Properties

Label 54.2.e.b.43.2
Level $54$
Weight $2$
Character 54.43
Analytic conductor $0.431$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,2,Mod(7,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 54.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.431192170915\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 318 x^{8} - 678 x^{7} + 1225 x^{6} - 1698 x^{5} + 1905 x^{4} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 43.2
Root \(0.500000 + 0.168222i\) of defining polynomial
Character \(\chi\) \(=\) 54.43
Dual form 54.2.e.b.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 + 0.642788i) q^{2} +(0.247510 - 1.71428i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-1.96209 - 0.714144i) q^{5} +(1.29152 - 1.15411i) q^{6} +(-0.696712 + 3.95125i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-2.87748 - 0.848600i) q^{9} +O(q^{10})\) \(q+(0.766044 + 0.642788i) q^{2} +(0.247510 - 1.71428i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-1.96209 - 0.714144i) q^{5} +(1.29152 - 1.15411i) q^{6} +(-0.696712 + 3.95125i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-2.87748 - 0.848600i) q^{9} +(-1.04401 - 1.80828i) q^{10} +(-0.199635 + 0.0726611i) q^{11} +(1.73121 - 0.0539310i) q^{12} +(3.98269 - 3.34187i) q^{13} +(-3.07353 + 2.57900i) q^{14} +(-1.70988 + 3.18681i) q^{15} +(-0.939693 + 0.342020i) q^{16} +(-1.89276 - 3.27836i) q^{17} +(-1.65881 - 2.49967i) q^{18} +(0.636405 - 1.10229i) q^{19} +(0.362580 - 2.05630i) q^{20} +(6.60109 + 2.17233i) q^{21} +(-0.199635 - 0.0726611i) q^{22} +(0.144031 + 0.816841i) q^{23} +(1.36085 + 1.07149i) q^{24} +(-0.490411 - 0.411503i) q^{25} +5.19903 q^{26} +(-2.16694 + 4.72275i) q^{27} -4.01220 q^{28} +(7.05621 + 5.92087i) q^{29} +(-3.35828 + 1.34215i) q^{30} +(0.614003 + 3.48219i) q^{31} +(-0.939693 - 0.342020i) q^{32} +(0.0751495 + 0.360213i) q^{33} +(0.657349 - 3.72801i) q^{34} +(4.18878 - 7.25517i) q^{35} +(0.336039 - 2.98112i) q^{36} +(-1.77730 - 3.07838i) q^{37} +(1.19605 - 0.435326i) q^{38} +(-4.74313 - 7.65457i) q^{39} +(1.59951 - 1.34215i) q^{40} +(2.09850 - 1.76085i) q^{41} +(3.66038 + 5.90720i) q^{42} +(-6.48062 + 2.35875i) q^{43} +(-0.106223 - 0.183984i) q^{44} +(5.03986 + 3.71997i) q^{45} +(-0.414721 + 0.718318i) q^{46} +(-0.221796 + 1.25787i) q^{47} +(0.353733 + 1.69554i) q^{48} +(-8.54912 - 3.11163i) q^{49} +(-0.111167 - 0.630460i) q^{50} +(-6.08849 + 2.43329i) q^{51} +(3.98269 + 3.34187i) q^{52} -11.2992 q^{53} +(-4.69570 + 2.22496i) q^{54} +0.443592 q^{55} +(-3.07353 - 2.57900i) q^{56} +(-1.73210 - 1.36380i) q^{57} +(1.59951 + 9.07129i) q^{58} +(8.04363 + 2.92764i) q^{59} +(-3.43531 - 1.13052i) q^{60} +(0.492064 - 2.79063i) q^{61} +(-1.76795 + 3.06218i) q^{62} +(5.35781 - 10.7784i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-10.2010 + 3.71285i) q^{65} +(-0.173973 + 0.324244i) q^{66} +(7.47702 - 6.27396i) q^{67} +(2.89988 - 2.43329i) q^{68} +(1.43594 - 0.0447327i) q^{69} +(7.87232 - 2.86529i) q^{70} +(5.86207 + 10.1534i) q^{71} +(2.17365 - 2.06767i) q^{72} +(-0.375162 + 0.649800i) q^{73} +(0.617250 - 3.50060i) q^{74} +(-0.826812 + 0.738848i) q^{75} +(1.19605 + 0.435326i) q^{76} +(-0.148014 - 0.839430i) q^{77} +(1.28681 - 8.91256i) q^{78} +(-1.81383 - 1.52198i) q^{79} +2.08802 q^{80} +(7.55976 + 4.88366i) q^{81} +2.73940 q^{82} +(-8.73328 - 7.32809i) q^{83} +(-0.993061 + 6.87802i) q^{84} +(1.37256 + 7.78415i) q^{85} +(-6.48062 - 2.35875i) q^{86} +(11.8965 - 10.6308i) q^{87} +(0.0368910 - 0.209219i) q^{88} +(-2.69813 + 4.67329i) q^{89} +(1.46961 + 6.08922i) q^{90} +(10.4298 + 18.0649i) q^{91} +(-0.779421 + 0.283686i) q^{92} +(6.12140 - 0.190695i) q^{93} +(-0.978448 + 0.821016i) q^{94} +(-2.03588 + 1.70830i) q^{95} +(-0.818900 + 1.52624i) q^{96} +(11.8055 - 4.29685i) q^{97} +(-4.54889 - 7.87892i) q^{98} +(0.636104 - 0.0396706i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9} - 3 q^{10} - 12 q^{11} - 3 q^{12} + 12 q^{13} - 3 q^{14} - 18 q^{15} - 6 q^{17} + 6 q^{18} - 9 q^{19} + 6 q^{20} + 24 q^{21} - 12 q^{22} + 30 q^{23} - 9 q^{25} + 18 q^{26} + 12 q^{28} + 15 q^{29} + 27 q^{30} + 36 q^{33} - 15 q^{34} + 3 q^{35} - 3 q^{36} - 15 q^{37} + 3 q^{38} - 42 q^{39} - 3 q^{40} - 12 q^{41} - 15 q^{42} + 9 q^{43} - 3 q^{44} + 18 q^{45} + 3 q^{46} - 9 q^{47} + 3 q^{48} - 39 q^{49} - 27 q^{50} - 27 q^{51} + 12 q^{52} - 12 q^{53} - 36 q^{54} + 18 q^{55} - 3 q^{56} + 18 q^{57} - 3 q^{58} + 12 q^{59} - 18 q^{60} - 36 q^{61} - 12 q^{62} + 3 q^{63} - 6 q^{64} - 15 q^{65} - 18 q^{66} + 36 q^{67} + 3 q^{68} + 18 q^{69} + 39 q^{70} + 12 q^{71} + 24 q^{72} - 21 q^{73} + 33 q^{74} + 30 q^{75} + 3 q^{76} + 3 q^{77} + 18 q^{78} + 39 q^{79} + 6 q^{80} + 6 q^{82} + 18 q^{83} - 9 q^{84} + 45 q^{85} + 9 q^{86} + 27 q^{87} + 6 q^{88} + 12 q^{89} + 27 q^{90} - 6 q^{91} - 6 q^{92} - 33 q^{93} + 36 q^{94} - 15 q^{95} + 6 q^{96} + 39 q^{97} - 12 q^{98} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 + 0.642788i 0.541675 + 0.454519i
\(3\) 0.247510 1.71428i 0.142900 0.989737i
\(4\) 0.173648 + 0.984808i 0.0868241 + 0.492404i
\(5\) −1.96209 0.714144i −0.877475 0.319375i −0.136285 0.990670i \(-0.543516\pi\)
−0.741190 + 0.671295i \(0.765738\pi\)
\(6\) 1.29152 1.15411i 0.527260 0.471165i
\(7\) −0.696712 + 3.95125i −0.263332 + 1.49343i 0.510410 + 0.859931i \(0.329494\pi\)
−0.773742 + 0.633501i \(0.781617\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) −2.87748 0.848600i −0.959159 0.282867i
\(10\) −1.04401 1.80828i −0.330144 0.571827i
\(11\) −0.199635 + 0.0726611i −0.0601921 + 0.0219081i −0.371941 0.928256i \(-0.621308\pi\)
0.311749 + 0.950165i \(0.399085\pi\)
\(12\) 1.73121 0.0539310i 0.499758 0.0155685i
\(13\) 3.98269 3.34187i 1.10460 0.926868i 0.106873 0.994273i \(-0.465916\pi\)
0.997726 + 0.0674046i \(0.0214718\pi\)
\(14\) −3.07353 + 2.57900i −0.821435 + 0.689266i
\(15\) −1.70988 + 3.18681i −0.441488 + 0.822831i
\(16\) −0.939693 + 0.342020i −0.234923 + 0.0855050i
\(17\) −1.89276 3.27836i −0.459062 0.795119i 0.539850 0.841762i \(-0.318481\pi\)
−0.998912 + 0.0466426i \(0.985148\pi\)
\(18\) −1.65881 2.49967i −0.390984 0.589178i
\(19\) 0.636405 1.10229i 0.146001 0.252882i −0.783745 0.621083i \(-0.786693\pi\)
0.929746 + 0.368201i \(0.120026\pi\)
\(20\) 0.362580 2.05630i 0.0810754 0.459802i
\(21\) 6.60109 + 2.17233i 1.44048 + 0.474041i
\(22\) −0.199635 0.0726611i −0.0425622 0.0154914i
\(23\) 0.144031 + 0.816841i 0.0300326 + 0.170323i 0.996135 0.0878361i \(-0.0279952\pi\)
−0.966102 + 0.258159i \(0.916884\pi\)
\(24\) 1.36085 + 1.07149i 0.277782 + 0.218716i
\(25\) −0.490411 0.411503i −0.0980821 0.0823007i
\(26\) 5.19903 1.01961
\(27\) −2.16694 + 4.72275i −0.417028 + 0.908894i
\(28\) −4.01220 −0.758235
\(29\) 7.05621 + 5.92087i 1.31031 + 1.09948i 0.988265 + 0.152752i \(0.0488134\pi\)
0.322041 + 0.946726i \(0.395631\pi\)
\(30\) −3.35828 + 1.34215i −0.613136 + 0.245042i
\(31\) 0.614003 + 3.48219i 0.110278 + 0.625419i 0.988980 + 0.148048i \(0.0472991\pi\)
−0.878702 + 0.477371i \(0.841590\pi\)
\(32\) −0.939693 0.342020i −0.166116 0.0604612i
\(33\) 0.0751495 + 0.360213i 0.0130818 + 0.0627050i
\(34\) 0.657349 3.72801i 0.112734 0.639349i
\(35\) 4.18878 7.25517i 0.708032 1.22635i
\(36\) 0.336039 2.98112i 0.0560066 0.496853i
\(37\) −1.77730 3.07838i −0.292187 0.506082i 0.682140 0.731222i \(-0.261049\pi\)
−0.974326 + 0.225140i \(0.927716\pi\)
\(38\) 1.19605 0.435326i 0.194025 0.0706193i
\(39\) −4.74313 7.65457i −0.759509 1.22571i
\(40\) 1.59951 1.34215i 0.252905 0.212213i
\(41\) 2.09850 1.76085i 0.327730 0.274998i −0.464044 0.885812i \(-0.653602\pi\)
0.791774 + 0.610814i \(0.209158\pi\)
\(42\) 3.66038 + 5.90720i 0.564809 + 0.911500i
\(43\) −6.48062 + 2.35875i −0.988286 + 0.359707i −0.785056 0.619425i \(-0.787366\pi\)
−0.203229 + 0.979131i \(0.565144\pi\)
\(44\) −0.106223 0.183984i −0.0160138 0.0277367i
\(45\) 5.03986 + 3.71997i 0.751298 + 0.554540i
\(46\) −0.414721 + 0.718318i −0.0611473 + 0.105910i
\(47\) −0.221796 + 1.25787i −0.0323523 + 0.183479i −0.996702 0.0811536i \(-0.974140\pi\)
0.964349 + 0.264633i \(0.0852507\pi\)
\(48\) 0.353733 + 1.69554i 0.0510570 + 0.244731i
\(49\) −8.54912 3.11163i −1.22130 0.444518i
\(50\) −0.111167 0.630460i −0.0157214 0.0891605i
\(51\) −6.08849 + 2.43329i −0.852559 + 0.340728i
\(52\) 3.98269 + 3.34187i 0.552299 + 0.463434i
\(53\) −11.2992 −1.55207 −0.776036 0.630689i \(-0.782772\pi\)
−0.776036 + 0.630689i \(0.782772\pi\)
\(54\) −4.69570 + 2.22496i −0.639003 + 0.302778i
\(55\) 0.443592 0.0598140
\(56\) −3.07353 2.57900i −0.410717 0.344633i
\(57\) −1.73210 1.36380i −0.229423 0.180640i
\(58\) 1.59951 + 9.07129i 0.210026 + 1.19112i
\(59\) 8.04363 + 2.92764i 1.04719 + 0.381147i 0.807602 0.589728i \(-0.200765\pi\)
0.239589 + 0.970874i \(0.422987\pi\)
\(60\) −3.43531 1.13052i −0.443497 0.145949i
\(61\) 0.492064 2.79063i 0.0630023 0.357304i −0.936967 0.349419i \(-0.886379\pi\)
0.999969 0.00788485i \(-0.00250985\pi\)
\(62\) −1.76795 + 3.06218i −0.224530 + 0.388898i
\(63\) 5.35781 10.7784i 0.675020 1.35795i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −10.2010 + 3.71285i −1.26528 + 0.460523i
\(66\) −0.173973 + 0.324244i −0.0214145 + 0.0399117i
\(67\) 7.47702 6.27396i 0.913463 0.766487i −0.0593114 0.998240i \(-0.518890\pi\)
0.972775 + 0.231753i \(0.0744460\pi\)
\(68\) 2.89988 2.43329i 0.351662 0.295079i
\(69\) 1.43594 0.0447327i 0.172867 0.00538518i
\(70\) 7.87232 2.86529i 0.940923 0.342468i
\(71\) 5.86207 + 10.1534i 0.695700 + 1.20499i 0.969944 + 0.243327i \(0.0782390\pi\)
−0.274244 + 0.961660i \(0.588428\pi\)
\(72\) 2.17365 2.06767i 0.256167 0.243677i
\(73\) −0.375162 + 0.649800i −0.0439094 + 0.0760534i −0.887145 0.461491i \(-0.847315\pi\)
0.843235 + 0.537544i \(0.180648\pi\)
\(74\) 0.617250 3.50060i 0.0717539 0.406937i
\(75\) −0.826812 + 0.738848i −0.0954720 + 0.0853148i
\(76\) 1.19605 + 0.435326i 0.137196 + 0.0499354i
\(77\) −0.148014 0.839430i −0.0168678 0.0956620i
\(78\) 1.28681 8.91256i 0.145703 1.00915i
\(79\) −1.81383 1.52198i −0.204071 0.171236i 0.535024 0.844837i \(-0.320302\pi\)
−0.739096 + 0.673600i \(0.764747\pi\)
\(80\) 2.08802 0.233447
\(81\) 7.55976 + 4.88366i 0.839973 + 0.542628i
\(82\) 2.73940 0.302516
\(83\) −8.73328 7.32809i −0.958602 0.804363i 0.0221230 0.999755i \(-0.492957\pi\)
−0.980725 + 0.195393i \(0.937402\pi\)
\(84\) −0.993061 + 6.87802i −0.108352 + 0.750454i
\(85\) 1.37256 + 7.78415i 0.148875 + 0.844310i
\(86\) −6.48062 2.35875i −0.698823 0.254351i
\(87\) 11.8965 10.6308i 1.27544 1.13974i
\(88\) 0.0368910 0.209219i 0.00393259 0.0223028i
\(89\) −2.69813 + 4.67329i −0.286001 + 0.495368i −0.972851 0.231431i \(-0.925659\pi\)
0.686851 + 0.726799i \(0.258993\pi\)
\(90\) 1.46961 + 6.08922i 0.154910 + 0.641860i
\(91\) 10.4298 + 18.0649i 1.09334 + 1.89372i
\(92\) −0.779421 + 0.283686i −0.0812602 + 0.0295763i
\(93\) 6.12140 0.190695i 0.634759 0.0197741i
\(94\) −0.978448 + 0.821016i −0.100919 + 0.0846813i
\(95\) −2.03588 + 1.70830i −0.208876 + 0.175268i
\(96\) −0.818900 + 1.52624i −0.0835786 + 0.155771i
\(97\) 11.8055 4.29685i 1.19867 0.436279i 0.335909 0.941895i \(-0.390957\pi\)
0.862759 + 0.505615i \(0.168734\pi\)
\(98\) −4.54889 7.87892i −0.459508 0.795891i
\(99\) 0.636104 0.0396706i 0.0639309 0.00398705i
\(100\) 0.320093 0.554417i 0.0320093 0.0554417i
\(101\) −0.502628 + 2.85055i −0.0500134 + 0.283640i −0.999549 0.0300181i \(-0.990443\pi\)
0.949536 + 0.313658i \(0.101555\pi\)
\(102\) −6.22814 2.04960i −0.616678 0.202940i
\(103\) −15.6835 5.70832i −1.54534 0.562458i −0.578022 0.816021i \(-0.696175\pi\)
−0.967319 + 0.253564i \(0.918397\pi\)
\(104\) 0.902802 + 5.12004i 0.0885270 + 0.502061i
\(105\) −11.4006 8.97644i −1.11258 0.876011i
\(106\) −8.65573 7.26302i −0.840719 0.705447i
\(107\) 0.321371 0.0310681 0.0155341 0.999879i \(-0.495055\pi\)
0.0155341 + 0.999879i \(0.495055\pi\)
\(108\) −5.02729 1.31392i −0.483751 0.126432i
\(109\) 0.568378 0.0544407 0.0272204 0.999629i \(-0.491334\pi\)
0.0272204 + 0.999629i \(0.491334\pi\)
\(110\) 0.339811 + 0.285136i 0.0323998 + 0.0271866i
\(111\) −5.71708 + 2.28485i −0.542642 + 0.216869i
\(112\) −0.696712 3.95125i −0.0658331 0.373358i
\(113\) 1.27781 + 0.465084i 0.120206 + 0.0437514i 0.401423 0.915893i \(-0.368516\pi\)
−0.281217 + 0.959644i \(0.590738\pi\)
\(114\) −0.450235 2.15811i −0.0421684 0.202125i
\(115\) 0.300739 1.70558i 0.0280441 0.159046i
\(116\) −4.60562 + 7.97716i −0.427621 + 0.740661i
\(117\) −14.2960 + 6.23645i −1.32167 + 0.576560i
\(118\) 4.27993 + 7.41305i 0.393999 + 0.682427i
\(119\) 14.2723 5.19470i 1.30834 0.476198i
\(120\) −1.90492 3.07420i −0.173895 0.280635i
\(121\) −8.39191 + 7.04165i −0.762901 + 0.640150i
\(122\) 2.17073 1.82146i 0.196528 0.164907i
\(123\) −2.49918 4.03323i −0.225344 0.363664i
\(124\) −3.32266 + 1.20935i −0.298384 + 0.108603i
\(125\) 5.88840 + 10.1990i 0.526675 + 0.912227i
\(126\) 11.0325 4.81281i 0.982857 0.428759i
\(127\) −0.902007 + 1.56232i −0.0800402 + 0.138634i −0.903267 0.429079i \(-0.858838\pi\)
0.823227 + 0.567713i \(0.192172\pi\)
\(128\) 0.173648 0.984808i 0.0153485 0.0870455i
\(129\) 2.43953 + 11.6934i 0.214789 + 1.02954i
\(130\) −10.2010 3.71285i −0.894685 0.325639i
\(131\) −1.68689 9.56684i −0.147384 0.835859i −0.965422 0.260694i \(-0.916049\pi\)
0.818037 0.575165i \(-0.195062\pi\)
\(132\) −0.341691 + 0.136558i −0.0297404 + 0.0118859i
\(133\) 3.91201 + 3.28257i 0.339215 + 0.284635i
\(134\) 9.76056 0.843184
\(135\) 7.62446 7.71898i 0.656209 0.664344i
\(136\) 3.78552 0.324606
\(137\) −6.94643 5.82875i −0.593474 0.497984i 0.295867 0.955229i \(-0.404392\pi\)
−0.889340 + 0.457246i \(0.848836\pi\)
\(138\) 1.12875 + 0.888737i 0.0960853 + 0.0756543i
\(139\) −1.74358 9.88833i −0.147888 0.838717i −0.965002 0.262241i \(-0.915538\pi\)
0.817114 0.576476i \(-0.195573\pi\)
\(140\) 7.87232 + 2.86529i 0.665333 + 0.242161i
\(141\) 2.10144 + 0.691555i 0.176973 + 0.0582394i
\(142\) −2.03588 + 11.5460i −0.170847 + 0.968921i
\(143\) −0.552258 + 0.956539i −0.0461822 + 0.0799898i
\(144\) 2.99418 0.186732i 0.249515 0.0155610i
\(145\) −9.61660 16.6564i −0.798615 1.38324i
\(146\) −0.705075 + 0.256626i −0.0583524 + 0.0212385i
\(147\) −7.45018 + 13.8854i −0.614480 + 1.14525i
\(148\) 2.72298 2.28485i 0.223828 0.187814i
\(149\) 12.1360 10.1833i 0.994221 0.834250i 0.00804728 0.999968i \(-0.497438\pi\)
0.986173 + 0.165718i \(0.0529940\pi\)
\(150\) −1.10830 + 0.0345259i −0.0904920 + 0.00281903i
\(151\) −4.98746 + 1.81529i −0.405874 + 0.147726i −0.536886 0.843655i \(-0.680400\pi\)
0.131012 + 0.991381i \(0.458177\pi\)
\(152\) 0.636405 + 1.10229i 0.0516192 + 0.0894071i
\(153\) 2.66436 + 11.0396i 0.215401 + 0.892499i
\(154\) 0.426190 0.738183i 0.0343434 0.0594845i
\(155\) 1.28205 7.27086i 0.102977 0.584010i
\(156\) 6.71464 6.00027i 0.537601 0.480406i
\(157\) 10.8225 + 3.93906i 0.863727 + 0.314371i 0.735624 0.677390i \(-0.236889\pi\)
0.128103 + 0.991761i \(0.459111\pi\)
\(158\) −0.411161 2.33181i −0.0327102 0.185509i
\(159\) −2.79668 + 19.3700i −0.221791 + 1.53614i
\(160\) 1.59951 + 1.34215i 0.126453 + 0.106106i
\(161\) −3.32789 −0.262275
\(162\) 2.65195 + 8.60041i 0.208357 + 0.675712i
\(163\) 7.66336 0.600241 0.300120 0.953901i \(-0.402973\pi\)
0.300120 + 0.953901i \(0.402973\pi\)
\(164\) 2.09850 + 1.76085i 0.163865 + 0.137499i
\(165\) 0.109794 0.760439i 0.00854741 0.0592001i
\(166\) −1.97967 11.2273i −0.153653 0.871407i
\(167\) −5.74151 2.08974i −0.444292 0.161709i 0.110180 0.993912i \(-0.464857\pi\)
−0.554472 + 0.832203i \(0.687080\pi\)
\(168\) −5.18184 + 4.63054i −0.399787 + 0.357254i
\(169\) 2.43626 13.8167i 0.187405 1.06283i
\(170\) −3.95212 + 6.84527i −0.303114 + 0.525008i
\(171\) −2.76664 + 2.63175i −0.211570 + 0.201255i
\(172\) −3.44827 5.97257i −0.262928 0.455404i
\(173\) 10.6218 3.86602i 0.807561 0.293928i 0.0949449 0.995483i \(-0.469732\pi\)
0.712616 + 0.701554i \(0.247510\pi\)
\(174\) 15.9466 0.496771i 1.20891 0.0376601i
\(175\) 1.96763 1.65104i 0.148739 0.124807i
\(176\) 0.162744 0.136558i 0.0122673 0.0102935i
\(177\) 7.00966 13.0644i 0.526879 0.981979i
\(178\) −5.07082 + 1.84563i −0.380074 + 0.138336i
\(179\) −3.46495 6.00147i −0.258982 0.448571i 0.706987 0.707226i \(-0.250054\pi\)
−0.965970 + 0.258656i \(0.916721\pi\)
\(180\) −2.78829 + 5.60926i −0.207827 + 0.418089i
\(181\) −1.51882 + 2.63067i −0.112893 + 0.195536i −0.916935 0.399036i \(-0.869345\pi\)
0.804043 + 0.594572i \(0.202678\pi\)
\(182\) −3.62223 + 20.5427i −0.268497 + 1.52272i
\(183\) −4.66212 1.53424i −0.344634 0.113414i
\(184\) −0.779421 0.283686i −0.0574597 0.0209136i
\(185\) 1.28883 + 7.30931i 0.0947566 + 0.537391i
\(186\) 4.81184 + 3.78868i 0.352821 + 0.277799i
\(187\) 0.616070 + 0.516944i 0.0450515 + 0.0378027i
\(188\) −1.27727 −0.0931547
\(189\) −17.1510 11.8525i −1.24755 0.862144i
\(190\) −2.65765 −0.192806
\(191\) −3.90467 3.27640i −0.282532 0.237072i 0.490498 0.871443i \(-0.336815\pi\)
−0.773029 + 0.634370i \(0.781259\pi\)
\(192\) −1.60836 + 0.642788i −0.116073 + 0.0463892i
\(193\) 3.27644 + 18.5816i 0.235843 + 1.33753i 0.840830 + 0.541299i \(0.182067\pi\)
−0.604987 + 0.796235i \(0.706822\pi\)
\(194\) 11.8055 + 4.29685i 0.847586 + 0.308496i
\(195\) 3.84001 + 18.4063i 0.274989 + 1.31810i
\(196\) 1.57981 8.95957i 0.112844 0.639969i
\(197\) 10.0220 17.3586i 0.714036 1.23675i −0.249294 0.968428i \(-0.580199\pi\)
0.963330 0.268319i \(-0.0864682\pi\)
\(198\) 0.512784 + 0.378491i 0.0364420 + 0.0268982i
\(199\) −2.75106 4.76498i −0.195018 0.337780i 0.751889 0.659290i \(-0.229143\pi\)
−0.946906 + 0.321510i \(0.895810\pi\)
\(200\) 0.601578 0.218956i 0.0425380 0.0154826i
\(201\) −8.90466 14.3705i −0.628087 1.01362i
\(202\) −2.21733 + 1.86056i −0.156011 + 0.130909i
\(203\) −28.3110 + 23.7557i −1.98704 + 1.66733i
\(204\) −3.45357 5.57345i −0.241799 0.390220i
\(205\) −5.37495 + 1.95632i −0.375403 + 0.136635i
\(206\) −8.34501 14.4540i −0.581425 1.00706i
\(207\) 0.278725 2.47267i 0.0193727 0.171862i
\(208\) −2.59951 + 4.50249i −0.180244 + 0.312191i
\(209\) −0.0469552 + 0.266296i −0.00324796 + 0.0184201i
\(210\) −2.96342 14.2045i −0.204495 0.980205i
\(211\) 23.6287 + 8.60014i 1.62667 + 0.592058i 0.984636 0.174621i \(-0.0558699\pi\)
0.642031 + 0.766679i \(0.278092\pi\)
\(212\) −1.96209 11.1276i −0.134757 0.764246i
\(213\) 18.8566 7.53613i 1.29204 0.516367i
\(214\) 0.246185 + 0.206573i 0.0168288 + 0.0141211i
\(215\) 14.4001 0.982077
\(216\) −3.00655 4.23800i −0.204570 0.288359i
\(217\) −14.1868 −0.963061
\(218\) 0.435403 + 0.365346i 0.0294892 + 0.0247444i
\(219\) 1.02108 + 0.803963i 0.0689982 + 0.0543268i
\(220\) 0.0770290 + 0.436853i 0.00519329 + 0.0294526i
\(221\) −18.4941 6.73131i −1.24405 0.452797i
\(222\) −5.84822 1.92457i −0.392507 0.129169i
\(223\) −0.651596 + 3.69539i −0.0436341 + 0.247461i −0.998821 0.0485415i \(-0.984543\pi\)
0.955187 + 0.296003i \(0.0956538\pi\)
\(224\) 2.00610 3.47467i 0.134038 0.232161i
\(225\) 1.06194 + 1.60025i 0.0707963 + 0.106684i
\(226\) 0.679907 + 1.17763i 0.0452267 + 0.0783350i
\(227\) −17.5983 + 6.40524i −1.16804 + 0.425131i −0.851962 0.523603i \(-0.824588\pi\)
−0.316076 + 0.948734i \(0.602365\pi\)
\(228\) 1.04230 1.94261i 0.0690282 0.128653i
\(229\) −3.17397 + 2.66328i −0.209742 + 0.175994i −0.741607 0.670835i \(-0.765936\pi\)
0.531865 + 0.846829i \(0.321491\pi\)
\(230\) 1.32670 1.11324i 0.0874803 0.0734047i
\(231\) −1.47565 + 0.0459697i −0.0970906 + 0.00302459i
\(232\) −8.65573 + 3.15043i −0.568276 + 0.206836i
\(233\) 0.958556 + 1.66027i 0.0627971 + 0.108768i 0.895715 0.444629i \(-0.146665\pi\)
−0.832918 + 0.553397i \(0.813331\pi\)
\(234\) −14.9601 4.41190i −0.977971 0.288415i
\(235\) 1.33348 2.30966i 0.0869869 0.150666i
\(236\) −1.48640 + 8.42981i −0.0967566 + 0.548734i
\(237\) −3.05803 + 2.73269i −0.198641 + 0.177507i
\(238\) 14.2723 + 5.19470i 0.925138 + 0.336723i
\(239\) 4.20216 + 23.8316i 0.271815 + 1.54154i 0.748900 + 0.662683i \(0.230582\pi\)
−0.477085 + 0.878857i \(0.658307\pi\)
\(240\) 0.516805 3.57944i 0.0333596 0.231052i
\(241\) 10.1156 + 8.48797i 0.651601 + 0.546758i 0.907556 0.419931i \(-0.137946\pi\)
−0.255955 + 0.966689i \(0.582390\pi\)
\(242\) −10.9549 −0.704205
\(243\) 10.2430 11.7507i 0.657092 0.753811i
\(244\) 2.83368 0.181408
\(245\) 14.5520 + 12.2106i 0.929695 + 0.780107i
\(246\) 0.678028 4.69608i 0.0432295 0.299411i
\(247\) −1.14909 6.51684i −0.0731151 0.414656i
\(248\) −3.32266 1.20935i −0.210989 0.0767938i
\(249\) −14.7239 + 13.1575i −0.933092 + 0.833821i
\(250\) −2.04502 + 11.5979i −0.129338 + 0.733515i
\(251\) 4.32994 7.49967i 0.273303 0.473375i −0.696402 0.717652i \(-0.745217\pi\)
0.969706 + 0.244276i \(0.0785504\pi\)
\(252\) 11.5450 + 3.40476i 0.727269 + 0.214480i
\(253\) −0.0881062 0.152604i −0.00553919 0.00959415i
\(254\) −1.69522 + 0.617009i −0.106368 + 0.0387146i
\(255\) 13.6839 0.426284i 0.856919 0.0266949i
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) 16.7233 14.0326i 1.04317 0.875326i 0.0508142 0.998708i \(-0.483818\pi\)
0.992359 + 0.123382i \(0.0393739\pi\)
\(258\) −5.64757 + 10.5258i −0.351602 + 0.655305i
\(259\) 13.4017 4.87782i 0.832741 0.303093i
\(260\) −5.42783 9.40127i −0.336620 0.583042i
\(261\) −15.2796 23.0251i −0.945786 1.42522i
\(262\) 4.85721 8.41294i 0.300080 0.519753i
\(263\) −0.987629 + 5.60112i −0.0608998 + 0.345380i 0.939099 + 0.343648i \(0.111663\pi\)
−0.999998 + 0.00173240i \(0.999449\pi\)
\(264\) −0.349528 0.115025i −0.0215120 0.00707931i
\(265\) 22.1702 + 8.06929i 1.36190 + 0.495692i
\(266\) 0.886782 + 5.02919i 0.0543721 + 0.308359i
\(267\) 7.34349 + 5.78201i 0.449414 + 0.353854i
\(268\) 7.47702 + 6.27396i 0.456732 + 0.383243i
\(269\) −22.7662 −1.38808 −0.694041 0.719936i \(-0.744171\pi\)
−0.694041 + 0.719936i \(0.744171\pi\)
\(270\) 10.8023 1.01217i 0.657409 0.0615987i
\(271\) −19.8340 −1.20483 −0.602414 0.798184i \(-0.705794\pi\)
−0.602414 + 0.798184i \(0.705794\pi\)
\(272\) 2.89988 + 2.43329i 0.175831 + 0.147540i
\(273\) 33.5497 13.4083i 2.03052 0.811505i
\(274\) −1.57463 8.93016i −0.0951268 0.539491i
\(275\) 0.127803 + 0.0465166i 0.00770683 + 0.00280506i
\(276\) 0.293401 + 1.40636i 0.0176607 + 0.0846527i
\(277\) −4.19132 + 23.7701i −0.251832 + 1.42821i 0.552244 + 0.833683i \(0.313772\pi\)
−0.804076 + 0.594527i \(0.797339\pi\)
\(278\) 5.02044 8.69565i 0.301106 0.521530i
\(279\) 1.18820 10.5410i 0.0711358 0.631070i
\(280\) 4.18878 + 7.25517i 0.250327 + 0.433579i
\(281\) 22.2287 8.09058i 1.32605 0.482644i 0.420660 0.907219i \(-0.361799\pi\)
0.905393 + 0.424575i \(0.139576\pi\)
\(282\) 1.16527 + 1.88054i 0.0693909 + 0.111984i
\(283\) −8.90462 + 7.47186i −0.529325 + 0.444156i −0.867868 0.496795i \(-0.834510\pi\)
0.338543 + 0.940951i \(0.390066\pi\)
\(284\) −8.98121 + 7.53613i −0.532937 + 0.447187i
\(285\) 2.42460 + 3.91287i 0.143621 + 0.231779i
\(286\) −1.03791 + 0.377767i −0.0613727 + 0.0223378i
\(287\) 5.49551 + 9.51850i 0.324390 + 0.561859i
\(288\) 2.41371 + 1.78158i 0.142229 + 0.104981i
\(289\) 1.33491 2.31213i 0.0785239 0.136007i
\(290\) 3.33981 18.9410i 0.196120 1.11225i
\(291\) −4.44401 21.3014i −0.260512 1.24871i
\(292\) −0.705075 0.256626i −0.0412614 0.0150179i
\(293\) −1.85993 10.5482i −0.108658 0.616232i −0.989696 0.143186i \(-0.954265\pi\)
0.881037 0.473046i \(-0.156846\pi\)
\(294\) −14.6325 + 5.84795i −0.853386 + 0.341059i
\(295\) −13.6916 11.4886i −0.797156 0.668893i
\(296\) 3.55460 0.206607
\(297\) 0.0894359 1.10028i 0.00518959 0.0638445i
\(298\) 15.8424 0.917728
\(299\) 3.30341 + 2.77189i 0.191041 + 0.160302i
\(300\) −0.871197 0.685951i −0.0502986 0.0396034i
\(301\) −4.80490 27.2499i −0.276950 1.57066i
\(302\) −4.98746 1.81529i −0.286996 0.104458i
\(303\) 4.76222 + 1.56718i 0.273582 + 0.0900323i
\(304\) −0.221021 + 1.25347i −0.0126764 + 0.0718916i
\(305\) −2.95839 + 5.12408i −0.169397 + 0.293404i
\(306\) −5.05510 + 10.1694i −0.288981 + 0.581349i
\(307\) −12.3938 21.4667i −0.707351 1.22517i −0.965836 0.259153i \(-0.916557\pi\)
0.258485 0.966015i \(-0.416777\pi\)
\(308\) 0.800975 0.291531i 0.0456398 0.0166115i
\(309\) −13.6675 + 25.4730i −0.777514 + 1.44911i
\(310\) 5.65573 4.74572i 0.321224 0.269539i
\(311\) −16.6871 + 14.0022i −0.946241 + 0.793990i −0.978660 0.205484i \(-0.934123\pi\)
0.0324195 + 0.999474i \(0.489679\pi\)
\(312\) 9.00061 0.280389i 0.509559 0.0158739i
\(313\) 8.83542 3.21583i 0.499408 0.181770i −0.0800199 0.996793i \(-0.525498\pi\)
0.579428 + 0.815024i \(0.303276\pi\)
\(314\) 5.75852 + 9.97404i 0.324972 + 0.562868i
\(315\) −18.2098 + 17.3220i −1.02601 + 0.975984i
\(316\) 1.18389 2.05056i 0.0665990 0.115353i
\(317\) −2.51892 + 14.2855i −0.141477 + 0.802353i 0.828652 + 0.559763i \(0.189108\pi\)
−0.970129 + 0.242590i \(0.922003\pi\)
\(318\) −14.5932 + 13.0406i −0.818345 + 0.731282i
\(319\) −1.83888 0.669298i −0.102958 0.0374735i
\(320\) 0.362580 + 2.05630i 0.0202689 + 0.114950i
\(321\) 0.0795426 0.550919i 0.00443963 0.0307493i
\(322\) −2.54931 2.13913i −0.142068 0.119209i
\(323\) −4.81825 −0.268095
\(324\) −3.49672 + 8.29294i −0.194262 + 0.460719i
\(325\) −3.32834 −0.184623
\(326\) 5.87047 + 4.92591i 0.325135 + 0.272821i
\(327\) 0.140679 0.974356i 0.00777957 0.0538820i
\(328\) 0.475691 + 2.69778i 0.0262656 + 0.148960i
\(329\) −4.81563 1.75274i −0.265494 0.0966319i
\(330\) 0.572908 0.511956i 0.0315375 0.0281823i
\(331\) 0.140089 0.794483i 0.00769998 0.0436688i −0.980716 0.195440i \(-0.937387\pi\)
0.988416 + 0.151771i \(0.0484977\pi\)
\(332\) 5.70024 9.87311i 0.312842 0.541857i
\(333\) 2.50183 + 10.3662i 0.137100 + 0.568063i
\(334\) −3.05500 5.29141i −0.167162 0.289533i
\(335\) −19.1511 + 6.97044i −1.04634 + 0.380836i
\(336\) −6.94597 + 0.216382i −0.378934 + 0.0118046i
\(337\) −20.4272 + 17.1404i −1.11274 + 0.933700i −0.998215 0.0597207i \(-0.980979\pi\)
−0.114525 + 0.993420i \(0.536535\pi\)
\(338\) 10.7475 9.01824i 0.584588 0.490527i
\(339\) 1.11355 2.07540i 0.0604798 0.112720i
\(340\) −7.42755 + 2.70341i −0.402816 + 0.146613i
\(341\) −0.375596 0.650551i −0.0203396 0.0352293i
\(342\) −3.81102 + 0.237674i −0.206077 + 0.0128519i
\(343\) 4.20838 7.28912i 0.227231 0.393576i
\(344\) 1.19757 6.79176i 0.0645687 0.366187i
\(345\) −2.84939 0.937698i −0.153406 0.0504839i
\(346\) 10.6218 + 3.86602i 0.571032 + 0.207839i
\(347\) −5.05391 28.6621i −0.271308 1.53866i −0.750450 0.660927i \(-0.770163\pi\)
0.479142 0.877737i \(-0.340948\pi\)
\(348\) 12.5351 + 9.86972i 0.671953 + 0.529072i
\(349\) −22.6355 18.9934i −1.21165 1.01669i −0.999219 0.0395179i \(-0.987418\pi\)
−0.212430 0.977176i \(-0.568138\pi\)
\(350\) 2.56856 0.137295
\(351\) 7.15259 + 26.0509i 0.381777 + 1.39049i
\(352\) 0.212447 0.0113235
\(353\) 4.78974 + 4.01907i 0.254932 + 0.213913i 0.761293 0.648408i \(-0.224565\pi\)
−0.506361 + 0.862322i \(0.669010\pi\)
\(354\) 13.7673 5.50217i 0.731725 0.292437i
\(355\) −4.25094 24.1083i −0.225617 1.27954i
\(356\) −5.07082 1.84563i −0.268753 0.0978180i
\(357\) −5.37261 25.7524i −0.284348 1.36296i
\(358\) 1.20336 6.82462i 0.0635998 0.360692i
\(359\) 1.29314 2.23979i 0.0682495 0.118212i −0.829881 0.557940i \(-0.811592\pi\)
0.898131 + 0.439728i \(0.144925\pi\)
\(360\) −5.74151 + 2.50466i −0.302604 + 0.132007i
\(361\) 8.68998 + 15.0515i 0.457367 + 0.792183i
\(362\) −2.85444 + 1.03893i −0.150026 + 0.0546050i
\(363\) 9.99425 + 16.1289i 0.524562 + 0.846549i
\(364\) −15.9794 + 13.4083i −0.837546 + 0.702784i
\(365\) 1.20015 1.00705i 0.0628190 0.0527114i
\(366\) −2.58520 4.17205i −0.135131 0.218076i
\(367\) −17.5546 + 6.38935i −0.916342 + 0.333521i −0.756782 0.653667i \(-0.773230\pi\)
−0.159560 + 0.987188i \(0.551007\pi\)
\(368\) −0.414721 0.718318i −0.0216188 0.0374449i
\(369\) −7.53264 + 3.28602i −0.392134 + 0.171063i
\(370\) −3.71104 + 6.42770i −0.192928 + 0.334160i
\(371\) 7.87232 44.6462i 0.408711 2.31791i
\(372\) 1.25077 + 5.99528i 0.0648493 + 0.310841i
\(373\) −12.7104 4.62621i −0.658120 0.239536i −0.00869564 0.999962i \(-0.502768\pi\)
−0.649425 + 0.760426i \(0.724990\pi\)
\(374\) 0.139652 + 0.792004i 0.00722122 + 0.0409536i
\(375\) 18.9413 7.56998i 0.978127 0.390912i
\(376\) −0.978448 0.821016i −0.0504596 0.0423406i
\(377\) 47.8894 2.46643
\(378\) −5.51981 20.1040i −0.283908 1.03404i
\(379\) 30.2178 1.55218 0.776092 0.630620i \(-0.217199\pi\)
0.776092 + 0.630620i \(0.217199\pi\)
\(380\) −2.03588 1.70830i −0.104438 0.0876341i
\(381\) 2.45499 + 1.93298i 0.125773 + 0.0990295i
\(382\) −0.885116 5.01974i −0.0452865 0.256832i
\(383\) 36.2619 + 13.1982i 1.85289 + 0.674398i 0.983670 + 0.179980i \(0.0576031\pi\)
0.869224 + 0.494419i \(0.164619\pi\)
\(384\) −1.64525 0.541430i −0.0839589 0.0276298i
\(385\) −0.309056 + 1.75274i −0.0157510 + 0.0893281i
\(386\) −9.43413 + 16.3404i −0.480185 + 0.831704i
\(387\) 20.6495 1.28780i 1.04967 0.0654627i
\(388\) 6.28158 + 10.8800i 0.318899 + 0.552349i
\(389\) 5.28688 1.92427i 0.268056 0.0975642i −0.204496 0.978867i \(-0.565555\pi\)
0.472551 + 0.881303i \(0.343333\pi\)
\(390\) −8.88970 + 16.5683i −0.450147 + 0.838969i
\(391\) 2.40528 2.01827i 0.121640 0.102068i
\(392\) 6.96931 5.84795i 0.352003 0.295366i
\(393\) −16.8177 + 0.523909i −0.848342 + 0.0264277i
\(394\) 18.8352 6.85544i 0.948901 0.345372i
\(395\) 2.47198 + 4.28160i 0.124379 + 0.215431i
\(396\) 0.149526 + 0.619552i 0.00751398 + 0.0311337i
\(397\) −3.85809 + 6.68240i −0.193632 + 0.335380i −0.946451 0.322847i \(-0.895360\pi\)
0.752819 + 0.658227i \(0.228693\pi\)
\(398\) 0.955433 5.41853i 0.0478915 0.271606i
\(399\) 6.59549 5.89380i 0.330187 0.295059i
\(400\) 0.601578 + 0.218956i 0.0300789 + 0.0109478i
\(401\) 6.31721 + 35.8267i 0.315466 + 1.78910i 0.569593 + 0.821927i \(0.307101\pi\)
−0.254126 + 0.967171i \(0.581788\pi\)
\(402\) 2.41583 16.7323i 0.120491 0.834530i
\(403\) 14.0824 + 11.8165i 0.701494 + 0.588623i
\(404\) −2.89452 −0.144008
\(405\) −11.3453 14.9809i −0.563753 0.744409i
\(406\) −36.9574 −1.83416
\(407\) 0.578489 + 0.485410i 0.0286746 + 0.0240609i
\(408\) 0.936955 6.48943i 0.0463862 0.321275i
\(409\) 1.01891 + 5.77853i 0.0503819 + 0.285730i 0.999581 0.0289462i \(-0.00921516\pi\)
−0.949199 + 0.314676i \(0.898104\pi\)
\(410\) −5.37495 1.95632i −0.265450 0.0966159i
\(411\) −11.7114 + 10.4654i −0.577680 + 0.516221i
\(412\) 2.89819 16.4365i 0.142784 0.809766i
\(413\) −17.1719 + 29.7427i −0.844976 + 1.46354i
\(414\) 1.80292 1.71501i 0.0886085 0.0842882i
\(415\) 11.9022 + 20.6152i 0.584256 + 1.01196i
\(416\) −4.88549 + 1.77817i −0.239531 + 0.0871821i
\(417\) −17.3829 + 0.541514i −0.851243 + 0.0265181i
\(418\) −0.207142 + 0.173812i −0.0101316 + 0.00850145i
\(419\) 16.1908 13.5857i 0.790972 0.663704i −0.155014 0.987912i \(-0.549542\pi\)
0.945986 + 0.324208i \(0.105098\pi\)
\(420\) 6.86038 12.7861i 0.334752 0.623900i
\(421\) −6.99405 + 2.54563i −0.340869 + 0.124066i −0.506782 0.862074i \(-0.669165\pi\)
0.165913 + 0.986140i \(0.446943\pi\)
\(422\) 12.5726 + 21.7763i 0.612023 + 1.06005i
\(423\) 1.70564 3.43127i 0.0829311 0.166834i
\(424\) 5.64962 9.78544i 0.274370 0.475223i
\(425\) −0.420826 + 2.38662i −0.0204130 + 0.115768i
\(426\) 19.2892 + 6.34781i 0.934563 + 0.307552i
\(427\) 10.6837 + 3.88853i 0.517018 + 0.188179i
\(428\) 0.0558055 + 0.316489i 0.00269746 + 0.0152981i
\(429\) 1.50308 + 1.18348i 0.0725695 + 0.0571387i
\(430\) 11.0311 + 9.25619i 0.531967 + 0.446373i
\(431\) −13.0502 −0.628607 −0.314303 0.949323i \(-0.601771\pi\)
−0.314303 + 0.949323i \(0.601771\pi\)
\(432\) 0.420980 5.17907i 0.0202544 0.249178i
\(433\) 0.143533 0.00689775 0.00344887 0.999994i \(-0.498902\pi\)
0.00344887 + 0.999994i \(0.498902\pi\)
\(434\) −10.8677 9.11908i −0.521666 0.437730i
\(435\) −30.9339 + 12.3629i −1.48317 + 0.592754i
\(436\) 0.0986977 + 0.559743i 0.00472676 + 0.0268068i
\(437\) 0.992054 + 0.361078i 0.0474564 + 0.0172727i
\(438\) 0.265415 + 1.27221i 0.0126820 + 0.0607885i
\(439\) 2.35406 13.3506i 0.112353 0.637187i −0.875673 0.482904i \(-0.839582\pi\)
0.988027 0.154283i \(-0.0493069\pi\)
\(440\) −0.221796 + 0.384162i −0.0105737 + 0.0183142i
\(441\) 21.9594 + 16.2084i 1.04569 + 0.771830i
\(442\) −9.84052 17.0443i −0.468066 0.810714i
\(443\) −11.5406 + 4.20044i −0.548311 + 0.199569i −0.601296 0.799026i \(-0.705349\pi\)
0.0529847 + 0.998595i \(0.483127\pi\)
\(444\) −3.24290 5.23347i −0.153901 0.248369i
\(445\) 8.63138 7.24258i 0.409166 0.343331i
\(446\) −2.87450 + 2.41199i −0.136112 + 0.114211i
\(447\) −14.4532 23.3249i −0.683614 1.10323i
\(448\) 3.77024 1.37225i 0.178127 0.0648329i
\(449\) −20.3323 35.2165i −0.959540 1.66197i −0.723620 0.690199i \(-0.757523\pi\)
−0.235920 0.971772i \(-0.575810\pi\)
\(450\) −0.215128 + 1.90847i −0.0101412 + 0.0899662i
\(451\) −0.290988 + 0.504006i −0.0137021 + 0.0237327i
\(452\) −0.236129 + 1.33916i −0.0111066 + 0.0629886i
\(453\) 1.87746 + 8.99919i 0.0882106 + 0.422819i
\(454\) −17.5983 6.40524i −0.825928 0.300613i
\(455\) −7.56327 42.8934i −0.354571 2.01087i
\(456\) 2.04714 0.818146i 0.0958660 0.0383132i
\(457\) 24.9661 + 20.9491i 1.16787 + 0.979956i 0.999983 0.00585037i \(-0.00186224\pi\)
0.167884 + 0.985807i \(0.446307\pi\)
\(458\) −4.14333 −0.193605
\(459\) 19.5844 1.83504i 0.914120 0.0856523i
\(460\) 1.73189 0.0807498
\(461\) −20.9287 17.5612i −0.974745 0.817909i 0.00854291 0.999964i \(-0.497281\pi\)
−0.983288 + 0.182055i \(0.941725\pi\)
\(462\) −1.15996 0.913314i −0.0539663 0.0424912i
\(463\) −0.590262 3.34754i −0.0274318 0.155574i 0.968015 0.250892i \(-0.0807240\pi\)
−0.995447 + 0.0953189i \(0.969613\pi\)
\(464\) −8.65573 3.15043i −0.401832 0.146255i
\(465\) −12.1469 3.99740i −0.563301 0.185375i
\(466\) −0.332903 + 1.88799i −0.0154214 + 0.0874593i
\(467\) −16.4988 + 28.5767i −0.763473 + 1.32237i 0.177577 + 0.984107i \(0.443174\pi\)
−0.941050 + 0.338267i \(0.890159\pi\)
\(468\) −8.62418 12.9959i −0.398653 0.600734i
\(469\) 19.5807 + 33.9147i 0.904152 + 1.56604i
\(470\) 2.50613 0.912157i 0.115599 0.0420747i
\(471\) 9.43130 17.5777i 0.434571 0.809939i
\(472\) −6.55723 + 5.50217i −0.301821 + 0.253258i
\(473\) 1.12237 0.941778i 0.0516065 0.0433030i
\(474\) −4.09913 + 0.127697i −0.188279 + 0.00586531i
\(475\) −0.765694 + 0.278690i −0.0351324 + 0.0127872i
\(476\) 7.59415 + 13.1534i 0.348077 + 0.602887i
\(477\) 32.5133 + 9.58855i 1.48868 + 0.439029i
\(478\) −12.0996 + 20.9572i −0.553424 + 0.958559i
\(479\) −4.00142 + 22.6932i −0.182830 + 1.03688i 0.745883 + 0.666077i \(0.232028\pi\)
−0.928712 + 0.370801i \(0.879083\pi\)
\(480\) 2.69671 2.40981i 0.123088 0.109992i
\(481\) −17.3660 6.32070i −0.791820 0.288199i
\(482\) 2.29301 + 13.0043i 0.104444 + 0.592331i
\(483\) −0.823686 + 5.70492i −0.0374790 + 0.259583i
\(484\) −8.39191 7.04165i −0.381451 0.320075i
\(485\) −26.2321 −1.19114
\(486\) 15.3999 2.41749i 0.698552 0.109660i
\(487\) 26.9315 1.22038 0.610192 0.792254i \(-0.291092\pi\)
0.610192 + 0.792254i \(0.291092\pi\)
\(488\) 2.17073 + 1.82146i 0.0982641 + 0.0824534i
\(489\) 1.89676 13.1371i 0.0857743 0.594080i
\(490\) 3.29868 + 18.7077i 0.149019 + 0.845129i
\(491\) 0.233037 + 0.0848187i 0.0105168 + 0.00382781i 0.347273 0.937764i \(-0.387108\pi\)
−0.336756 + 0.941592i \(0.609330\pi\)
\(492\) 3.53798 3.16158i 0.159504 0.142535i
\(493\) 6.05500 34.3396i 0.272703 1.54658i
\(494\) 3.30869 5.73081i 0.148865 0.257841i
\(495\) −1.27643 0.376433i −0.0573711 0.0169194i
\(496\) −1.76795 3.06218i −0.0793834 0.137496i
\(497\) −44.2028 + 16.0885i −1.98277 + 0.721668i
\(498\) −19.7367 + 0.614840i −0.884420 + 0.0275516i
\(499\) −20.4674 + 17.1742i −0.916247 + 0.768822i −0.973297 0.229549i \(-0.926275\pi\)
0.0570505 + 0.998371i \(0.481830\pi\)
\(500\) −9.02155 + 7.56998i −0.403456 + 0.338540i
\(501\) −5.00347 + 9.32530i −0.223539 + 0.416624i
\(502\) 8.13762 2.96185i 0.363200 0.132194i
\(503\) −13.0871 22.6676i −0.583527 1.01070i −0.995057 0.0993022i \(-0.968339\pi\)
0.411530 0.911396i \(-0.364994\pi\)
\(504\) 6.65547 + 10.0292i 0.296458 + 0.446736i
\(505\) 3.02190 5.23409i 0.134473 0.232914i
\(506\) 0.0305989 0.173535i 0.00136029 0.00771458i
\(507\) −23.0827 7.59621i −1.02514 0.337359i
\(508\) −1.69522 0.617009i −0.0752132 0.0273754i
\(509\) 0.947739 + 5.37490i 0.0420078 + 0.238238i 0.998581 0.0532542i \(-0.0169594\pi\)
−0.956573 + 0.291492i \(0.905848\pi\)
\(510\) 10.7565 + 8.46929i 0.476305 + 0.375026i
\(511\) −2.30614 1.93508i −0.102018 0.0856031i
\(512\) 1.00000 0.0441942
\(513\) 3.82677 + 5.39417i 0.168956 + 0.238158i
\(514\) 21.8308 0.962914
\(515\) 26.6959 + 22.4005i 1.17636 + 0.987086i
\(516\) −11.0921 + 4.43301i −0.488303 + 0.195152i
\(517\) −0.0471199 0.267230i −0.00207233 0.0117528i
\(518\) 13.4017 + 4.87782i 0.588837 + 0.214319i
\(519\) −3.99842 19.1656i −0.175511 0.841275i
\(520\) 1.88506 10.6907i 0.0826656 0.468820i
\(521\) 13.0596 22.6199i 0.572151 0.990995i −0.424194 0.905572i \(-0.639442\pi\)
0.996345 0.0854234i \(-0.0272243\pi\)
\(522\) 3.09534 27.4598i 0.135479 1.20188i
\(523\) −3.70382 6.41521i −0.161957 0.280518i 0.773614 0.633658i \(-0.218447\pi\)
−0.935570 + 0.353140i \(0.885114\pi\)
\(524\) 9.12858 3.32253i 0.398784 0.145145i
\(525\) −2.34332 3.78170i −0.102271 0.165047i
\(526\) −4.35690 + 3.65587i −0.189970 + 0.159404i
\(527\) 10.2537 8.60387i 0.446658 0.374791i
\(528\) −0.193818 0.312787i −0.00843483 0.0136123i
\(529\) 20.9664 7.63116i 0.911585 0.331790i
\(530\) 11.7965 + 20.4322i 0.512408 + 0.887516i
\(531\) −20.6610 15.2501i −0.896610 0.661796i
\(532\) −2.55339 + 4.42259i −0.110703 + 0.191744i
\(533\) 2.47313 14.0258i 0.107123 0.607526i
\(534\) 1.90883 + 9.14958i 0.0826033 + 0.395941i
\(535\) −0.630560 0.229505i −0.0272615 0.00992238i
\(536\) 1.69490 + 9.61227i 0.0732086 + 0.415187i
\(537\) −11.1458 + 4.45445i −0.480976 + 0.192224i
\(538\) −17.4399 14.6339i −0.751889 0.630910i
\(539\) 1.93280 0.0832514
\(540\) 8.92568 + 6.16824i 0.384100 + 0.265439i
\(541\) 11.3209 0.486725 0.243362 0.969935i \(-0.421750\pi\)
0.243362 + 0.969935i \(0.421750\pi\)
\(542\) −15.1937 12.7490i −0.652625 0.547617i
\(543\) 4.13376 + 3.25479i 0.177397 + 0.139676i
\(544\) 0.657349 + 3.72801i 0.0281836 + 0.159837i
\(545\) −1.11521 0.405903i −0.0477704 0.0173870i
\(546\) 34.3192 + 11.2940i 1.46873 + 0.483339i
\(547\) −1.84721 + 10.4761i −0.0789811 + 0.447924i 0.919513 + 0.393060i \(0.128584\pi\)
−0.998494 + 0.0548639i \(0.982528\pi\)
\(548\) 4.53396 7.85305i 0.193681 0.335466i
\(549\) −3.78403 + 7.61241i −0.161499 + 0.324890i
\(550\) 0.0680027 + 0.117784i 0.00289964 + 0.00502233i
\(551\) 11.0171 4.00989i 0.469344 0.170827i
\(552\) −0.679230 + 1.26593i −0.0289100 + 0.0538814i
\(553\) 7.27744 6.10650i 0.309468 0.259675i
\(554\) −18.4899 + 15.5149i −0.785560 + 0.659163i
\(555\) 12.8492 0.400280i 0.545417 0.0169909i
\(556\) 9.43533 3.43418i 0.400147 0.145642i
\(557\) 5.92385 + 10.2604i 0.251001 + 0.434747i 0.963802 0.266620i \(-0.0859068\pi\)
−0.712800 + 0.701367i \(0.752573\pi\)
\(558\) 7.68581 7.31108i 0.325366 0.309503i
\(559\) −17.9276 + 31.0516i −0.758258 + 1.31334i
\(560\) −1.45475 + 8.25028i −0.0614743 + 0.348638i
\(561\) 1.03867 0.928164i 0.0438526 0.0391871i
\(562\) 22.2287 + 8.09058i 0.937661 + 0.341281i
\(563\) 1.04327 + 5.91667i 0.0439686 + 0.249358i 0.998868 0.0475719i \(-0.0151483\pi\)
−0.954899 + 0.296930i \(0.904037\pi\)
\(564\) −0.316138 + 2.18960i −0.0133118 + 0.0921987i
\(565\) −2.17504 1.82508i −0.0915047 0.0767815i
\(566\) −11.6242 −0.488600
\(567\) −24.5635 + 26.4680i −1.03157 + 1.11155i
\(568\) −11.7241 −0.491934
\(569\) −22.3596 18.7619i −0.937363 0.786541i 0.0397618 0.999209i \(-0.487340\pi\)
−0.977124 + 0.212669i \(0.931785\pi\)
\(570\) −0.657794 + 4.55594i −0.0275520 + 0.190827i
\(571\) 3.78797 + 21.4826i 0.158522 + 0.899021i 0.955495 + 0.295007i \(0.0953219\pi\)
−0.796974 + 0.604014i \(0.793567\pi\)
\(572\) −1.03791 0.377767i −0.0433970 0.0157952i
\(573\) −6.58310 + 5.88273i −0.275013 + 0.245755i
\(574\) −1.90857 + 10.8240i −0.0796622 + 0.451787i
\(575\) 0.265499 0.459857i 0.0110721 0.0191774i
\(576\) 0.703829 + 2.91627i 0.0293262 + 0.121511i
\(577\) −20.0399 34.7102i −0.834273 1.44500i −0.894621 0.446826i \(-0.852554\pi\)
0.0603476 0.998177i \(-0.480779\pi\)
\(578\) 2.50880 0.913130i 0.104353 0.0379812i
\(579\) 32.6649 1.01758i 1.35751 0.0422894i
\(580\) 14.7335 12.3629i 0.611775 0.513340i
\(581\) 35.0397 29.4018i 1.45369 1.21979i
\(582\) 10.2880 19.1744i 0.426450 0.794803i
\(583\) 2.25572 0.821016i 0.0934224 0.0340030i
\(584\) −0.375162 0.649800i −0.0155243 0.0268889i
\(585\) 32.5038 2.02710i 1.34387 0.0838102i
\(586\) 5.35546 9.27593i 0.221232 0.383185i
\(587\) −4.66518 + 26.4576i −0.192553 + 1.09202i 0.723309 + 0.690525i \(0.242620\pi\)
−0.915861 + 0.401495i \(0.868491\pi\)
\(588\) −14.9682 4.92582i −0.617276 0.203137i
\(589\) 4.22912 + 1.53927i 0.174258 + 0.0634246i
\(590\) −3.10363 17.6016i −0.127775 0.724646i
\(591\) −27.2768 21.4768i −1.12202 0.883439i
\(592\) 2.72298 + 2.28485i 0.111914 + 0.0939070i
\(593\) 30.4609 1.25088 0.625440 0.780272i \(-0.284919\pi\)
0.625440 + 0.780272i \(0.284919\pi\)
\(594\) 0.775756 0.785373i 0.0318297 0.0322242i
\(595\) −31.7134 −1.30012
\(596\) 12.1360 + 10.1833i 0.497110 + 0.417125i
\(597\) −8.84940 + 3.53670i −0.362182 + 0.144747i
\(598\) 0.748822 + 4.24678i 0.0306216 + 0.173664i
\(599\) 27.4285 + 9.98317i 1.12070 + 0.407901i 0.834908 0.550390i \(-0.185521\pi\)
0.285792 + 0.958292i \(0.407743\pi\)
\(600\) −0.226455 1.08546i −0.00924499 0.0443139i
\(601\) −4.03243 + 22.8690i −0.164486 + 0.932847i 0.785106 + 0.619361i \(0.212608\pi\)
−0.949593 + 0.313487i \(0.898503\pi\)
\(602\) 13.8352 23.9632i 0.563879 0.976667i
\(603\) −26.8390 + 11.7082i −1.09297 + 0.476794i
\(604\) −2.65377 4.59647i −0.107981 0.187028i
\(605\) 21.4945 7.82335i 0.873875 0.318064i
\(606\) 2.64070 + 4.26162i 0.107271 + 0.173117i
\(607\) 32.6881 27.4286i 1.32677 1.11329i 0.341950 0.939718i \(-0.388913\pi\)
0.984821 0.173574i \(-0.0555317\pi\)
\(608\) −0.975029 + 0.818146i −0.0395426 + 0.0331802i
\(609\) 33.7166 + 54.4126i 1.36627 + 2.20491i
\(610\) −5.55995 + 2.02366i −0.225116 + 0.0819354i
\(611\) 3.32029 + 5.75091i 0.134325 + 0.232657i
\(612\) −10.4092 + 4.54089i −0.420768 + 0.183555i
\(613\) 6.80411 11.7851i 0.274815 0.475994i −0.695273 0.718746i \(-0.744717\pi\)
0.970089 + 0.242752i \(0.0780500\pi\)
\(614\) 4.30432 24.4110i 0.173708 0.985148i
\(615\) 2.02332 + 9.69835i 0.0815882 + 0.391075i
\(616\) 0.800975 + 0.291531i 0.0322722 + 0.0117461i
\(617\) 4.88447 + 27.7012i 0.196641 + 1.11521i 0.910062 + 0.414472i \(0.136034\pi\)
−0.713421 + 0.700736i \(0.752855\pi\)
\(618\) −26.8436 + 10.7281i −1.07981 + 0.431549i
\(619\) −14.9355 12.5323i −0.600307 0.503717i 0.291237 0.956651i \(-0.405933\pi\)
−0.891544 + 0.452934i \(0.850377\pi\)
\(620\) 7.38303 0.296510
\(621\) −4.16984 1.08982i −0.167330 0.0437330i
\(622\) −21.7835 −0.873439
\(623\) −16.5855 13.9169i −0.664485 0.557569i
\(624\) 7.07510 + 5.57069i 0.283231 + 0.223006i
\(625\) −3.71420 21.0643i −0.148568 0.842571i
\(626\) 8.83542 + 3.21583i 0.353135 + 0.128530i
\(627\) 0.444883 + 0.146405i 0.0177669 + 0.00584686i
\(628\) −1.99991 + 11.3421i −0.0798052 + 0.452598i
\(629\) −6.72802 + 11.6533i −0.268264 + 0.464646i
\(630\) −25.0839 + 1.56436i −0.999367 + 0.0623255i
\(631\) −6.27471 10.8681i −0.249792 0.432653i 0.713676 0.700476i \(-0.247029\pi\)
−0.963468 + 0.267823i \(0.913696\pi\)
\(632\) 2.22499 0.809829i 0.0885052 0.0322133i
\(633\) 20.5913 38.3775i 0.818433 1.52537i
\(634\) −11.1121 + 9.32419i −0.441319 + 0.370311i
\(635\) 2.88555 2.42126i 0.114509 0.0960848i
\(636\) −19.5614 + 0.609380i −0.775659 + 0.0241635i
\(637\) −44.4471 + 16.1774i −1.76106 + 0.640973i
\(638\) −0.978448 1.69472i −0.0387371 0.0670947i
\(639\) −8.25180 34.1908i −0.326436 1.35257i
\(640\) −1.04401 + 1.80828i −0.0412681 + 0.0714784i
\(641\) −2.42288 + 13.7409i −0.0956981 + 0.542731i 0.898833 + 0.438291i \(0.144416\pi\)
−0.994531 + 0.104440i \(0.966695\pi\)
\(642\) 0.415057 0.370899i 0.0163810 0.0146382i
\(643\) −38.5754 14.0403i −1.52127 0.553695i −0.559802 0.828627i \(-0.689123\pi\)
−0.961464 + 0.274931i \(0.911345\pi\)
\(644\) −0.577882 3.27733i −0.0227718 0.129145i
\(645\) 3.56416 24.6857i 0.140339 0.971998i
\(646\) −3.69099 3.09711i −0.145220 0.121854i
\(647\) 0.303995 0.0119513 0.00597563 0.999982i \(-0.498098\pi\)
0.00597563 + 0.999982i \(0.498098\pi\)
\(648\) −8.00925 + 4.10511i −0.314633 + 0.161264i
\(649\) −1.81851 −0.0713829
\(650\) −2.54966 2.13942i −0.100006 0.0839149i
\(651\) −3.51137 + 24.3200i −0.137621 + 0.953177i
\(652\) 1.33073 + 7.54693i 0.0521153 + 0.295561i
\(653\) −44.2755 16.1150i −1.73263 0.630627i −0.733820 0.679344i \(-0.762265\pi\)
−0.998813 + 0.0487170i \(0.984487\pi\)
\(654\) 0.734070 0.655973i 0.0287044 0.0256506i
\(655\) −3.52226 + 19.9757i −0.137626 + 0.780516i
\(656\) −1.36970 + 2.37239i −0.0534777 + 0.0926261i
\(657\) 1.63094 1.55142i 0.0636291 0.0605268i
\(658\) −2.56234 4.43811i −0.0998905 0.173015i
\(659\) 40.3746 14.6952i 1.57277 0.572442i 0.599156 0.800633i \(-0.295503\pi\)
0.973617 + 0.228190i \(0.0732809\pi\)
\(660\) 0.767952 0.0239234i 0.0298925 0.000931217i
\(661\) 21.0863 17.6935i 0.820161 0.688197i −0.132849 0.991136i \(-0.542412\pi\)
0.953010 + 0.302939i \(0.0979680\pi\)
\(662\) 0.617998 0.518562i 0.0240192 0.0201545i
\(663\) −16.1168 + 30.0380i −0.625925 + 1.16658i
\(664\) 10.7130 3.89920i 0.415743 0.151318i
\(665\) −5.33151 9.23445i −0.206747 0.358097i
\(666\) −4.74673 + 9.54910i −0.183932 + 0.370020i
\(667\) −3.82009 + 6.61659i −0.147915 + 0.256196i
\(668\) 1.06099 6.01717i 0.0410509 0.232811i
\(669\) 6.17363 + 2.03166i 0.238686 + 0.0785485i
\(670\) −19.1511 6.97044i −0.739873 0.269292i
\(671\) 0.104537 + 0.592861i 0.00403562 + 0.0228871i
\(672\) −5.46001 4.29903i −0.210625 0.165839i
\(673\) −25.7719 21.6252i −0.993433 0.833589i −0.00737169 0.999973i \(-0.502347\pi\)
−0.986061 + 0.166384i \(0.946791\pi\)
\(674\) −26.6658 −1.02713
\(675\) 3.00612 1.42439i 0.115706 0.0548246i
\(676\) 14.0299 0.539611
\(677\) 26.1138 + 21.9120i 1.00363 + 0.842148i 0.987484 0.157721i \(-0.0504147\pi\)
0.0161497 + 0.999870i \(0.494859\pi\)
\(678\) 2.18707 0.874072i 0.0839940 0.0335685i
\(679\) 8.75290 + 49.6402i 0.335906 + 1.90502i
\(680\) −7.42755 2.70341i −0.284834 0.103671i
\(681\) 6.62461 + 31.7536i 0.253855 + 1.21680i
\(682\) 0.130443 0.739779i 0.00499492 0.0283276i
\(683\) 8.22650 14.2487i 0.314778 0.545212i −0.664612 0.747189i \(-0.731403\pi\)
0.979390 + 0.201976i \(0.0647365\pi\)
\(684\) −3.07219 2.26761i −0.117468 0.0867042i
\(685\) 9.46699 + 16.3973i 0.361715 + 0.626509i
\(686\) 7.90916 2.87870i 0.301973 0.109909i
\(687\) 3.78000 + 6.10025i 0.144216 + 0.232739i
\(688\) 5.28305 4.43301i 0.201414 0.169007i
\(689\) −45.0014 + 37.7606i −1.71442 + 1.43857i
\(690\) −1.58002 2.54987i −0.0601504 0.0970720i
\(691\) 13.4086 4.88033i 0.510087 0.185657i −0.0741383 0.997248i \(-0.523621\pi\)
0.584225 + 0.811591i \(0.301398\pi\)
\(692\) 5.65174 + 9.78911i 0.214847 + 0.372126i
\(693\) −0.286433 + 2.54105i −0.0108807 + 0.0965264i
\(694\) 14.5521 25.2051i 0.552392 0.956771i
\(695\) −3.64062 + 20.6470i −0.138097 + 0.783185i
\(696\) 3.25832 + 15.6181i 0.123506 + 0.592001i
\(697\) −9.74465 3.54676i −0.369105 0.134343i
\(698\) −5.13104 29.0996i −0.194213 1.10144i
\(699\) 3.08341 1.23230i 0.116625 0.0466097i
\(700\) 1.96763 + 1.65104i 0.0743694 + 0.0624033i
\(701\) 15.8891 0.600123 0.300062 0.953920i \(-0.402993\pi\)
0.300062 + 0.953920i \(0.402993\pi\)
\(702\) −11.2660 + 24.5537i −0.425207 + 0.926720i
\(703\) −4.52433 −0.170638
\(704\) 0.162744 + 0.136558i 0.00613363 + 0.00514673i
\(705\) −3.62935 2.85762i −0.136689 0.107624i
\(706\) 1.08575 + 6.15757i 0.0408626 + 0.231743i
\(707\) −10.9130 3.97202i −0.410427 0.149383i
\(708\) 14.0831 + 4.63457i 0.529276 + 0.174178i
\(709\) −1.43117 + 8.11659i −0.0537488 + 0.304825i −0.999817 0.0191436i \(-0.993906\pi\)
0.946068 + 0.323968i \(0.105017\pi\)
\(710\) 12.2401 21.2005i 0.459363 0.795640i
\(711\) 3.92769 + 5.91868i 0.147300 + 0.221968i
\(712\) −2.69813 4.67329i −0.101117 0.175139i
\(713\) −2.75596 + 1.00309i −0.103211 + 0.0375659i
\(714\) 12.4377 23.1810i 0.465469 0.867525i
\(715\) 1.76669 1.48243i 0.0660704 0.0554397i
\(716\) 5.30861 4.45445i 0.198392 0.166471i
\(717\) 41.8940 1.30509i 1.56456 0.0487395i
\(718\) 2.43032 0.884563i 0.0906986 0.0330116i
\(719\) −10.9348 18.9397i −0.407801 0.706331i 0.586842 0.809701i \(-0.300371\pi\)
−0.994643 + 0.103370i \(0.967037\pi\)
\(720\) −6.00822 1.77189i −0.223913 0.0660345i
\(721\) 33.4819 57.9923i 1.24693 2.15975i
\(722\) −3.01800 + 17.1159i −0.112318 + 0.636988i
\(723\) 17.0544 15.2400i 0.634261 0.566782i
\(724\) −2.85444 1.03893i −0.106084 0.0386116i
\(725\) −1.02399 5.80731i −0.0380299 0.215678i
\(726\) −2.71144 + 18.7797i −0.100631 + 0.696978i
\(727\) 37.2742 + 31.2768i 1.38242 + 1.15999i 0.968305 + 0.249769i \(0.0803548\pi\)
0.414119 + 0.910223i \(0.364090\pi\)
\(728\) −20.8596 −0.773107
\(729\) −17.6088 20.4678i −0.652176 0.758067i
\(730\) 1.56669 0.0579858
\(731\) 19.9991 + 16.7812i 0.739694 + 0.620677i
\(732\) 0.701364 4.85771i 0.0259232 0.179546i
\(733\) −4.54580 25.7805i −0.167903 0.952226i −0.946020 0.324107i \(-0.894936\pi\)
0.778117 0.628119i \(-0.216175\pi\)
\(734\) −17.5546 6.38935i −0.647951 0.235835i
\(735\) 24.5341 21.9239i 0.904954 0.808677i
\(736\) 0.144031 0.816841i 0.00530906 0.0301092i
\(737\) −1.03680 + 1.79579i −0.0381910 + 0.0661487i
\(738\) −7.88255 2.32465i −0.290161 0.0855716i
\(739\) −1.28655 2.22838i −0.0473267 0.0819722i 0.841392 0.540426i \(-0.181737\pi\)
−0.888718 + 0.458454i \(0.848404\pi\)
\(740\) −6.97447 + 2.53850i −0.256386 + 0.0933170i
\(741\) −11.4561 + 0.356882i −0.420849 + 0.0131104i
\(742\) 34.7285 29.1407i 1.27493 1.06979i
\(743\) −37.5339 + 31.4947i −1.37699 + 1.15543i −0.406673 + 0.913574i \(0.633311\pi\)
−0.970313 + 0.241854i \(0.922245\pi\)
\(744\) −2.89555 + 5.39663i −0.106156 + 0.197850i
\(745\) −31.0843 + 11.3138i −1.13884 + 0.414505i
\(746\) −6.76307 11.7140i −0.247614 0.428879i
\(747\) 18.9112 + 28.4975i 0.691925 + 1.04267i
\(748\) −0.402111 + 0.696477i −0.0147026 + 0.0254657i
\(749\) −0.223903 + 1.26982i −0.00818124 + 0.0463981i
\(750\) 19.3758 + 6.37632i 0.707504 + 0.232830i
\(751\) −7.99761 2.91089i −0.291837 0.106220i 0.191953 0.981404i \(-0.438518\pi\)
−0.483790 + 0.875184i \(0.660740\pi\)
\(752\) −0.221796 1.25787i −0.00808808 0.0458698i
\(753\) −11.7848 9.27895i −0.429462 0.338144i
\(754\) 36.6854 + 30.7827i 1.33601 + 1.12104i
\(755\) 11.0822 0.403324
\(756\) 8.69420 18.9486i 0.316205 0.689156i
\(757\) 17.3242 0.629658 0.314829 0.949148i \(-0.398053\pi\)
0.314829 + 0.949148i \(0.398053\pi\)
\(758\) 23.1482 + 19.4236i 0.840779 + 0.705497i
\(759\) −0.283413 + 0.113267i −0.0102872 + 0.00411134i
\(760\) −0.461496 2.61727i −0.0167402 0.0949384i
\(761\) −9.81674 3.57300i −0.355856 0.129521i 0.157905 0.987454i \(-0.449526\pi\)
−0.513761 + 0.857933i \(0.671748\pi\)
\(762\) 0.638140 + 3.05879i 0.0231174 + 0.110808i
\(763\) −0.395996 + 2.24580i −0.0143360 + 0.0813035i