Properties

Label 54.2.e.b.31.1
Level $54$
Weight $2$
Character 54.31
Analytic conductor $0.431$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,2,Mod(7,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 54.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.431192170915\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 318 x^{8} - 678 x^{7} + 1225 x^{6} - 1698 x^{5} + 1905 x^{4} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 31.1
Root \(0.500000 + 1.96356i\) of defining polynomial
Character \(\chi\) \(=\) 54.31
Dual form 54.2.e.b.7.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 - 0.342020i) q^{2} +(-1.14517 - 1.29945i) q^{3} +(0.766044 + 0.642788i) q^{4} +(0.617090 - 3.49969i) q^{5} +(0.631669 + 1.61276i) q^{6} +(-0.244752 + 0.205371i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-0.377165 + 2.97620i) q^{9} +O(q^{10})\) \(q+(-0.939693 - 0.342020i) q^{2} +(-1.14517 - 1.29945i) q^{3} +(0.766044 + 0.642788i) q^{4} +(0.617090 - 3.49969i) q^{5} +(0.631669 + 1.61276i) q^{6} +(-0.244752 + 0.205371i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-0.377165 + 2.97620i) q^{9} +(-1.77684 + 3.07758i) q^{10} +(0.773091 + 4.38442i) q^{11} +(-0.0419788 - 1.73154i) q^{12} +(4.39657 - 1.60022i) q^{13} +(0.300233 - 0.109276i) q^{14} +(-5.25437 + 3.20587i) q^{15} +(0.173648 + 0.984808i) q^{16} +(-0.567354 + 0.982686i) q^{17} +(1.37234 - 2.66771i) q^{18} +(-0.928896 - 1.60890i) q^{19} +(2.72228 - 2.28426i) q^{20} +(0.547153 + 0.0828588i) q^{21} +(0.773091 - 4.38442i) q^{22} +(0.110473 + 0.0926974i) q^{23} +(-0.552775 + 1.64147i) q^{24} +(-7.16859 - 2.60915i) q^{25} -4.67874 q^{26} +(4.29935 - 2.91815i) q^{27} -0.319501 q^{28} +(4.09634 + 1.49095i) q^{29} +(6.03396 - 1.21543i) q^{30} +(0.514546 + 0.431755i) q^{31} +(0.173648 - 0.984808i) q^{32} +(4.81203 - 6.02551i) q^{33} +(0.869237 - 0.729376i) q^{34} +(0.567702 + 0.983289i) q^{35} +(-2.20199 + 2.03746i) q^{36} +(-3.79438 + 6.57207i) q^{37} +(0.322602 + 1.82957i) q^{38} +(-7.11425 - 3.88062i) q^{39} +(-3.33937 + 1.21543i) q^{40} +(-2.04599 + 0.744678i) q^{41} +(-0.485817 - 0.264999i) q^{42} +(-1.23250 - 6.98988i) q^{43} +(-2.22603 + 3.85559i) q^{44} +(10.1830 + 3.15654i) q^{45} +(-0.0721058 - 0.124891i) q^{46} +(-7.91059 + 6.63778i) q^{47} +(1.08086 - 1.35342i) q^{48} +(-1.19781 + 6.79312i) q^{49} +(5.84389 + 4.90360i) q^{50} +(1.92667 - 0.388093i) q^{51} +(4.39657 + 1.60022i) q^{52} +0.805554 q^{53} +(-5.03813 + 1.27170i) q^{54} +15.8212 q^{55} +(0.300233 + 0.109276i) q^{56} +(-1.02694 + 3.04952i) q^{57} +(-3.33937 - 2.80206i) q^{58} +(0.517966 - 2.93753i) q^{59} +(-6.08577 - 0.921605i) q^{60} +(-2.67705 + 2.24631i) q^{61} +(-0.335846 - 0.581702i) q^{62} +(-0.518913 - 0.805889i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-2.88720 - 16.3741i) q^{65} +(-6.58267 + 4.01631i) q^{66} +(-6.99437 + 2.54574i) q^{67} +(-1.06628 + 0.388093i) q^{68} +(-0.00605383 - 0.249708i) q^{69} +(-0.197161 - 1.11816i) q^{70} +(4.04928 - 7.01356i) q^{71} +(2.76604 - 1.16146i) q^{72} +(-7.30065 - 12.6451i) q^{73} +(5.81333 - 4.87797i) q^{74} +(4.81879 + 12.3032i) q^{75} +(0.322602 - 1.82957i) q^{76} +(-1.08965 - 0.914324i) q^{77} +(5.35796 + 6.07981i) q^{78} +(11.8279 + 4.30501i) q^{79} +3.55368 q^{80} +(-8.71549 - 2.24503i) q^{81} +2.17729 q^{82} +(5.08715 + 1.85157i) q^{83} +(0.365883 + 0.415177i) q^{84} +(3.08899 + 2.59197i) q^{85} +(-1.23250 + 6.98988i) q^{86} +(-2.75360 - 7.03040i) q^{87} +(3.41047 - 2.86173i) q^{88} +(-2.52624 - 4.37558i) q^{89} +(-8.48932 - 6.44898i) q^{90} +(-0.747430 + 1.29459i) q^{91} +(0.0250421 + 0.142021i) q^{92} +(-0.0281968 - 1.16306i) q^{93} +(9.70378 - 3.53189i) q^{94} +(-6.20385 + 2.25802i) q^{95} +(-1.47857 + 0.902126i) q^{96} +(3.24273 + 18.3904i) q^{97} +(3.44896 - 5.97377i) q^{98} +(-13.3405 + 0.647222i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9} - 3 q^{10} - 12 q^{11} - 3 q^{12} + 12 q^{13} - 3 q^{14} - 18 q^{15} - 6 q^{17} + 6 q^{18} - 9 q^{19} + 6 q^{20} + 24 q^{21} - 12 q^{22} + 30 q^{23} - 9 q^{25} + 18 q^{26} + 12 q^{28} + 15 q^{29} + 27 q^{30} + 36 q^{33} - 15 q^{34} + 3 q^{35} - 3 q^{36} - 15 q^{37} + 3 q^{38} - 42 q^{39} - 3 q^{40} - 12 q^{41} - 15 q^{42} + 9 q^{43} - 3 q^{44} + 18 q^{45} + 3 q^{46} - 9 q^{47} + 3 q^{48} - 39 q^{49} - 27 q^{50} - 27 q^{51} + 12 q^{52} - 12 q^{53} - 36 q^{54} + 18 q^{55} - 3 q^{56} + 18 q^{57} - 3 q^{58} + 12 q^{59} - 18 q^{60} - 36 q^{61} - 12 q^{62} + 3 q^{63} - 6 q^{64} - 15 q^{65} - 18 q^{66} + 36 q^{67} + 3 q^{68} + 18 q^{69} + 39 q^{70} + 12 q^{71} + 24 q^{72} - 21 q^{73} + 33 q^{74} + 30 q^{75} + 3 q^{76} + 3 q^{77} + 18 q^{78} + 39 q^{79} + 6 q^{80} + 6 q^{82} + 18 q^{83} - 9 q^{84} + 45 q^{85} + 9 q^{86} + 27 q^{87} + 6 q^{88} + 12 q^{89} + 27 q^{90} - 6 q^{91} - 6 q^{92} - 33 q^{93} + 36 q^{94} - 15 q^{95} + 6 q^{96} + 39 q^{97} - 12 q^{98} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 0.342020i −0.664463 0.241845i
\(3\) −1.14517 1.29945i −0.661165 0.750241i
\(4\) 0.766044 + 0.642788i 0.383022 + 0.321394i
\(5\) 0.617090 3.49969i 0.275971 1.56511i −0.459889 0.887977i \(-0.652111\pi\)
0.735860 0.677134i \(-0.236778\pi\)
\(6\) 0.631669 + 1.61276i 0.257878 + 0.658406i
\(7\) −0.244752 + 0.205371i −0.0925075 + 0.0776230i −0.687869 0.725835i \(-0.741453\pi\)
0.595361 + 0.803458i \(0.297009\pi\)
\(8\) −0.500000 0.866025i −0.176777 0.306186i
\(9\) −0.377165 + 2.97620i −0.125722 + 0.992066i
\(10\) −1.77684 + 3.07758i −0.561886 + 0.973216i
\(11\) 0.773091 + 4.38442i 0.233096 + 1.32195i 0.846587 + 0.532250i \(0.178653\pi\)
−0.613491 + 0.789702i \(0.710235\pi\)
\(12\) −0.0419788 1.73154i −0.0121182 0.499853i
\(13\) 4.39657 1.60022i 1.21939 0.443822i 0.349439 0.936959i \(-0.386372\pi\)
0.869951 + 0.493137i \(0.164150\pi\)
\(14\) 0.300233 0.109276i 0.0802405 0.0292052i
\(15\) −5.25437 + 3.20587i −1.35667 + 0.827751i
\(16\) 0.173648 + 0.984808i 0.0434120 + 0.246202i
\(17\) −0.567354 + 0.982686i −0.137604 + 0.238336i −0.926589 0.376075i \(-0.877273\pi\)
0.788985 + 0.614412i \(0.210607\pi\)
\(18\) 1.37234 2.66771i 0.323463 0.628786i
\(19\) −0.928896 1.60890i −0.213103 0.369106i 0.739581 0.673068i \(-0.235024\pi\)
−0.952684 + 0.303962i \(0.901690\pi\)
\(20\) 2.72228 2.28426i 0.608720 0.510777i
\(21\) 0.547153 + 0.0828588i 0.119399 + 0.0180813i
\(22\) 0.773091 4.38442i 0.164824 0.934761i
\(23\) 0.110473 + 0.0926974i 0.0230351 + 0.0193288i 0.654233 0.756293i \(-0.272992\pi\)
−0.631197 + 0.775622i \(0.717436\pi\)
\(24\) −0.552775 + 1.64147i −0.112835 + 0.335065i
\(25\) −7.16859 2.60915i −1.43372 0.521831i
\(26\) −4.67874 −0.917576
\(27\) 4.29935 2.91815i 0.827411 0.561598i
\(28\) −0.319501 −0.0603800
\(29\) 4.09634 + 1.49095i 0.760672 + 0.276862i 0.693089 0.720852i \(-0.256249\pi\)
0.0675824 + 0.997714i \(0.478471\pi\)
\(30\) 6.03396 1.21543i 1.10165 0.221906i
\(31\) 0.514546 + 0.431755i 0.0924152 + 0.0775455i 0.687825 0.725877i \(-0.258566\pi\)
−0.595410 + 0.803422i \(0.703010\pi\)
\(32\) 0.173648 0.984808i 0.0306970 0.174091i
\(33\) 4.81203 6.02551i 0.837667 1.04891i
\(34\) 0.869237 0.729376i 0.149073 0.125087i
\(35\) 0.567702 + 0.983289i 0.0959592 + 0.166206i
\(36\) −2.20199 + 2.03746i −0.366998 + 0.339577i
\(37\) −3.79438 + 6.57207i −0.623793 + 1.08044i 0.364980 + 0.931015i \(0.381076\pi\)
−0.988773 + 0.149426i \(0.952258\pi\)
\(38\) 0.322602 + 1.82957i 0.0523330 + 0.296795i
\(39\) −7.11425 3.88062i −1.13919 0.621397i
\(40\) −3.33937 + 1.21543i −0.528000 + 0.192176i
\(41\) −2.04599 + 0.744678i −0.319529 + 0.116299i −0.496805 0.867862i \(-0.665494\pi\)
0.177276 + 0.984161i \(0.443271\pi\)
\(42\) −0.485817 0.264999i −0.0749631 0.0408903i
\(43\) −1.23250 6.98988i −0.187955 1.06595i −0.922099 0.386953i \(-0.873528\pi\)
0.734144 0.678994i \(-0.237584\pi\)
\(44\) −2.22603 + 3.85559i −0.335586 + 0.581252i
\(45\) 10.1830 + 3.15654i 1.51800 + 0.470550i
\(46\) −0.0721058 0.124891i −0.0106314 0.0184142i
\(47\) −7.91059 + 6.63778i −1.15388 + 0.968219i −0.999803 0.0198400i \(-0.993684\pi\)
−0.154075 + 0.988059i \(0.549240\pi\)
\(48\) 1.08086 1.35342i 0.156008 0.195350i
\(49\) −1.19781 + 6.79312i −0.171116 + 0.970446i
\(50\) 5.84389 + 4.90360i 0.826450 + 0.693474i
\(51\) 1.92667 0.388093i 0.269788 0.0543439i
\(52\) 4.39657 + 1.60022i 0.609695 + 0.221911i
\(53\) 0.805554 0.110651 0.0553257 0.998468i \(-0.482380\pi\)
0.0553257 + 0.998468i \(0.482380\pi\)
\(54\) −5.03813 + 1.27170i −0.685603 + 0.173056i
\(55\) 15.8212 2.13333
\(56\) 0.300233 + 0.109276i 0.0401203 + 0.0146026i
\(57\) −1.02694 + 3.04952i −0.136022 + 0.403919i
\(58\) −3.33937 2.80206i −0.438481 0.367929i
\(59\) 0.517966 2.93753i 0.0674334 0.382434i −0.932349 0.361560i \(-0.882244\pi\)
0.999782 0.0208736i \(-0.00664476\pi\)
\(60\) −6.08577 0.921605i −0.785670 0.118979i
\(61\) −2.67705 + 2.24631i −0.342761 + 0.287611i −0.797876 0.602822i \(-0.794043\pi\)
0.455114 + 0.890433i \(0.349598\pi\)
\(62\) −0.335846 0.581702i −0.0426525 0.0738763i
\(63\) −0.518913 0.805889i −0.0653769 0.101532i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −2.88720 16.3741i −0.358113 2.03096i
\(66\) −6.58267 + 4.01631i −0.810271 + 0.494374i
\(67\) −6.99437 + 2.54574i −0.854498 + 0.311012i −0.731873 0.681441i \(-0.761353\pi\)
−0.122625 + 0.992453i \(0.539131\pi\)
\(68\) −1.06628 + 0.388093i −0.129305 + 0.0470632i
\(69\) −0.00605383 0.249708i −0.000728795 0.0300614i
\(70\) −0.197161 1.11816i −0.0235652 0.133645i
\(71\) 4.04928 7.01356i 0.480561 0.832356i −0.519190 0.854659i \(-0.673766\pi\)
0.999751 + 0.0223028i \(0.00709978\pi\)
\(72\) 2.76604 1.16146i 0.325981 0.136880i
\(73\) −7.30065 12.6451i −0.854477 1.48000i −0.877129 0.480254i \(-0.840545\pi\)
0.0226526 0.999743i \(-0.492789\pi\)
\(74\) 5.81333 4.87797i 0.675786 0.567052i
\(75\) 4.81879 + 12.3032i 0.556426 + 1.42065i
\(76\) 0.322602 1.82957i 0.0370050 0.209866i
\(77\) −1.08965 0.914324i −0.124177 0.104197i
\(78\) 5.35796 + 6.07981i 0.606669 + 0.688403i
\(79\) 11.8279 + 4.30501i 1.33074 + 0.484351i 0.906886 0.421377i \(-0.138453\pi\)
0.423859 + 0.905728i \(0.360675\pi\)
\(80\) 3.55368 0.397314
\(81\) −8.71549 2.24503i −0.968388 0.249448i
\(82\) 2.17729 0.240442
\(83\) 5.08715 + 1.85157i 0.558387 + 0.203236i 0.605769 0.795641i \(-0.292866\pi\)
−0.0473820 + 0.998877i \(0.515088\pi\)
\(84\) 0.365883 + 0.415177i 0.0399211 + 0.0452995i
\(85\) 3.08899 + 2.59197i 0.335048 + 0.281139i
\(86\) −1.23250 + 6.98988i −0.132904 + 0.753738i
\(87\) −2.75360 7.03040i −0.295216 0.753738i
\(88\) 3.41047 2.86173i 0.363558 0.305061i
\(89\) −2.52624 4.37558i −0.267781 0.463810i 0.700508 0.713645i \(-0.252957\pi\)
−0.968288 + 0.249835i \(0.919624\pi\)
\(90\) −8.48932 6.44898i −0.894853 0.679782i
\(91\) −0.747430 + 1.29459i −0.0783520 + 0.135710i
\(92\) 0.0250421 + 0.142021i 0.00261082 + 0.0148067i
\(93\) −0.0281968 1.16306i −0.00292387 0.120604i
\(94\) 9.70378 3.53189i 1.00087 0.364286i
\(95\) −6.20385 + 2.25802i −0.636502 + 0.231668i
\(96\) −1.47857 + 0.902126i −0.150906 + 0.0920728i
\(97\) 3.24273 + 18.3904i 0.329249 + 1.86726i 0.477957 + 0.878383i \(0.341377\pi\)
−0.148708 + 0.988881i \(0.547511\pi\)
\(98\) 3.44896 5.97377i 0.348398 0.603442i
\(99\) −13.3405 + 0.647222i −1.34077 + 0.0650483i
\(100\) −3.81433 6.60661i −0.381433 0.660661i
\(101\) −1.85357 + 1.55533i −0.184438 + 0.154761i −0.730332 0.683093i \(-0.760634\pi\)
0.545894 + 0.837854i \(0.316190\pi\)
\(102\) −1.94322 0.294273i −0.192407 0.0291374i
\(103\) 0.346489 1.96504i 0.0341406 0.193621i −0.962967 0.269618i \(-0.913103\pi\)
0.997108 + 0.0759967i \(0.0242138\pi\)
\(104\) −3.58412 3.00743i −0.351452 0.294903i
\(105\) 0.627623 1.86374i 0.0612498 0.181882i
\(106\) −0.756973 0.275516i −0.0735238 0.0267605i
\(107\) 8.87072 0.857565 0.428783 0.903408i \(-0.358943\pi\)
0.428783 + 0.903408i \(0.358943\pi\)
\(108\) 5.16924 + 0.528140i 0.497411 + 0.0508203i
\(109\) −1.97204 −0.188887 −0.0944434 0.995530i \(-0.530107\pi\)
−0.0944434 + 0.995530i \(0.530107\pi\)
\(110\) −14.8671 5.41116i −1.41752 0.515934i
\(111\) 12.8853 2.59551i 1.22302 0.246355i
\(112\) −0.244752 0.205371i −0.0231269 0.0194058i
\(113\) −1.67200 + 9.48237i −0.157288 + 0.892026i 0.799375 + 0.600832i \(0.205164\pi\)
−0.956664 + 0.291195i \(0.905947\pi\)
\(114\) 2.00801 2.51438i 0.188067 0.235493i
\(115\) 0.392584 0.329417i 0.0366087 0.0307183i
\(116\) 2.17962 + 3.77521i 0.202372 + 0.350519i
\(117\) 3.10434 + 13.6886i 0.286996 + 1.26551i
\(118\) −1.49142 + 2.58322i −0.137297 + 0.237805i
\(119\) −0.0629545 0.357033i −0.00577103 0.0327291i
\(120\) 5.40355 + 2.94748i 0.493274 + 0.269067i
\(121\) −8.28884 + 3.01689i −0.753530 + 0.274263i
\(122\) 3.28389 1.19524i 0.297309 0.108212i
\(123\) 3.31068 + 1.80588i 0.298514 + 0.162831i
\(124\) 0.116638 + 0.661487i 0.0104744 + 0.0594033i
\(125\) −4.67070 + 8.08988i −0.417760 + 0.723581i
\(126\) 0.211989 + 0.934766i 0.0188855 + 0.0832756i
\(127\) −0.0796049 0.137880i −0.00706379 0.0122348i 0.862472 0.506105i \(-0.168915\pi\)
−0.869536 + 0.493870i \(0.835582\pi\)
\(128\) 0.766044 0.642788i 0.0677094 0.0568149i
\(129\) −7.67160 + 9.60619i −0.675447 + 0.845778i
\(130\) −2.88720 + 16.3741i −0.253224 + 1.43611i
\(131\) −7.26657 6.09738i −0.634883 0.532730i 0.267559 0.963542i \(-0.413783\pi\)
−0.902442 + 0.430811i \(0.858227\pi\)
\(132\) 7.55935 1.52269i 0.657957 0.132533i
\(133\) 0.557770 + 0.203012i 0.0483648 + 0.0176033i
\(134\) 7.44325 0.642999
\(135\) −7.55953 16.8472i −0.650621 1.44997i
\(136\) 1.13471 0.0973004
\(137\) −11.0032 4.00484i −0.940067 0.342156i −0.173875 0.984768i \(-0.555629\pi\)
−0.766192 + 0.642611i \(0.777851\pi\)
\(138\) −0.0797166 + 0.236720i −0.00678593 + 0.0201509i
\(139\) −4.02194 3.37481i −0.341136 0.286247i 0.456083 0.889937i \(-0.349252\pi\)
−0.797219 + 0.603690i \(0.793696\pi\)
\(140\) −0.197161 + 1.11816i −0.0166631 + 0.0945014i
\(141\) 17.6845 + 2.67807i 1.48930 + 0.225534i
\(142\) −6.20385 + 5.20565i −0.520616 + 0.436849i
\(143\) 10.4150 + 18.0393i 0.870946 + 1.50852i
\(144\) −2.99648 + 0.145376i −0.249706 + 0.0121147i
\(145\) 7.74567 13.4159i 0.643243 1.11413i
\(146\) 2.53549 + 14.3795i 0.209839 + 1.19005i
\(147\) 10.1991 6.22279i 0.841204 0.513247i
\(148\) −7.13111 + 2.59551i −0.586174 + 0.213350i
\(149\) 15.3097 5.57227i 1.25422 0.456499i 0.372394 0.928075i \(-0.378537\pi\)
0.881825 + 0.471576i \(0.156315\pi\)
\(150\) −0.320242 13.2093i −0.0261476 1.07854i
\(151\) −2.71203 15.3807i −0.220702 1.25166i −0.870734 0.491754i \(-0.836356\pi\)
0.650033 0.759906i \(-0.274755\pi\)
\(152\) −0.928896 + 1.60890i −0.0753434 + 0.130499i
\(153\) −2.71068 2.05919i −0.219146 0.166476i
\(154\) 0.711218 + 1.23187i 0.0573116 + 0.0992665i
\(155\) 1.82853 1.53432i 0.146871 0.123240i
\(156\) −2.95541 7.54568i −0.236623 0.604138i
\(157\) 3.06168 17.3637i 0.244349 1.38577i −0.577651 0.816284i \(-0.696030\pi\)
0.822000 0.569488i \(-0.192859\pi\)
\(158\) −9.64221 8.09077i −0.767093 0.643667i
\(159\) −0.922498 1.04678i −0.0731588 0.0830151i
\(160\) −3.33937 1.21543i −0.264000 0.0960882i
\(161\) −0.0460757 −0.00363128
\(162\) 7.42204 + 5.09052i 0.583130 + 0.399949i
\(163\) −15.8801 −1.24382 −0.621912 0.783087i \(-0.713644\pi\)
−0.621912 + 0.783087i \(0.713644\pi\)
\(164\) −2.04599 0.744678i −0.159765 0.0581496i
\(165\) −18.1180 20.5589i −1.41048 1.60051i
\(166\) −4.14708 3.47981i −0.321876 0.270086i
\(167\) −2.35787 + 13.3721i −0.182457 + 1.03477i 0.746722 + 0.665137i \(0.231627\pi\)
−0.929179 + 0.369630i \(0.879484\pi\)
\(168\) −0.201819 0.515278i −0.0155707 0.0397546i
\(169\) 6.81058 5.71475i 0.523891 0.439596i
\(170\) −2.01620 3.49215i −0.154635 0.267836i
\(171\) 5.13874 2.15776i 0.392969 0.165008i
\(172\) 3.54885 6.14680i 0.270598 0.468689i
\(173\) 1.11906 + 6.34650i 0.0850805 + 0.482516i 0.997339 + 0.0729010i \(0.0232257\pi\)
−0.912259 + 0.409615i \(0.865663\pi\)
\(174\) 0.182995 + 7.54820i 0.0138728 + 0.572228i
\(175\) 2.29037 0.833627i 0.173136 0.0630163i
\(176\) −4.18356 + 1.52269i −0.315348 + 0.114777i
\(177\) −4.41035 + 2.69090i −0.331502 + 0.202261i
\(178\) 0.877354 + 4.97572i 0.0657605 + 0.372946i
\(179\) 6.25613 10.8359i 0.467605 0.809915i −0.531710 0.846927i \(-0.678450\pi\)
0.999315 + 0.0370111i \(0.0117837\pi\)
\(180\) 5.77167 + 8.96358i 0.430195 + 0.668106i
\(181\) −0.152251 0.263707i −0.0113168 0.0196012i 0.860312 0.509769i \(-0.170269\pi\)
−0.871628 + 0.490167i \(0.836936\pi\)
\(182\) 1.14513 0.960878i 0.0848827 0.0712250i
\(183\) 5.98466 + 0.906293i 0.442399 + 0.0669951i
\(184\) 0.0250421 0.142021i 0.00184613 0.0104699i
\(185\) 20.6587 + 17.3347i 1.51886 + 1.27448i
\(186\) −0.371295 + 1.10257i −0.0272246 + 0.0808440i
\(187\) −4.74712 1.72781i −0.347144 0.126350i
\(188\) −10.3265 −0.753141
\(189\) −0.452971 + 1.59718i −0.0329488 + 0.116178i
\(190\) 6.60200 0.478960
\(191\) 13.5247 + 4.92260i 0.978615 + 0.356187i 0.781301 0.624154i \(-0.214556\pi\)
0.197313 + 0.980341i \(0.436778\pi\)
\(192\) 1.69795 0.342020i 0.122539 0.0246832i
\(193\) 2.33692 + 1.96090i 0.168215 + 0.141149i 0.723009 0.690839i \(-0.242759\pi\)
−0.554794 + 0.831988i \(0.687203\pi\)
\(194\) 3.24273 18.3904i 0.232814 1.32036i
\(195\) −17.9711 + 22.5030i −1.28694 + 1.61147i
\(196\) −5.28411 + 4.43390i −0.377437 + 0.316707i
\(197\) −11.1321 19.2814i −0.793129 1.37374i −0.924020 0.382343i \(-0.875117\pi\)
0.130891 0.991397i \(-0.458216\pi\)
\(198\) 12.7573 + 3.95452i 0.906622 + 0.281036i
\(199\) −12.2817 + 21.2725i −0.870626 + 1.50797i −0.00927642 + 0.999957i \(0.502953\pi\)
−0.861350 + 0.508012i \(0.830381\pi\)
\(200\) 1.32470 + 7.51276i 0.0936705 + 0.531232i
\(201\) 11.3178 + 6.17355i 0.798298 + 0.435449i
\(202\) 2.27375 0.827576i 0.159980 0.0582280i
\(203\) −1.30878 + 0.476359i −0.0918587 + 0.0334338i
\(204\) 1.72538 + 0.941146i 0.120801 + 0.0658934i
\(205\) 1.34359 + 7.61986i 0.0938402 + 0.532194i
\(206\) −0.997676 + 1.72802i −0.0695114 + 0.120397i
\(207\) −0.317552 + 0.293826i −0.0220714 + 0.0204223i
\(208\) 2.33937 + 4.05190i 0.162206 + 0.280949i
\(209\) 6.33595 5.31649i 0.438267 0.367750i
\(210\) −1.22721 + 1.53668i −0.0846855 + 0.106041i
\(211\) −0.524297 + 2.97344i −0.0360941 + 0.204700i −0.997522 0.0703579i \(-0.977586\pi\)
0.961428 + 0.275058i \(0.0886970\pi\)
\(212\) 0.617090 + 0.517800i 0.0423819 + 0.0355627i
\(213\) −13.7509 + 2.76987i −0.942197 + 0.189788i
\(214\) −8.33575 3.03397i −0.569820 0.207398i
\(215\) −25.2230 −1.72019
\(216\) −4.67686 2.26427i −0.318220 0.154064i
\(217\) −0.214606 −0.0145684
\(218\) 1.85311 + 0.674476i 0.125508 + 0.0456813i
\(219\) −8.07124 + 23.9677i −0.545404 + 1.61959i
\(220\) 12.1197 + 10.1697i 0.817112 + 0.685638i
\(221\) −0.921898 + 5.22835i −0.0620136 + 0.351697i
\(222\) −12.9960 1.96806i −0.872232 0.132087i
\(223\) 7.64543 6.41527i 0.511976 0.429599i −0.349848 0.936806i \(-0.613767\pi\)
0.861824 + 0.507208i \(0.169322\pi\)
\(224\) 0.159750 + 0.276696i 0.0106738 + 0.0184875i
\(225\) 10.4691 20.3510i 0.697940 1.35674i
\(226\) 4.81433 8.33866i 0.320244 0.554679i
\(227\) −3.66786 20.8015i −0.243444 1.38064i −0.824078 0.566477i \(-0.808306\pi\)
0.580633 0.814165i \(-0.302805\pi\)
\(228\) −2.74688 + 1.67596i −0.181916 + 0.110993i
\(229\) 21.8767 7.96248i 1.44566 0.526176i 0.504281 0.863539i \(-0.331757\pi\)
0.941374 + 0.337364i \(0.109535\pi\)
\(230\) −0.481576 + 0.175279i −0.0317542 + 0.0115576i
\(231\) 0.0597121 + 2.46301i 0.00392877 + 0.162054i
\(232\) −0.756973 4.29301i −0.0496977 0.281850i
\(233\) −13.3621 + 23.1439i −0.875383 + 1.51621i −0.0190296 + 0.999819i \(0.506058\pi\)
−0.856354 + 0.516390i \(0.827276\pi\)
\(234\) 1.76466 13.9248i 0.115359 0.910295i
\(235\) 18.3486 + 31.7808i 1.19693 + 2.07315i
\(236\) 2.28499 1.91734i 0.148740 0.124808i
\(237\) −7.95083 20.2998i −0.516462 1.31861i
\(238\) −0.0629545 + 0.357033i −0.00408073 + 0.0231430i
\(239\) −18.4309 15.4654i −1.19220 1.00037i −0.999818 0.0190518i \(-0.993935\pi\)
−0.192379 0.981321i \(-0.561620\pi\)
\(240\) −4.06957 4.61785i −0.262690 0.298081i
\(241\) 1.40157 + 0.510130i 0.0902831 + 0.0328604i 0.386767 0.922178i \(-0.373592\pi\)
−0.296484 + 0.955038i \(0.595814\pi\)
\(242\) 8.82079 0.567022
\(243\) 7.06341 + 13.8963i 0.453118 + 0.891451i
\(244\) −3.49464 −0.223721
\(245\) 23.0347 + 8.38394i 1.47163 + 0.535630i
\(246\) −2.49337 2.82929i −0.158972 0.180389i
\(247\) −6.65855 5.58719i −0.423674 0.355504i
\(248\) 0.116638 0.661487i 0.00740653 0.0420045i
\(249\) −3.41962 8.73088i −0.216710 0.553297i
\(250\) 7.15592 6.00453i 0.452580 0.379760i
\(251\) −7.28748 12.6223i −0.459982 0.796711i 0.538978 0.842320i \(-0.318811\pi\)
−0.998959 + 0.0456086i \(0.985477\pi\)
\(252\) 0.120505 0.950897i 0.00759107 0.0599009i
\(253\) −0.321019 + 0.556021i −0.0201823 + 0.0349568i
\(254\) 0.0276465 + 0.156791i 0.00173469 + 0.00983794i
\(255\) −0.169275 6.98226i −0.0106004 0.437246i
\(256\) −0.939693 + 0.342020i −0.0587308 + 0.0213763i
\(257\) 10.3598 3.77064i 0.646224 0.235206i 0.00194649 0.999998i \(-0.499380\pi\)
0.644277 + 0.764792i \(0.277158\pi\)
\(258\) 10.4945 6.40303i 0.653357 0.398635i
\(259\) −0.421030 2.38778i −0.0261616 0.148370i
\(260\) 8.31337 14.3992i 0.515573 0.892999i
\(261\) −5.98235 + 11.6292i −0.370298 + 0.719829i
\(262\) 4.74292 + 8.21497i 0.293018 + 0.507523i
\(263\) −10.0659 + 8.44626i −0.620688 + 0.520819i −0.898020 0.439955i \(-0.854994\pi\)
0.277332 + 0.960774i \(0.410550\pi\)
\(264\) −7.62426 1.15459i −0.469241 0.0710599i
\(265\) 0.497100 2.81919i 0.0305366 0.173182i
\(266\) −0.454698 0.381537i −0.0278793 0.0233935i
\(267\) −2.79289 + 8.29352i −0.170922 + 0.507555i
\(268\) −6.99437 2.54574i −0.427249 0.155506i
\(269\) −10.3086 −0.628528 −0.314264 0.949336i \(-0.601758\pi\)
−0.314264 + 0.949336i \(0.601758\pi\)
\(270\) 1.34156 + 18.4167i 0.0816448 + 1.12080i
\(271\) 1.01454 0.0616288 0.0308144 0.999525i \(-0.490190\pi\)
0.0308144 + 0.999525i \(0.490190\pi\)
\(272\) −1.06628 0.388093i −0.0646525 0.0235316i
\(273\) 2.53819 0.511272i 0.153618 0.0309436i
\(274\) 8.96989 + 7.52663i 0.541891 + 0.454700i
\(275\) 5.89764 33.4472i 0.355641 2.01694i
\(276\) 0.155872 0.195179i 0.00938239 0.0117484i
\(277\) −8.29755 + 6.96247i −0.498552 + 0.418334i −0.857079 0.515185i \(-0.827723\pi\)
0.358528 + 0.933519i \(0.383279\pi\)
\(278\) 2.62513 + 4.54686i 0.157445 + 0.272703i
\(279\) −1.47906 + 1.36855i −0.0885488 + 0.0819327i
\(280\) 0.567702 0.983289i 0.0339267 0.0587628i
\(281\) −1.47197 8.34795i −0.0878103 0.497997i −0.996715 0.0809924i \(-0.974191\pi\)
0.908904 0.417004i \(-0.136920\pi\)
\(282\) −15.7020 8.56501i −0.935041 0.510039i
\(283\) −5.92408 + 2.15619i −0.352150 + 0.128172i −0.512037 0.858963i \(-0.671109\pi\)
0.159887 + 0.987135i \(0.448887\pi\)
\(284\) 7.61015 2.76987i 0.451580 0.164362i
\(285\) 10.0387 + 5.47581i 0.594639 + 0.324359i
\(286\) −3.61709 20.5135i −0.213883 1.21299i
\(287\) 0.347824 0.602448i 0.0205314 0.0355614i
\(288\) 2.86549 + 0.888246i 0.168850 + 0.0523404i
\(289\) 7.85622 + 13.6074i 0.462130 + 0.800434i
\(290\) −11.8671 + 9.95764i −0.696857 + 0.584733i
\(291\) 20.1840 25.2740i 1.18321 1.48159i
\(292\) 2.53549 14.3795i 0.148378 0.841495i
\(293\) −1.86383 1.56394i −0.108886 0.0913662i 0.586719 0.809790i \(-0.300419\pi\)
−0.695605 + 0.718424i \(0.744864\pi\)
\(294\) −11.7123 + 2.35923i −0.683075 + 0.137593i
\(295\) −9.96083 3.62544i −0.579942 0.211082i
\(296\) 7.58877 0.441088
\(297\) 16.1182 + 16.5942i 0.935271 + 0.962891i
\(298\) −16.2922 −0.943784
\(299\) 0.634037 + 0.230771i 0.0366673 + 0.0133458i
\(300\) −4.21693 + 12.5222i −0.243465 + 0.722972i
\(301\) 1.73718 + 1.45767i 0.100129 + 0.0840184i
\(302\) −2.71203 + 15.3807i −0.156060 + 0.885058i
\(303\) 4.14375 + 0.627512i 0.238052 + 0.0360496i
\(304\) 1.42315 1.19417i 0.0816233 0.0684901i
\(305\) 6.20942 + 10.7550i 0.355550 + 0.615831i
\(306\) 1.84292 + 2.86212i 0.105353 + 0.163616i
\(307\) 11.8629 20.5471i 0.677050 1.17269i −0.298815 0.954311i \(-0.596591\pi\)
0.975865 0.218374i \(-0.0700754\pi\)
\(308\) −0.247003 1.40083i −0.0140743 0.0798194i
\(309\) −2.95027 + 1.80006i −0.167835 + 0.102402i
\(310\) −2.24303 + 0.816395i −0.127395 + 0.0463681i
\(311\) 10.1493 3.69403i 0.575511 0.209469i −0.0378338 0.999284i \(-0.512046\pi\)
0.613345 + 0.789815i \(0.289824\pi\)
\(312\) 0.196408 + 8.10143i 0.0111194 + 0.458653i
\(313\) −2.75948 15.6498i −0.155975 0.884577i −0.957889 0.287138i \(-0.907296\pi\)
0.801914 0.597439i \(-0.203815\pi\)
\(314\) −8.81577 + 15.2694i −0.497503 + 0.861700i
\(315\) −3.14058 + 1.31873i −0.176952 + 0.0743021i
\(316\) 6.29350 + 10.9007i 0.354037 + 0.613210i
\(317\) −2.47819 + 2.07944i −0.139189 + 0.116793i −0.709724 0.704480i \(-0.751180\pi\)
0.570535 + 0.821273i \(0.306736\pi\)
\(318\) 0.508844 + 1.29917i 0.0285346 + 0.0728536i
\(319\) −3.37009 + 19.1127i −0.188689 + 1.07011i
\(320\) 2.72228 + 2.28426i 0.152180 + 0.127694i
\(321\) −10.1585 11.5271i −0.566992 0.643380i
\(322\) 0.0432970 + 0.0157588i 0.00241285 + 0.000878205i
\(323\) 2.10805 0.117295
\(324\) −5.23337 7.32201i −0.290743 0.406778i
\(325\) −35.6925 −1.97986
\(326\) 14.9224 + 5.43131i 0.826475 + 0.300812i
\(327\) 2.25832 + 2.56257i 0.124885 + 0.141711i
\(328\) 1.66790 + 1.39954i 0.0920946 + 0.0772765i
\(329\) 0.572924 3.24922i 0.0315863 0.179135i
\(330\) 9.99376 + 25.5158i 0.550138 + 1.40460i
\(331\) −13.5311 + 11.3540i −0.743739 + 0.624071i −0.933839 0.357693i \(-0.883563\pi\)
0.190100 + 0.981765i \(0.439119\pi\)
\(332\) 2.70681 + 4.68834i 0.148556 + 0.257306i
\(333\) −18.1287 13.7716i −0.993444 0.754678i
\(334\) 6.78921 11.7593i 0.371489 0.643438i
\(335\) 4.59316 + 26.0491i 0.250951 + 1.42321i
\(336\) 0.0134123 + 0.553229i 0.000731699 + 0.0301811i
\(337\) 9.90706 3.60588i 0.539672 0.196425i −0.0577798 0.998329i \(-0.518402\pi\)
0.597452 + 0.801905i \(0.296180\pi\)
\(338\) −8.35441 + 3.04076i −0.454420 + 0.165395i
\(339\) 14.2366 8.68625i 0.773228 0.471773i
\(340\) 0.700218 + 3.97113i 0.0379746 + 0.215365i
\(341\) −1.49520 + 2.58977i −0.0809699 + 0.140244i
\(342\) −5.56683 + 0.270079i −0.301020 + 0.0146042i
\(343\) −2.22020 3.84550i −0.119879 0.207637i
\(344\) −5.43716 + 4.56232i −0.293152 + 0.245984i
\(345\) −0.877639 0.132906i −0.0472505 0.00715543i
\(346\) 1.11906 6.34650i 0.0601610 0.341190i
\(347\) 24.9000 + 20.8936i 1.33670 + 1.12163i 0.982460 + 0.186473i \(0.0597058\pi\)
0.354243 + 0.935153i \(0.384739\pi\)
\(348\) 2.40968 7.15558i 0.129172 0.383579i
\(349\) 18.8599 + 6.86444i 1.00955 + 0.367445i 0.793259 0.608884i \(-0.208383\pi\)
0.216289 + 0.976329i \(0.430605\pi\)
\(350\) −2.43736 −0.130282
\(351\) 14.2327 19.7098i 0.759687 1.05203i
\(352\) 4.45206 0.237295
\(353\) −10.3705 3.77455i −0.551966 0.200899i 0.0509539 0.998701i \(-0.483774\pi\)
−0.602920 + 0.797802i \(0.705996\pi\)
\(354\) 5.06472 1.02019i 0.269187 0.0542227i
\(355\) −22.0465 18.4992i −1.17011 0.981837i
\(356\) 0.877354 4.97572i 0.0464997 0.263713i
\(357\) −0.391854 + 0.490670i −0.0207391 + 0.0259690i
\(358\) −9.58494 + 8.04272i −0.506580 + 0.425071i
\(359\) 1.96044 + 3.39557i 0.103468 + 0.179212i 0.913111 0.407711i \(-0.133673\pi\)
−0.809643 + 0.586922i \(0.800339\pi\)
\(360\) −2.35787 10.3970i −0.124271 0.547972i
\(361\) 7.77430 13.4655i 0.409174 0.708710i
\(362\) 0.0528764 + 0.299877i 0.00277912 + 0.0157612i
\(363\) 13.4124 + 7.31611i 0.703971 + 0.383996i
\(364\) −1.40471 + 0.511272i −0.0736268 + 0.0267980i
\(365\) −48.7591 + 17.7469i −2.55217 + 0.928914i
\(366\) −5.31377 2.89851i −0.277755 0.151508i
\(367\) 5.06206 + 28.7084i 0.264237 + 1.49856i 0.771198 + 0.636595i \(0.219658\pi\)
−0.506961 + 0.861969i \(0.669231\pi\)
\(368\) −0.0721058 + 0.124891i −0.00375878 + 0.00651039i
\(369\) −1.44463 6.37013i −0.0752047 0.331615i
\(370\) −13.4840 23.3550i −0.701001 1.21417i
\(371\) −0.197161 + 0.165438i −0.0102361 + 0.00858909i
\(372\) 0.726002 0.909082i 0.0376415 0.0471337i
\(373\) 1.08909 6.17653i 0.0563909 0.319809i −0.943544 0.331248i \(-0.892530\pi\)
0.999935 + 0.0114395i \(0.00364140\pi\)
\(374\) 3.86989 + 3.24722i 0.200107 + 0.167910i
\(375\) 15.8612 3.19494i 0.819068 0.164986i
\(376\) 9.70378 + 3.53189i 0.500434 + 0.182143i
\(377\) 20.3957 1.05043
\(378\) 0.971923 1.34594i 0.0499903 0.0692276i
\(379\) −26.9562 −1.38465 −0.692324 0.721587i \(-0.743413\pi\)
−0.692324 + 0.721587i \(0.743413\pi\)
\(380\) −6.20385 2.25802i −0.318251 0.115834i
\(381\) −0.0880072 + 0.261339i −0.00450874 + 0.0133888i
\(382\) −11.0255 9.25146i −0.564111 0.473346i
\(383\) −0.565446 + 3.20680i −0.0288929 + 0.163860i −0.995840 0.0911163i \(-0.970957\pi\)
0.966947 + 0.254976i \(0.0820676\pi\)
\(384\) −1.71253 0.259338i −0.0873920 0.0132343i
\(385\) −3.87226 + 3.24922i −0.197349 + 0.165595i
\(386\) −1.52531 2.64192i −0.0776364 0.134470i
\(387\) 21.2681 1.03184i 1.08112 0.0524512i
\(388\) −9.33706 + 16.1723i −0.474018 + 0.821022i
\(389\) 0.241315 + 1.36857i 0.0122352 + 0.0693891i 0.990314 0.138846i \(-0.0443392\pi\)
−0.978079 + 0.208235i \(0.933228\pi\)
\(390\) 24.5838 14.9994i 1.24485 0.759525i
\(391\) −0.153770 + 0.0559675i −0.00777646 + 0.00283040i
\(392\) 6.48192 2.35923i 0.327387 0.119159i
\(393\) 0.398204 + 16.4251i 0.0200867 + 0.828538i
\(394\) 3.86614 + 21.9260i 0.194773 + 1.10461i
\(395\) 22.3651 38.7375i 1.12531 1.94909i
\(396\) −10.6354 8.07929i −0.534450 0.406000i
\(397\) −1.07010 1.85347i −0.0537069 0.0930230i 0.837922 0.545790i \(-0.183770\pi\)
−0.891629 + 0.452767i \(0.850437\pi\)
\(398\) 18.8167 15.7890i 0.943193 0.791433i
\(399\) −0.374938 0.957280i −0.0187704 0.0479239i
\(400\) 1.32470 7.51276i 0.0662351 0.375638i
\(401\) −6.55222 5.49796i −0.327202 0.274555i 0.464357 0.885648i \(-0.346286\pi\)
−0.791559 + 0.611093i \(0.790730\pi\)
\(402\) −8.52379 9.67216i −0.425128 0.482404i
\(403\) 2.95314 + 1.07486i 0.147107 + 0.0535424i
\(404\) −2.41967 −0.120383
\(405\) −13.2352 + 29.1162i −0.657661 + 1.44679i
\(406\) 1.39278 0.0691225
\(407\) −31.7481 11.5554i −1.57369 0.572778i
\(408\) −1.29944 1.47450i −0.0643316 0.0729987i
\(409\) 20.8915 + 17.5300i 1.03302 + 0.866804i 0.991207 0.132322i \(-0.0422433\pi\)
0.0418096 + 0.999126i \(0.486688\pi\)
\(410\) 1.34359 7.61986i 0.0663550 0.376318i
\(411\) 7.39644 + 18.8844i 0.364840 + 0.931498i
\(412\) 1.52853 1.28259i 0.0753052 0.0631885i
\(413\) 0.476511 + 0.825342i 0.0234476 + 0.0406124i
\(414\) 0.398896 0.167497i 0.0196047 0.00823201i
\(415\) 9.61916 16.6609i 0.472186 0.817850i
\(416\) −0.812454 4.60766i −0.0398338 0.225909i
\(417\) 0.220400 + 9.09106i 0.0107930 + 0.445191i
\(418\) −7.77219 + 2.82885i −0.380150 + 0.138363i
\(419\) −15.0495 + 5.47757i −0.735216 + 0.267597i −0.682371 0.731006i \(-0.739051\pi\)
−0.0528448 + 0.998603i \(0.516829\pi\)
\(420\) 1.67877 1.02428i 0.0819158 0.0499796i
\(421\) −3.15120 17.8713i −0.153580 0.870995i −0.960073 0.279751i \(-0.909748\pi\)
0.806493 0.591244i \(-0.201363\pi\)
\(422\) 1.50965 2.61480i 0.0734888 0.127286i
\(423\) −16.7717 26.0470i −0.815469 1.26645i
\(424\) −0.402777 0.697630i −0.0195606 0.0338799i
\(425\) 6.63111 5.56416i 0.321656 0.269901i
\(426\) 13.8690 + 2.10026i 0.671954 + 0.101758i
\(427\) 0.193885 1.09958i 0.00938276 0.0532123i
\(428\) 6.79537 + 5.70199i 0.328467 + 0.275616i
\(429\) 11.5143 34.1919i 0.555916 1.65080i
\(430\) 23.7019 + 8.62677i 1.14301 + 0.416020i
\(431\) 2.13698 0.102935 0.0514673 0.998675i \(-0.483610\pi\)
0.0514673 + 0.998675i \(0.483610\pi\)
\(432\) 3.62039 + 3.72730i 0.174186 + 0.179330i
\(433\) 25.1733 1.20975 0.604876 0.796320i \(-0.293223\pi\)
0.604876 + 0.796320i \(0.293223\pi\)
\(434\) 0.201664 + 0.0733996i 0.00968017 + 0.00352329i
\(435\) −26.3035 + 5.29835i −1.26115 + 0.254036i
\(436\) −1.51067 1.26760i −0.0723478 0.0607071i
\(437\) 0.0465230 0.263845i 0.00222550 0.0126214i
\(438\) 15.7819 19.7617i 0.754089 0.944252i
\(439\) 19.8037 16.6173i 0.945179 0.793099i −0.0333002 0.999445i \(-0.510602\pi\)
0.978479 + 0.206346i \(0.0661573\pi\)
\(440\) −7.91059 13.7015i −0.377123 0.653196i
\(441\) −19.7659 6.12705i −0.941233 0.291764i
\(442\) 2.65450 4.59773i 0.126262 0.218692i
\(443\) 2.42041 + 13.7268i 0.114997 + 0.652181i 0.986752 + 0.162238i \(0.0518713\pi\)
−0.871755 + 0.489943i \(0.837018\pi\)
\(444\) 11.5391 + 6.29425i 0.547621 + 0.298712i
\(445\) −16.8721 + 6.14094i −0.799814 + 0.291108i
\(446\) −9.37850 + 3.41350i −0.444085 + 0.161634i
\(447\) −24.7731 13.5131i −1.17173 0.639145i
\(448\) −0.0554807 0.314647i −0.00262122 0.0148657i
\(449\) −14.5769 + 25.2479i −0.687927 + 1.19152i 0.284581 + 0.958652i \(0.408146\pi\)
−0.972507 + 0.232872i \(0.925188\pi\)
\(450\) −16.7982 + 15.5431i −0.791875 + 0.732708i
\(451\) −4.84672 8.39476i −0.228223 0.395294i
\(452\) −7.37598 + 6.18918i −0.346937 + 0.291114i
\(453\) −16.8807 + 21.1376i −0.793126 + 0.993133i
\(454\) −3.66786 + 20.8015i −0.172141 + 0.976261i
\(455\) 4.06943 + 3.41465i 0.190778 + 0.160081i
\(456\) 3.15443 0.635402i 0.147720 0.0297554i
\(457\) −22.3630 8.13945i −1.04609 0.380747i −0.238907 0.971042i \(-0.576789\pi\)
−0.807188 + 0.590295i \(0.799011\pi\)
\(458\) −23.2807 −1.08784
\(459\) 0.428367 + 5.88054i 0.0199945 + 0.274480i
\(460\) 0.512482 0.0238946
\(461\) −28.9550 10.5388i −1.34857 0.490839i −0.436069 0.899913i \(-0.643630\pi\)
−0.912501 + 0.409074i \(0.865852\pi\)
\(462\) 0.786287 2.33489i 0.0365814 0.108629i
\(463\) 27.6849 + 23.2304i 1.28663 + 1.07961i 0.992294 + 0.123907i \(0.0395424\pi\)
0.294334 + 0.955703i \(0.404902\pi\)
\(464\) −0.756973 + 4.29301i −0.0351416 + 0.199298i
\(465\) −4.08776 0.619035i −0.189565 0.0287070i
\(466\) 20.4720 17.1780i 0.948347 0.795758i
\(467\) 18.4877 + 32.0217i 0.855509 + 1.48179i 0.876172 + 0.481999i \(0.160089\pi\)
−0.0206626 + 0.999787i \(0.506578\pi\)
\(468\) −6.42081 + 12.4815i −0.296802 + 0.576959i
\(469\) 1.18906 2.05952i 0.0549058 0.0950996i
\(470\) −6.37241 36.1397i −0.293937 1.66700i
\(471\) −26.0695 + 15.9059i −1.20122 + 0.732904i
\(472\) −2.80296 + 1.02019i −0.129017 + 0.0469582i
\(473\) 29.6937 10.8076i 1.36532 0.496935i
\(474\) 0.528387 + 21.7949i 0.0242696 + 1.00107i
\(475\) 2.46102 + 13.9571i 0.112919 + 0.640398i
\(476\) 0.181270 0.313969i 0.00830850 0.0143908i
\(477\) −0.303827 + 2.39749i −0.0139113 + 0.109773i
\(478\) 12.0299 + 20.8365i 0.550236 + 0.953037i
\(479\) 29.4015 24.6708i 1.34339 1.12724i 0.362647 0.931926i \(-0.381873\pi\)
0.980741 0.195311i \(-0.0625715\pi\)
\(480\) 2.24475 + 5.73123i 0.102458 + 0.261594i
\(481\) −6.16553 + 34.9664i −0.281124 + 1.59433i
\(482\) −1.14257 0.958731i −0.0520427 0.0436690i
\(483\) 0.0527646 + 0.0598733i 0.00240087 + 0.00272433i
\(484\) −8.28884 3.01689i −0.376765 0.137131i
\(485\) 66.3619 3.01334
\(486\) −1.88461 15.4741i −0.0854876 0.701920i
\(487\) 34.3088 1.55468 0.777339 0.629082i \(-0.216569\pi\)
0.777339 + 0.629082i \(0.216569\pi\)
\(488\) 3.28389 + 1.19524i 0.148655 + 0.0541059i
\(489\) 18.1854 + 20.6354i 0.822373 + 0.933167i
\(490\) −18.7781 15.7567i −0.848306 0.711813i
\(491\) −3.02281 + 17.1432i −0.136417 + 0.773661i 0.837445 + 0.546522i \(0.184048\pi\)
−0.973862 + 0.227139i \(0.927063\pi\)
\(492\) 1.37533 + 3.51145i 0.0620046 + 0.158308i
\(493\) −3.78921 + 3.17952i −0.170657 + 0.143199i
\(494\) 4.34606 + 7.52760i 0.195539 + 0.338683i
\(495\) −5.96720 + 47.0870i −0.268206 + 2.11640i
\(496\) −0.335846 + 0.581702i −0.0150799 + 0.0261192i
\(497\) 0.449314 + 2.54819i 0.0201545 + 0.114302i
\(498\) 0.227258 + 9.37392i 0.0101837 + 0.420056i
\(499\) −24.6982 + 8.98939i −1.10564 + 0.402421i −0.829393 0.558666i \(-0.811313\pi\)
−0.276248 + 0.961086i \(0.589091\pi\)
\(500\) −8.77804 + 3.19494i −0.392566 + 0.142882i
\(501\) 20.0766 12.2494i 0.896958 0.547265i
\(502\) 2.53091 + 14.3535i 0.112960 + 0.640629i
\(503\) 9.08930 15.7431i 0.405272 0.701952i −0.589081 0.808074i \(-0.700510\pi\)
0.994353 + 0.106122i \(0.0338435\pi\)
\(504\) −0.438463 + 0.852336i −0.0195307 + 0.0379661i
\(505\) 4.29937 + 7.44672i 0.191319 + 0.331375i
\(506\) 0.491830 0.412694i 0.0218645 0.0183465i
\(507\) −15.2253 2.30567i −0.676181 0.102398i
\(508\) 0.0276465 0.156791i 0.00122661 0.00695647i
\(509\) −18.8746 15.8376i −0.836600 0.701991i 0.120196 0.992750i \(-0.461648\pi\)
−0.956796 + 0.290759i \(0.906092\pi\)
\(510\) −2.22901 + 6.61907i −0.0987020 + 0.293097i
\(511\) 4.38379 + 1.59557i 0.193927 + 0.0705838i
\(512\) 1.00000 0.0441942
\(513\) −8.68864 4.20655i −0.383613 0.185724i
\(514\) −11.0246 −0.486275
\(515\) −6.66321 2.42521i −0.293616 0.106868i
\(516\) −12.0515 + 2.42756i −0.530539 + 0.106867i
\(517\) −35.2184 29.5517i −1.54890 1.29968i
\(518\) −0.421030 + 2.38778i −0.0184990 + 0.104913i
\(519\) 6.96548 8.72200i 0.305750 0.382853i
\(520\) −12.7368 + 10.6875i −0.558547 + 0.468676i
\(521\) −15.0065 25.9921i −0.657449 1.13873i −0.981274 0.192618i \(-0.938302\pi\)
0.323825 0.946117i \(-0.395031\pi\)
\(522\) 9.59898 8.88178i 0.420136 0.388745i
\(523\) 13.6719 23.6804i 0.597829 1.03547i −0.395312 0.918547i \(-0.629363\pi\)
0.993141 0.116924i \(-0.0373033\pi\)
\(524\) −1.64720 9.34172i −0.0719582 0.408095i
\(525\) −3.70613 2.02159i −0.161749 0.0882293i
\(526\) 12.3476 4.49416i 0.538381 0.195955i
\(527\) −0.716210 + 0.260679i −0.0311986 + 0.0113554i
\(528\) 6.76957 + 3.69261i 0.294608 + 0.160700i
\(529\) −3.99030 22.6301i −0.173491 0.983917i
\(530\) −1.43134 + 2.47916i −0.0621735 + 0.107688i
\(531\) 8.54731 + 2.64950i 0.370922 + 0.114979i
\(532\) 0.296783 + 0.514044i 0.0128672 + 0.0222866i
\(533\) −7.80368 + 6.54807i −0.338015 + 0.283628i
\(534\) 5.46100 6.83814i 0.236321 0.295915i
\(535\) 5.47404 31.0448i 0.236663 1.34218i
\(536\) 5.70186 + 4.78443i 0.246283 + 0.206656i
\(537\) −21.2451 + 4.27944i −0.916795 + 0.184672i
\(538\) 9.68695 + 3.52576i 0.417634 + 0.152006i
\(539\) −30.7099 −1.32277
\(540\) 5.03822 17.7649i 0.216810 0.764478i
\(541\) 8.65632 0.372164 0.186082 0.982534i \(-0.440421\pi\)
0.186082 + 0.982534i \(0.440421\pi\)
\(542\) −0.953353 0.346992i −0.0409500 0.0149046i
\(543\) −0.168322 + 0.499834i −0.00722337 + 0.0214499i
\(544\) 0.869237 + 0.729376i 0.0372682 + 0.0312718i
\(545\) −1.21692 + 6.90152i −0.0521273 + 0.295629i
\(546\) −2.55999 0.387674i −0.109557 0.0165909i
\(547\) 21.1005 17.7055i 0.902194 0.757031i −0.0684237 0.997656i \(-0.521797\pi\)
0.970618 + 0.240625i \(0.0773525\pi\)
\(548\) −5.85468 10.1406i −0.250100 0.433185i
\(549\) −5.67577 8.81466i −0.242236 0.376200i
\(550\) −16.9816 + 29.4130i −0.724097 + 1.25417i
\(551\) −1.40630 7.97552i −0.0599104 0.339769i
\(552\) −0.213227 + 0.130097i −0.00907554 + 0.00553730i
\(553\) −3.77903 + 1.37545i −0.160701 + 0.0584903i
\(554\) 10.1785 3.70465i 0.432441 0.157396i
\(555\) −1.13209 46.6963i −0.0480544 1.98215i
\(556\) −0.911699 5.17050i −0.0386647 0.219278i
\(557\) 13.0903 22.6730i 0.554653 0.960687i −0.443278 0.896384i \(-0.646184\pi\)
0.997930 0.0643022i \(-0.0204822\pi\)
\(558\) 1.85793 0.780146i 0.0786524 0.0330262i
\(559\) −16.6042 28.7592i −0.702281 1.21639i
\(560\) −0.869770 + 0.729824i −0.0367545 + 0.0308407i
\(561\) 3.19106 + 8.14731i 0.134727 + 0.343980i
\(562\) −1.47197 + 8.34795i −0.0620912 + 0.352137i
\(563\) −3.04293 2.55332i −0.128244 0.107610i 0.576410 0.817161i \(-0.304453\pi\)
−0.704654 + 0.709551i \(0.748898\pi\)
\(564\) 11.8257 + 13.4189i 0.497950 + 0.565037i
\(565\) 32.1536 + 11.7030i 1.35271 + 0.492347i
\(566\) 6.30428 0.264988
\(567\) 2.59420 1.24043i 0.108946 0.0520934i
\(568\) −8.09856 −0.339808
\(569\) 38.0492 + 13.8488i 1.59511 + 0.580571i 0.978418 0.206636i \(-0.0662516\pi\)
0.616688 + 0.787207i \(0.288474\pi\)
\(570\) −7.56043 8.57900i −0.316671 0.359335i
\(571\) 29.3406 + 24.6197i 1.22787 + 1.03030i 0.998375 + 0.0569933i \(0.0181514\pi\)
0.229493 + 0.973310i \(0.426293\pi\)
\(572\) −3.61709 + 20.5135i −0.151238 + 0.857714i
\(573\) −9.09143 23.2120i −0.379800 0.969694i
\(574\) −0.532897 + 0.447153i −0.0222427 + 0.0186638i
\(575\) −0.550070 0.952749i −0.0229395 0.0397324i
\(576\) −2.38888 1.81473i −0.0995366 0.0756139i
\(577\) −4.13928 + 7.16944i −0.172320 + 0.298468i −0.939231 0.343287i \(-0.888460\pi\)
0.766910 + 0.641754i \(0.221793\pi\)
\(578\) −2.72844 15.4737i −0.113488 0.643622i
\(579\) −0.128062 5.28229i −0.00532206 0.219524i
\(580\) 14.5571 5.29835i 0.604450 0.220002i
\(581\) −1.62535 + 0.591578i −0.0674308 + 0.0245428i
\(582\) −27.6110 + 16.8464i −1.14451 + 0.698306i
\(583\) 0.622767 + 3.53189i 0.0257924 + 0.146276i
\(584\) −7.30065 + 12.6451i −0.302103 + 0.523258i
\(585\) 49.8216 2.41713i 2.05987 0.0999360i
\(586\) 1.21653 + 2.10709i 0.0502543 + 0.0870430i
\(587\) −10.6808 + 8.96228i −0.440845 + 0.369913i −0.836025 0.548691i \(-0.815126\pi\)
0.395181 + 0.918603i \(0.370682\pi\)
\(588\) 11.8129 + 1.78889i 0.487154 + 0.0737727i
\(589\) 0.216689 1.22891i 0.00892853 0.0506362i
\(590\) 8.12014 + 6.81361i 0.334301 + 0.280512i
\(591\) −12.3071 + 36.5461i −0.506246 + 1.50331i
\(592\) −7.13111 2.59551i −0.293087 0.106675i
\(593\) −41.2342 −1.69329 −0.846644 0.532160i \(-0.821380\pi\)
−0.846644 + 0.532160i \(0.821380\pi\)
\(594\) −9.47058 21.1061i −0.388583 0.865996i
\(595\) −1.28835 −0.0528173
\(596\) 15.3097 + 5.57227i 0.627110 + 0.228249i
\(597\) 41.7073 8.40117i 1.70697 0.343837i
\(598\) −0.516872 0.433707i −0.0211365 0.0177356i
\(599\) −0.544602 + 3.08859i −0.0222518 + 0.126196i −0.993910 0.110193i \(-0.964853\pi\)
0.971658 + 0.236390i \(0.0759641\pi\)
\(600\) 8.24548 10.3248i 0.336620 0.421507i
\(601\) −26.6855 + 22.3918i −1.08853 + 0.913382i −0.996601 0.0823839i \(-0.973747\pi\)
−0.0919256 + 0.995766i \(0.529302\pi\)
\(602\) −1.13386 1.96391i −0.0462128 0.0800429i
\(603\) −4.93859 21.7768i −0.201115 0.886819i
\(604\) 7.80897 13.5255i 0.317742 0.550346i
\(605\) 5.44323 + 30.8701i 0.221299 + 1.25505i
\(606\) −3.67923 2.00691i −0.149458 0.0815253i
\(607\) 0.726574 0.264451i 0.0294907 0.0107338i −0.327233 0.944944i \(-0.606116\pi\)
0.356723 + 0.934210i \(0.383894\pi\)
\(608\) −1.74575 + 0.635402i −0.0707997 + 0.0257690i
\(609\) 2.11779 + 1.15519i 0.0858172 + 0.0468108i
\(610\) −2.15651 12.2302i −0.0873145 0.495185i
\(611\) −24.1576 + 41.8422i −0.977312 + 1.69275i
\(612\) −0.752879 3.31983i −0.0304333 0.134196i
\(613\) −6.99919 12.1230i −0.282695 0.489642i 0.689353 0.724426i \(-0.257895\pi\)
−0.972048 + 0.234784i \(0.924562\pi\)
\(614\) −18.1750 + 15.2506i −0.733483 + 0.615465i
\(615\) 8.36302 10.4720i 0.337230 0.422271i
\(616\) −0.247003 + 1.40083i −0.00995205 + 0.0564409i
\(617\) 8.97302 + 7.52926i 0.361240 + 0.303117i 0.805285 0.592888i \(-0.202012\pi\)
−0.444045 + 0.896005i \(0.646457\pi\)
\(618\) 3.38800 0.682450i 0.136285 0.0274522i
\(619\) −45.1425 16.4305i −1.81443 0.660398i −0.996357 0.0852845i \(-0.972820\pi\)
−0.818073 0.575114i \(-0.804958\pi\)
\(620\) 2.38698 0.0958634
\(621\) 0.745465 + 0.0761639i 0.0299145 + 0.00305635i
\(622\) −10.8006 −0.433065
\(623\) 1.51692 + 0.552114i 0.0607741 + 0.0221200i
\(624\) 2.58629 7.68003i 0.103534 0.307447i
\(625\) −3.78956 3.17982i −0.151583 0.127193i
\(626\) −2.75948 + 15.6498i −0.110291 + 0.625490i
\(627\) −14.1643 2.14498i −0.565667 0.0856624i
\(628\) 13.5065 11.3333i 0.538970 0.452249i
\(629\) −4.30552 7.45738i −0.171672 0.297345i
\(630\) 3.40221 0.165061i 0.135547 0.00657617i
\(631\) −19.7725 + 34.2469i −0.787130 + 1.36335i 0.140589 + 0.990068i \(0.455100\pi\)
−0.927719 + 0.373280i \(0.878233\pi\)
\(632\) −2.18571 12.3958i −0.0869429 0.493078i
\(633\) 4.46426 2.72379i 0.177438 0.108261i
\(634\) 3.03994 1.10645i 0.120732 0.0439427i
\(635\) −0.531660 + 0.193508i −0.0210983 + 0.00767915i
\(636\) −0.0338162 1.39485i −0.00134090 0.0553094i
\(637\) 5.60424 + 31.7832i 0.222048 + 1.25930i
\(638\) 9.70378 16.8074i 0.384176 0.665413i
\(639\) 19.3465 + 14.6967i 0.765335 + 0.581393i
\(640\) −1.77684 3.07758i −0.0702358 0.121652i
\(641\) 0.506596 0.425085i 0.0200093 0.0167898i −0.632728 0.774374i \(-0.718065\pi\)
0.652737 + 0.757584i \(0.273620\pi\)
\(642\) 5.60336 + 14.3063i 0.221147 + 0.564626i
\(643\) 0.314901 1.78589i 0.0124185 0.0704288i −0.977969 0.208752i \(-0.933060\pi\)
0.990387 + 0.138323i \(0.0441711\pi\)
\(644\) −0.0352961 0.0296169i −0.00139086 0.00116707i
\(645\) 28.8847 + 32.7761i 1.13733 + 1.29056i
\(646\) −1.98092 0.720997i −0.0779383 0.0283672i
\(647\) 4.13765 0.162668 0.0813339 0.996687i \(-0.474082\pi\)
0.0813339 + 0.996687i \(0.474082\pi\)
\(648\) 2.41349 + 8.67036i 0.0948108 + 0.340604i
\(649\) 13.2798 0.521278
\(650\) 33.5399 + 12.2075i 1.31554 + 0.478819i
\(651\) 0.245761 + 0.278871i 0.00963213 + 0.0109298i
\(652\) −12.1648 10.2075i −0.476412 0.399757i
\(653\) 4.66662 26.4657i 0.182619 1.03568i −0.746357 0.665545i \(-0.768199\pi\)
0.928976 0.370139i \(-0.120690\pi\)
\(654\) −1.24567 3.18042i −0.0487097 0.124364i
\(655\) −25.8231 + 21.6681i −1.00899 + 0.846644i
\(656\) −1.08865 1.88559i −0.0425045 0.0736200i
\(657\) 40.3879 16.9589i 1.57568 0.661629i
\(658\) −1.64967 + 2.85731i −0.0643108 + 0.111390i
\(659\) 2.51054 + 14.2380i 0.0977969 + 0.554634i 0.993854 + 0.110696i \(0.0353078\pi\)
−0.896058 + 0.443938i \(0.853581\pi\)
\(660\) −0.664154 27.3950i −0.0258522 1.06635i
\(661\) −20.9378 + 7.62074i −0.814387 + 0.296413i −0.715435 0.698680i \(-0.753771\pi\)
−0.0989522 + 0.995092i \(0.531549\pi\)
\(662\) 16.5984 6.04133i 0.645116 0.234803i
\(663\) 7.84973 4.78939i 0.304858 0.186004i
\(664\) −0.940067 5.33138i −0.0364817 0.206898i
\(665\) 1.05467 1.82675i 0.0408985 0.0708382i
\(666\) 12.3252 + 19.1414i 0.477592 + 0.741715i
\(667\) 0.314326 + 0.544429i 0.0121708 + 0.0210804i
\(668\) −10.4017 + 8.72804i −0.402453 + 0.337698i
\(669\) −17.0917 2.58830i −0.660803 0.100069i
\(670\) 4.59316 26.0491i 0.177449 1.00636i
\(671\) −11.9184 10.0007i −0.460104 0.386073i
\(672\) 0.176612 0.524453i 0.00681296 0.0202312i
\(673\) −23.4002 8.51699i −0.902012 0.328306i −0.150954 0.988541i \(-0.548234\pi\)
−0.751059 + 0.660235i \(0.770457\pi\)
\(674\) −10.5429 −0.406096
\(675\) −38.4342 + 9.70132i −1.47933 + 0.373404i
\(676\) 8.89058 0.341945
\(677\) −7.50239 2.73065i −0.288340 0.104947i 0.193801 0.981041i \(-0.437918\pi\)
−0.482141 + 0.876094i \(0.660141\pi\)
\(678\) −16.3489 + 3.29319i −0.627877 + 0.126474i
\(679\) −4.57053 3.83513i −0.175401 0.147179i
\(680\) 0.700218 3.97113i 0.0268521 0.152286i
\(681\) −22.8302 + 28.5875i −0.874857 + 1.09547i
\(682\) 2.29079 1.92220i 0.0877187 0.0736048i
\(683\) 17.5306 + 30.3639i 0.670789 + 1.16184i 0.977681 + 0.210097i \(0.0673779\pi\)
−0.306891 + 0.951745i \(0.599289\pi\)
\(684\) 5.32348 + 1.65018i 0.203548 + 0.0630961i
\(685\) −20.8057 + 36.0365i −0.794944 + 1.37688i
\(686\) 0.771067 + 4.37294i 0.0294395 + 0.166960i
\(687\) −35.3995 19.3094i −1.35058 0.736701i
\(688\) 6.66967 2.42756i 0.254279 0.0925498i
\(689\) 3.54168 1.28907i 0.134927 0.0491095i
\(690\) 0.779254 + 0.425061i 0.0296657 + 0.0161818i
\(691\) −0.344177 1.95193i −0.0130931 0.0742548i 0.977561 0.210652i \(-0.0675587\pi\)
−0.990654 + 0.136397i \(0.956448\pi\)
\(692\) −3.22220 + 5.58102i −0.122490 + 0.212159i
\(693\) 3.13219 2.89816i 0.118982 0.110092i
\(694\) −16.2523 28.1499i −0.616930 1.06855i
\(695\) −14.2927 + 11.9930i −0.542152 + 0.454920i
\(696\) −4.71171 + 5.89988i −0.178597 + 0.223635i
\(697\) 0.429014 2.43306i 0.0162501 0.0921587i
\(698\) −15.3747 12.9009i −0.581942 0.488308i
\(699\) 45.3764 9.14025i 1.71629 0.345716i
\(700\) 2.29037 + 0.833627i 0.0865679 + 0.0315081i
\(701\) 42.8694 1.61916 0.809578 0.587013i \(-0.199696\pi\)
0.809578 + 0.587013i \(0.199696\pi\)
\(702\) −20.1155 + 13.6532i −0.759212 + 0.515308i
\(703\) 14.0984 0.531730
\(704\) −4.18356 1.52269i −0.157674 0.0573886i
\(705\) 20.2853 60.2376i 0.763990 2.26868i
\(706\) 8.45411 + 7.09384i 0.318174 + 0.266980i
\(707\) 0.134245 0.761342i 0.00504881 0.0286332i
\(708\) −5.10820 0.773566i −0.191978 0.0290724i
\(709\) 26.9016 22.5731i 1.01031 0.847752i 0.0219320 0.999759i \(-0.493018\pi\)
0.988379 + 0.152008i \(0.0485738\pi\)
\(710\) 14.3898 + 24.9239i 0.540041 + 0.935379i
\(711\) −17.2736 + 33.5785i −0.647812 + 1.25929i
\(712\) −2.52624 + 4.37558i −0.0946748 + 0.163982i
\(713\) 0.0168206 + 0.0953942i 0.000629935 + 0.00357254i
\(714\) 0.536041 0.327057i 0.0200608 0.0122398i
\(715\) 69.5590 25.3174i 2.60136 0.946818i
\(716\) 11.7577 4.27944i 0.439405 0.159930i
\(717\) 1.01000 + 41.6607i 0.0377193 + 1.55585i
\(718\) −0.680852 3.86130i −0.0254092 0.144103i
\(719\) −7.52422 + 13.0323i −0.280606 + 0.486024i −0.971534 0.236899i \(-0.923869\pi\)
0.690928 + 0.722924i \(0.257202\pi\)
\(720\) −1.34032 + 10.5765i −0.0499509 + 0.394161i
\(721\) 0.318758 + 0.552105i 0.0118712 + 0.0205615i
\(722\) −11.9109 + 9.99445i −0.443279 + 0.371955i
\(723\) −0.942147 2.40546i −0.0350388 0.0894601i
\(724\) 0.0528764 0.299877i 0.00196513 0.0111448i
\(725\) −25.4749 21.3760i −0.946113 0.793883i
\(726\) −10.1013 11.4622i −0.374895 0.425403i
\(727\) −13.7436 5.00226i −0.509721 0.185523i 0.0743399 0.997233i \(-0.476315\pi\)
−0.584061 + 0.811710i \(0.698537\pi\)
\(728\) 1.49486 0.0554032
\(729\) 9.96884 25.0923i 0.369216 0.929343i
\(730\) 51.8884 1.92048
\(731\) 7.56813 + 2.75457i 0.279917 + 0.101882i
\(732\) 4.00196 + 4.54113i 0.147917 + 0.167845i
\(733\) 11.5481 + 9.69000i 0.426539 + 0.357908i 0.830644 0.556804i \(-0.187973\pi\)
−0.404105 + 0.914713i \(0.632417\pi\)
\(734\) 5.06206 28.7084i 0.186844 1.05964i
\(735\) −15.4841 39.5336i −0.571140 1.45822i
\(736\) 0.110473 0.0926974i 0.00407207 0.00341687i
\(737\) −16.5689 28.6981i −0.610322 1.05711i
\(738\) −0.821199 + 6.48005i −0.0302288 + 0.238534i
\(739\) −23.9031 + 41.4014i −0.879290 + 1.52297i −0.0271676 + 0.999631i \(0.508649\pi\)
−0.852122 + 0.523343i \(0.824685\pi\)
\(740\) 4.68296 + 26.5584i 0.172149 + 0.976305i
\(741\) 0.364885 + 15.0508i 0.0134044 + 0.552904i
\(742\) 0.241854 0.0880275i 0.00887873 0.00323159i
\(743\) 43.7125 15.9101i 1.60366 0.583683i 0.623485 0.781835i \(-0.285716\pi\)
0.980171 + 0.198152i \(0.0634940\pi\)
\(744\) −0.993143 + 0.605951i −0.0364104 + 0.0222152i
\(745\) −10.0538 57.0178i −0.368342 2.08897i
\(746\) −3.13591 + 5.43155i −0.114814 + 0.198863i
\(747\) −7.42933 + 14.4420i −0.271825 + 0.528405i
\(748\) −2.52589 4.37497i −0.0923558 0.159965i
\(749\) −2.17113 + 1.82179i −0.0793312 + 0.0665668i
\(750\) −15.9974 2.42258i −0.584142 0.0884601i
\(751\) 0.306626 1.73897i 0.0111890 0.0634557i −0.978702 0.205286i \(-0.934188\pi\)
0.989891 + 0.141830i \(0.0452987\pi\)
\(752\) −7.91059 6.63778i −0.288470 0.242055i
\(753\) −8.05667 + 23.9244i −0.293601 + 0.871854i
\(754\) −19.1657 6.97575i −0.697974 0.254042i
\(755\) −55.5012 −2.01989
\(756\) −1.37365 + 0.932350i −0.0499590 + 0.0339093i
\(757\) 3.34143 0.121446 0.0607232 0.998155i \(-0.480659\pi\)
0.0607232 + 0.998155i \(0.480659\pi\)
\(758\) 25.3306 + 9.21957i 0.920048 + 0.334870i
\(759\) 1.09015 0.219590i 0.0395698 0.00797061i
\(760\) 5.05743 + 4.24369i 0.183452 + 0.153935i
\(761\) 8.29207 47.0267i 0.300587 1.70472i −0.342994 0.939338i \(-0.611441\pi\)
0.643581 0.765378i \(-0.277448\pi\)
\(762\) 0.172083 0.215478i 0.00623390 0.00780594i
\(763\) 0.482660 0.404999i