483310i \(-0.839435\pi\)
0.0191664 0.999816i \(-0.493899\pi\)
\(450\) 11.8551 0.575158i 0.558855 0.0271132i
\(451\) 7.80870 13.5251i 0.367697 0.636870i
\(452\) 1.49865 + 1.25752i 0.0704906 + 0.0591486i
\(453\) −6.10337 3.32922i −0.286761 0.156420i
\(454\) −3.53875 20.0693i −0.166082 0.941897i
\(455\) −8.18096 + 6.86464i −0.383529 + 0.321819i
\(456\) −10.9230 + 2.20024i −0.511516 + 0.103036i
\(457\) −19.4942 + 7.09531i −0.911900 + 0.331905i −0.755011 0.655712i \(-0.772369\pi\)
−0.156889 + 0.987616i \(0.550146\pi\)
\(458\) −1.50806 −0.0704670
\(459\) −8.65963 4.19251i −0.404197 0.195689i
\(460\) −8.93170 −0.416443
\(461\) −38.8668 + 14.1464i −1.81021 + 0.658861i −0.813162 + 0.582037i \(0.802256\pi\)
−0.997045 + 0.0768243i \(0.975522\pi\)
\(462\) −12.6636 14.3697i −0.589165 0.668540i
\(463\) −18.1032 + 15.1904i −0.841328 + 0.705958i −0.957862 0.287229i \(-0.907266\pi\)
0.116534 + 0.993187i \(0.462822\pi\)
\(464\) 0.217610 + 1.23413i 0.0101023 + 0.0572931i
\(465\) 5.06279 3.08898i 0.234781 0.143248i
\(466\) −15.4492 12.9635i −0.715672 0.600520i
\(467\) 10.5877 18.3384i 0.489939 0.848599i −0.509994 0.860178i \(-0.670352\pi\)
0.999933 + 0.0115789i \(0.00368576\pi\)
\(468\) 11.2326 + 3.48190i 0.519228 + 0.160951i
\(469\) 10.8874 + 18.8576i 0.502735 + 0.870763i
\(470\) 0.490500 2.78176i 0.0226251 0.128313i
\(471\) −24.5385 3.71601i −1.13067 0.171225i
\(472\) −3.32153 1.20894i −0.152886 0.0556458i
\(473\) 12.0403 + 4.38231i 0.553613 + 0.201499i
\(474\) 1.63664 + 4.17863i 0.0751735 + 0.191931i
\(475\) −4.41960 + 25.0648i −0.202785 + 1.15005i
\(476\) 2.46891 + 4.27627i 0.113162 + 0.196003i
\(477\) 0.553208 + 0.420249i 0.0253296 + 0.0192419i
\(478\) 6.32170 10.9495i 0.289148 0.500819i
\(479\) 10.2101 + 8.56728i 0.466511 + 0.391449i 0.845520 0.533944i \(-0.179291\pi\)
−0.379009 + 0.925393i \(0.623735\pi\)
\(480\) −0.0428852 1.76893i −0.00195743 0.0807403i
\(481\) 6.24724 + 35.4299i 0.284850 + 1.61546i
\(482\) −21.3263 + 17.8949i −0.971385 + 0.815089i
\(483\) 12.8883 38.2719i 0.586437 1.74143i
\(484\) −5.82110 + 2.11871i −0.264596 + 0.0963049i
\(485\) 8.89905 0.404085
\(486\) −14.9118 + 4.54303i −0.676412 + 0.206076i
\(487\) −18.3872 −0.833202 −0.416601 0.909090i \(-0.636779\pi\)
−0.416601 + 0.909090i \(0.636779\pi\)
\(488\) −0.496899 + 0.180856i −0.0224935 + 0.00818698i
\(489\) −7.89976 + 23.4585i −0.357240 + 1.06083i
\(490\) −0.0874990 + 0.0734203i −0.00395280 + 0.00331679i
\(491\) 3.35081 + 19.0034i 0.151220 + 0.857610i 0.962161 + 0.272482i \(0.0878446\pi\)
−0.810941 + 0.585128i \(0.801044\pi\)
\(492\) 0.158103 + 6.52145i 0.00712785 + 0.294010i
\(493\) −1.77749 1.49150i −0.0800543 0.0671736i
\(494\) −12.6087 + 21.8389i −0.567292 + 0.982579i
\(495\) −10.1197 7.68754i −0.454848 0.345529i
\(496\) 1.67587 + 2.90269i 0.0752487 + 0.130335i
\(497\) 3.73326 21.1724i 0.167459 0.949710i
\(498\) 5.07845 + 12.9662i 0.227571 + 0.581028i
\(499\) 15.3641 + 5.59206i 0.687790 + 0.250335i 0.662189 0.749337i \(-0.269628\pi\)
0.0256013 + 0.999672i \(0.491850\pi\)
\(500\) −8.59794 3.12940i −0.384512 0.139951i
\(501\) −16.3632 2.47797i −0.731052 0.110708i
\(502\) −0.116914 + 0.663053i −0.00521814 + 0.0295935i
\(503\) 19.9756 + 34.5988i 0.890670 + 1.54269i 0.839074 + 0.544018i \(0.183098\pi\)
0.0515962 + 0.998668i \(0.483569\pi\)
\(504\) 7.64167 + 2.36877i 0.340387 + 0.105514i
\(505\) −2.76135 + 4.78280i −0.122878 + 0.212832i
\(506\) −27.7720 23.3035i −1.23462 1.03597i
\(507\) 3.49850 2.13455i 0.155374 0.0947987i
\(508\) 0.968950 + 5.49519i 0.0429902 + 0.243810i
\(509\) 24.7041 20.7292i 1.09499 0.918805i 0.0979108 0.995195i \(-0.468784\pi\)
0.997078 + 0.0763905i \(0.0243396\pi\)
\(510\) 2.16617 + 2.45801i 0.0959197 + 0.108843i
\(511\) 7.88865 2.87123i 0.348973 0.127016i
\(512\) 1.00000 0.0441942
\(513\) −2.42857 33.3389i −0.107224 1.47195i
\(514\) 30.6381 1.35139
\(515\) 10.3541 3.76858i 0.456256 0.166064i
\(516\) −5.24660 + 1.05683i −0.230969 + 0.0465244i
\(517\) 8.78298 7.36980i 0.386275 0.324123i
\(518\) 4.25007 + 24.1033i 0.186737 + 1.05904i
\(519\) −15.1790 8.27969i −0.666282 0.363438i
\(520\) −3.06771 2.57411i −0.134528 0.112882i
\(521\) −18.6915 + 32.3746i −0.818890 + 1.41836i 0.0876112 + 0.996155i \(0.472077\pi\)
−0.906501 + 0.422204i \(0.861257\pi\)
\(522\) −3.75509 + 0.182181i −0.164356 + 0.00797383i
\(523\) −14.5920 25.2740i −0.638062 1.10516i −0.985858 0.167586i \(-0.946403\pi\)
0.347795 0.937570i \(-0.386930\pi\)
\(524\) 0.268690 1.52382i 0.0117378 0.0665682i
\(525\) 11.4039 14.2797i 0.497706 0.623215i
\(526\) 5.58053 + 2.03115i 0.243323 + 0.0885622i
\(527\) −5.83177 2.12259i −0.254036 0.0924615i
\(528\) 4.48193 5.61216i 0.195051 0.244238i
\(529\) 9.27951 52.6267i 0.403457 2.28812i
\(530\) −0.118288 0.204881i −0.00513812 0.00889948i
\(531\) 4.85080 9.42954i 0.210507 0.409207i
\(532\) −8.57784 + 14.8573i −0.371897 + 0.644144i
\(533\) 11.3096 + 9.48989i 0.489874 + 0.411053i
\(534\) −18.6326 10.1636i −0.806311 0.439820i
\(535\) 2.63456 + 14.9413i 0.113902 + 0.645969i
\(536\) −6.25489 + 5.24848i −0.270170 + 0.226700i
\(537\) 38.2179 7.69828i 1.64922 0.332206i
\(538\) −14.4359 + 5.25424i −0.622377 + 0.226527i
\(539\) −0.463627 −0.0199698
\(540\) 5.28086 + 0.539544i 0.227252 + 0.0232183i
\(541\) 12.6132 0.542283 0.271142 0.962539i \(-0.412599\pi\)
0.271142 + 0.962539i \(0.412599\pi\)
\(542\) 13.7138 4.99141i 0.589057 0.214399i
\(543\) 0.568185 + 0.644733i 0.0243831 + 0.0276682i
\(544\) −1.41840 + 1.19018i −0.0608134 + 0.0510285i
\(545\) −3.13281 17.7671i −0.134195 0.761057i
\(546\) 15.4566 9.43060i 0.661482 0.403592i
\(547\) 22.3688 + 18.7696i 0.956419 + 0.802531i 0.980367 0.197182i \(-0.0631790\pi\)
−0.0239476 + 0.999713i \(0.507623\pi\)
\(548\) 10.0297 17.3719i 0.428446 0.742091i
\(549\) −0.350851 1.54708i −0.0149740 0.0660278i
\(550\) −8.20279 14.2077i −0.349768 0.605816i
\(551\) 1.39990 7.93924i 0.0596379 0.338223i
\(552\) 14.9725 + 2.26737i 0.637270 + 0.0965057i
\(553\) 6.49292 + 2.36323i 0.276107 + 0.100495i
\(554\) −5.34571 1.94568i −0.227117 0.0826639i
\(555\) 5.92248 + 15.1211i 0.251395 + 0.641855i
\(556\) 0.677277 3.84103i 0.0287229 0.162896i
\(557\) −21.6137 37.4361i −0.915804 1.58622i −0.805720 0.592296i \(-0.798222\pi\)
−0.110083 0.993922i \(-0.535112\pi\)
\(558\) −9.27105 + 3.89292i −0.392475 + 0.164800i
\(559\) −6.05629 + 10.4898i −0.256154 + 0.443671i
\(560\) −2.08700 1.75120i −0.0881917 0.0740016i
\(561\) 0.322308 + 13.2946i 0.0136079 + 0.561298i
\(562\) 2.37136 + 13.4487i 0.100030 + 0.567298i
\(563\) −5.18375 + 4.34968i −0.218469 + 0.183317i −0.745454 0.666558i \(-0.767767\pi\)
0.526984 + 0.849875i \(0.323323\pi\)
\(564\) −1.52841 + 4.53863i −0.0643576 + 0.191111i
\(565\) 1.87806 0.683558i 0.0790106 0.0287575i
\(566\) 25.9361 1.09018
\(567\) −9.93211 + 21.8497i −0.417109 + 0.917601i
\(568\) 8.06172 0.338262
\(569\) 1.78951 0.651329i 0.0750203 0.0273051i −0.304237 0.952596i \(-0.598402\pi\)
0.379258 + 0.925291i \(0.376179\pi\)
\(570\) −3.63282 + 10.7877i −0.152162 + 0.451848i
\(571\) −8.59231 + 7.20980i −0.359577 + 0.301721i −0.804622 0.593787i \(-0.797632\pi\)
0.445045 + 0.895508i \(0.353188\pi\)
\(572\) −2.82260 16.0078i −0.118019 0.669319i
\(573\) 0.301757 + 12.4469i 0.0126061 + 0.519976i
\(574\) 7.69406 + 6.45608i 0.321144 + 0.269472i
\(575\) 17.2950 29.9558i 0.721252 1.24924i
\(576\) −0.377165 + 2.97620i −0.0157152 + 0.124008i
\(577\) −19.6634 34.0581i −0.818600 1.41786i −0.906714 0.421746i \(-0.861417\pi\)
0.0881143 0.996110i \(-0.471916\pi\)
\(578\) −2.35669 + 13.3654i −0.0980252 + 0.555929i
\(579\) 8.50849 + 21.7236i 0.353601 + 0.902803i
\(580\) 1.20302 + 0.437864i 0.0499527 + 0.0181813i
\(581\) 20.1473 + 7.33303i 0.835852 + 0.304225i
\(582\) −14.9177 2.25908i −0.618360 0.0936420i
\(583\) 0.166748 0.945677i 0.00690601 0.0391659i
\(584\) 1.57397 + 2.72620i 0.0651314 + 0.112811i
\(585\) 8.81810 8.15924i 0.364583 0.337343i
\(586\) −9.94574 + 17.2265i −0.410855 + 0.711621i
\(587\) 5.98030 + 5.01807i 0.246834 + 0.207118i 0.757807 0.652478i \(-0.226271\pi\)
−0.510974 + 0.859596i \(0.670715\pi\)
\(588\) 0.165315 0.100864i 0.00681749 0.00415958i
\(589\) −3.74419 21.2344i −0.154277 0.874947i
\(590\) −2.76620 + 2.32112i −0.113883 + 0.0955589i
\(591\) 5.80235 + 6.58407i 0.238677 + 0.270832i
\(592\) −8.62426 + 3.13897i −0.354455 + 0.129011i
\(593\) −12.2602 −0.503465 −0.251733 0.967797i \(-0.581000\pi\)
−0.251733 + 0.967797i \(0.581000\pi\)
\(594\) 15.0125 + 15.4558i 0.615969 + 0.634160i
\(595\) 5.04444 0.206802
\(596\) 9.24128 3.36355i 0.378537 0.137776i
\(597\) 30.4694 6.13750i 1.24703 0.251191i
\(598\) 26.2538 22.0296i 1.07360 0.900856i
\(599\) −3.40179 19.2925i −0.138993 0.788271i −0.971995 0.235001i \(-0.924491\pi\)
0.833002 0.553270i \(-0.186620\pi\)
\(600\) 6.01582 + 3.28146i 0.245595 + 0.133965i
\(601\) −3.14380 2.63796i −0.128238 0.107605i 0.576413 0.817159i \(-0.304452\pi\)
−0.704651 + 0.709554i \(0.748896\pi\)
\(602\) −4.12016 + 7.13633i −0.167925 + 0.290855i
\(603\) −13.2614 20.5953i −0.540045 0.838707i
\(604\) −2.00696 3.47616i −0.0816622 0.141443i
\(605\) −1.09892 + 6.23230i −0.0446776 + 0.253379i
\(606\) 5.84307 7.31655i 0.237359 0.297215i
\(607\) −15.2753 5.55976i −0.620006 0.225664i 0.0128694 0.999917i \(-0.495903\pi\)
−0.632876 + 0.774253i \(0.718126\pi\)
\(608\) −6.04511 2.20024i −0.245161 0.0892315i
\(609\) −3.61216 + 4.52306i −0.146372 + 0.183284i
\(610\) −0.0938059 + 0.531999i −0.00379809 + 0.0215400i
\(611\) 5.41930 + 9.38650i 0.219241 + 0.379737i
\(612\) −3.00724 4.67033i −0.121560 0.188787i
\(613\) −8.52562 + 14.7668i −0.344347 + 0.596426i −0.985235 0.171208i \(-0.945233\pi\)
0.640888 + 0.767634i \(0.278566\pi\)
\(614\) −7.28865 6.11590i −0.294146 0.246818i
\(615\) 5.85045 + 3.19126i 0.235913 + 0.128684i
\(616\) −1.92025 10.8903i −0.0773690 0.438781i
\(617\) −21.2848 + 17.8601i −0.856895 + 0.719020i −0.961297 0.275515i \(-0.911152\pi\)
0.104402 + 0.994535i \(0.466707\pi\)
\(618\) −18.3136 + 3.68893i −0.736679 + 0.148391i
\(619\) −7.09199 + 2.58127i −0.285051 + 0.103750i −0.480589 0.876946i \(-0.659577\pi\)
0.195538 + 0.980696i \(0.437355\pi\)
\(620\) 3.42411 0.137516
\(621\) −12.3952 + 43.7058i −0.497404 + 1.75385i
\(622\) −14.4638 −0.579947
\(623\) −30.7078 + 11.1767i −1.23028 + 0.447786i
\(624\) 4.48903 + 5.09382i 0.179705 + 0.203916i
\(625\) 7.99324 6.70713i 0.319730 0.268285i
\(626\) −2.32518 13.1867i −0.0929329 0.527048i
\(627\) −39.4418 + 24.0648i −1.57516 + 0.961056i
\(628\) −10.9765 9.21039i −0.438011 0.367534i
\(629\) 8.49671 14.7167i 0.338786 0.586794i
\(630\) 5.99905 5.55082i 0.239008 0.221150i
\(631\) 12.3054 + 21.3136i 0.489872 + 0.848483i 0.999932 0.0116559i \(-0.00371028\pi\)
−0.510060 + 0.860139i \(0.670377\pi\)
\(632\) −0.449919 + 2.55162i −0.0178968 + 0.101498i
\(633\) −8.72286 1.32096i −0.346703 0.0525033i
\(634\) −23.6465 8.60661i −0.939122 0.341812i
\(635\) 5.35667 + 1.94967i 0.212573 + 0.0773702i
\(636\) 0.146280 + 0.373477i 0.00580036 + 0.0148093i
\(637\) 0.0761068 0.431623i 0.00301546 0.0171015i
\(638\) 2.59823 + 4.50026i 0.102865 + 0.178167i
\(639\) −3.04060 + 23.9933i −0.120284 + 0.949159i
\(640\) 0.510796 0.884725i 0.0201910 0.0349718i
\(641\) 23.1248 + 19.4040i 0.913373 + 0.766411i 0.972758 0.231824i \(-0.0744695\pi\)
−0.0593849 + 0.998235i \(0.518914\pi\)
\(642\) −0.623432 25.7153i −0.0246049 1.01490i
\(643\) −2.06856 11.7314i −0.0815762 0.462641i −0.998043 0.0625308i \(-0.980083\pi\)
0.916467 0.400111i \(-0.131028\pi\)
\(644\) 17.8608 14.9870i 0.703813 0.590569i
\(645\) −1.74494 + 5.18163i −0.0687069 + 0.204026i
\(646\) 11.1931 4.07394i 0.440385 0.160287i
\(647\) 20.4896 0.805528 0.402764 0.915304i \(-0.368049\pi\)
0.402764 + 0.915304i \(0.368049\pi\)
\(648\) −8.71549 2.24503i −0.342377 0.0881933i
\(649\) −14.6571 −0.575343
\(650\) 14.5735 5.30431i 0.571618 0.208052i
\(651\) −4.94093 + 14.6722i −0.193650 + 0.575047i
\(652\) −10.9476 + 9.18614i −0.428742 + 0.359757i
\(653\) −8.53662 48.4136i −0.334064 1.89457i −0.436286 0.899808i \(-0.643706\pi\)
0.102222 0.994762i \(-0.467405\pi\)
\(654\) 0.741338 + 30.5787i 0.0289886 + 1.19572i
\(655\) −1.21091 1.01608i −0.0473142 0.0397014i
\(656\) −1.88313 + 3.26169i −0.0735241 + 0.127347i
\(657\) −8.70735 + 3.65622i −0.339706 + 0.142643i
\(658\) 3.68681 + 6.38574i 0.143727 + 0.248942i
\(659\) 4.93483 27.9868i 0.192234 1.09021i −0.724070 0.689727i \(-0.757731\pi\)
0.916303 0.400485i \(-0.131158\pi\)
\(660\) −2.67587 6.83195i −0.104158 0.265933i
\(661\) −40.5404 14.7555i −1.57684 0.573923i −0.602326 0.798251i \(-0.705759\pi\)
−0.974514 + 0.224328i \(0.927981\pi\)
\(662\) 19.8606 + 7.22868i 0.771905 + 0.280951i
\(663\) −12.4298 1.88232i −0.482733 0.0731032i
\(664\) −1.39609 + 7.91759i −0.0541786 + 0.307262i
\(665\) 8.76306 + 15.1781i 0.339817 + 0.588580i
\(666\) −6.08943 26.8514i −0.235961 1.04047i
\(667\) −5.47817 + 9.48848i −0.212116 + 0.367395i
\(668\) −7.31955 6.14183i −0.283202 0.237634i
\(669\) 5.64244 3.44264i 0.218149 0.133100i
\(670\) 1.44848 + 8.21476i 0.0559598 + 0.317364i
\(671\) −1.67971 + 1.40944i −0.0648443 + 0.0544108i
\(672\) 3.05394 + 3.46538i 0.117808 + 0.133680i
\(673\) 33.9219 12.3466i 1.30759 0.475926i 0.408132 0.912923i \(-0.366180\pi\)
0.899463 + 0.436997i \(0.143958\pi\)
\(674\) 4.77192 0.183808
\(675\) −12.0352 + 16.6666i −0.463236 + 0.641498i
\(676\) 2.36613 0.0910052
\(677\) −40.5216 + 14.7487i −1.55737 + 0.566837i −0.970132 0.242576i \(-0.922008\pi\)
−0.587239 + 0.809413i \(0.699785\pi\)
\(678\) −3.32177 + 0.669111i −0.127572 + 0.0256970i
\(679\) −17.7955 + 14.9322i −0.682928 + 0.573045i
\(680\) 0.328468 + 1.86283i 0.0125962 + 0.0714364i
\(681\) 30.9871 + 16.9026i 1.18743 + 0.647708i
\(682\) 10.6468 + 8.93377i 0.407689 + 0.342092i
\(683\) −0.0895535 + 0.155111i −0.00342667 + 0.00593517i −0.867734 0.497029i \(-0.834424\pi\)
0.864307 + 0.502965i \(0.167757\pi\)
\(684\) 8.82834 17.1616i 0.337560 0.656189i
\(685\) −10.2462 17.7470i −0.391489 0.678078i
\(686\) −3.18982 + 18.0903i −0.121788 + 0.690692i
\(687\) 1.63000 2.04104i 0.0621882 0.0778706i
\(688\) −2.90362 1.05683i −0.110700 0.0402913i
\(689\) 0.853026 + 0.310476i 0.0324977 + 0.0118282i
\(690\) 9.65388 12.0884i 0.367517 0.460196i
\(691\) −5.97830 + 33.9046i −0.227425 + 1.28979i 0.630568 + 0.776134i \(0.282822\pi\)
−0.857994 + 0.513660i \(0.828289\pi\)
\(692\) −4.99127 8.64514i −0.189740 0.328639i
\(693\) 33.1358 1.60761i 1.25873 0.0610680i
\(694\) −7.83372 + 13.5684i −0.297364 + 0.515050i
\(695\) −3.05230 2.56119i −0.115780 0.0971514i
\(696\) −1.90550 1.03940i −0.0722280 0.0393983i
\(697\) −1.21095 6.86764i −0.0458680 0.260130i
\(698\) 15.1767 12.7348i 0.574448 0.482019i
\(699\) 34.2434 6.89771i 1.29521 0.260895i
\(700\) 9.91449 3.60858i 0.374732 0.136391i
\(701\) −17.3215 −0.654224 −0.327112 0.944985i \(-0.606076\pi\)
−0.327112 + 0.944985i \(0.606076\pi\)
\(702\) −16.8533 + 11.4390i −0.636087 + 0.431739i
\(703\) 59.0410 2.22677
\(704\) 3.89657 1.41824i 0.146858 0.0534518i
\(705\) 3.23474 + 3.67054i 0.121827 + 0.138240i
\(706\) −12.1013 + 10.1542i −0.455440 + 0.382160i
\(707\) −2.50342 14.1976i −0.0941508 0.533956i
\(708\) 5.22629 3.18874i 0.196416 0.119840i
\(709\) −28.0038 23.4980i −1.05171 0.882485i −0.0584333 0.998291i \(-0.518611\pi\)
−0.993272 + 0.115806i \(0.963055\pi\)
\(710\) 4.11790 7.13241i 0.154542 0.267674i
\(711\) −7.42442 2.30143i −0.278438 0.0863103i
\(712\) −6.12693 10.6122i −0.229616 0.397707i
\(713\) −5.08858 + 28.8588i −0.190569 + 1.08077i
\(714\) −8.45613 1.28056i −0.316463 0.0479239i
\(715\) −15.6043 5.67948i −0.583566 0.212401i
\(716\) 21.1509 + 7.69828i 0.790445 + 0.287698i
\(717\) 7.98645 + 20.3908i 0.298259 + 0.761507i
\(718\) 0.845577 4.79551i 0.0315567 0.178967i
\(719\) 22.8804 + 39.6301i 0.853296 + 1.47795i 0.878216 + 0.478263i \(0.158734\pi\)
−0.0249200 + 0.999689i \(0.507933\pi\)
\(720\) 2.44046 + 1.85392i 0.0909506 + 0.0690914i
\(721\) −14.3816 + 24.9097i −0.535601 + 0.927687i
\(722\) 17.1474 + 14.3884i 0.638160 + 0.535480i
\(723\) −1.16867 48.2052i −0.0434632 1.79277i
\(724\) 0.0861567 + 0.488619i 0.00320199 + 0.0181594i
\(725\) −3.79803 + 3.18692i −0.141055 + 0.118359i
\(726\) 3.42427 10.1684i 0.127087 0.377386i
\(727\) −8.24873 + 3.00229i −0.305928 + 0.111349i −0.490423 0.871485i \(-0.663158\pi\)
0.184494 + 0.982834i \(0.440935\pi\)
\(728\) 10.4538 0.387442
\(729\) 9.96884 25.0923i 0.369216 0.929343i
\(730\) 3.21592 0.119026
\(731\) 5.37632 1.95682i 0.198850 0.0723756i
\(732\) 0.292301 0.867993i 0.0108038 0.0320819i
\(733\) 25.4717 21.3733i 0.940820 0.789441i −0.0369082 0.999319i \(-0.511751\pi\)
0.977728 + 0.209877i \(0.0673065\pi\)
\(734\) −1.47394 8.35914i −0.0544042 0.308542i
\(735\) −0.00479489 0.197780i −0.000176862 0.00729522i
\(736\) 6.69746 + 5.61984i 0.246872 + 0.207150i
\(737\) −16.9291 + 29.3220i −0.623590 + 1.08009i
\(738\) −8.99716 6.83477i −0.331190 0.251591i
\(739\) 1.03598 + 1.79437i 0.0381091 + 0.0660069i 0.884451 0.466633i \(-0.154533\pi\)
−0.846342 + 0.532640i \(0.821200\pi\)
\(740\) −1.62811 + 9.23347i −0.0598505 + 0.339429i
\(741\) −15.9291 40.6696i −0.585169 1.49404i
\(742\) 0.580323 + 0.211220i 0.0213043 + 0.00775414i
\(743\) −3.31599 1.20692i −0.121652 0.0442777i 0.280477 0.959861i \(-0.409507\pi\)
−0.402129 + 0.915583i \(0.631730\pi\)
\(744\) −5.73993 0.869233i −0.210436 0.0318676i
\(745\) 1.74459 9.89408i 0.0639169 0.362491i
\(746\) −2.25715 3.90950i −0.0826401 0.143137i
\(747\) −23.0378 7.14126i −0.842908 0.261285i
\(748\) −3.83895 + 6.64925i −0.140366 + 0.243121i
\(749\) −30.3391 25.4576i −1.10857 0.930199i
\(750\) 13.5285 8.25422i 0.493992 0.301401i
\(751\) −6.65211 37.7260i −0.242739 1.37664i −0.825685 0.564131i \(-0.809211\pi\)
0.582946 0.812511i \(-0.301900\pi\)
\(752\) −2.11809 + 1.77729i −0.0772389 + 0.0648111i
\(753\) −0.771023 0.874899i −0.0280976 0.0318831i
\(754\) −4.61613 + 1.68013i −0.168109 + 0.0611868i
\(755\) −4.10060 −0.149236
\(756\) −11.4655 + 7.78210i −0.416996 + 0.283032i
\(757\) 12.3900 0.450322 0.225161 0.974322i \(-0.427709\pi\)
0.225161 + 0.974322i \(0.427709\pi\)
\(758\) −10.4323 + 3.79705i −0.378918 + 0.137915i
\(759\) 61.5570 12.3995i 2.23438 0.450074i
\(760\) −5.03442 + 4.22438i −0.182618 + 0.153234i
\(761\) −1.41032 7.99834i −0.0511241 0.289939i 0.948517 0.316726i \(-0.102584\pi\)
−0.999641 + 0.0267867i \(0.991473\pi\)
\(762\) −8.48460 4.62811i −0.307365 0.167659i
\(763\) 36.0770 + 30.2722i 1.30607 + 1.09593i