Properties

Label 54.2.e.b.25.2
Level $54$
Weight $2$
Character 54.25
Analytic conductor $0.431$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,2,Mod(7,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 54.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.431192170915\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 318 x^{8} - 678 x^{7} + 1225 x^{6} - 1698 x^{5} + 1905 x^{4} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 25.2
Root \(0.500000 + 1.74095i\) of defining polynomial
Character \(\chi\) \(=\) 54.25
Dual form 54.2.e.b.13.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 - 0.984808i) q^{2} +(1.56529 - 0.741539i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(-3.10057 + 2.60168i) q^{5} +(-0.458464 - 1.67027i) q^{6} +(0.144365 - 0.0525446i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(1.90024 - 2.32144i) q^{9} +O(q^{10})\) \(q+(0.173648 - 0.984808i) q^{2} +(1.56529 - 0.741539i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(-3.10057 + 2.60168i) q^{5} +(-0.458464 - 1.67027i) q^{6} +(0.144365 - 0.0525446i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(1.90024 - 2.32144i) q^{9} +(2.02375 + 3.50524i) q^{10} +(0.169211 + 0.141985i) q^{11} +(-1.72451 + 0.161460i) q^{12} +(0.103202 + 0.585289i) q^{13} +(-0.0266776 - 0.151296i) q^{14} +(-2.92402 + 6.37157i) q^{15} +(0.766044 + 0.642788i) q^{16} +(-2.78255 - 4.81952i) q^{17} +(-1.95620 - 2.27448i) q^{18} +(-1.91041 + 3.30893i) q^{19} +(3.80341 - 1.38433i) q^{20} +(0.187009 - 0.189300i) q^{21} +(0.169211 - 0.141985i) q^{22} +(5.50570 + 2.00391i) q^{23} +(-0.140451 + 1.72635i) q^{24} +(1.97651 - 11.2093i) q^{25} +0.594318 q^{26} +(1.25298 - 5.04282i) q^{27} -0.153630 q^{28} +(0.129880 - 0.736585i) q^{29} +(5.76702 + 3.98601i) q^{30} +(-4.77702 - 1.73869i) q^{31} +(0.766044 - 0.642788i) q^{32} +(0.370152 + 0.0967705i) q^{33} +(-5.22949 + 1.90338i) q^{34} +(-0.310909 + 0.538510i) q^{35} +(-2.57962 + 1.53152i) q^{36} +(-1.87388 - 3.24566i) q^{37} +(2.92692 + 2.45598i) q^{38} +(0.595555 + 0.839616i) q^{39} +(-0.702841 - 3.98601i) q^{40} +(0.690156 + 3.91407i) q^{41} +(-0.153950 - 0.217039i) q^{42} +(7.81896 + 6.56088i) q^{43} +(-0.110445 - 0.191296i) q^{44} +(0.147838 + 12.1416i) q^{45} +(2.92952 - 5.07408i) q^{46} +(0.447025 - 0.162704i) q^{47} +(1.67573 + 0.438094i) q^{48} +(-5.34423 + 4.48434i) q^{49} +(-10.6958 - 3.89296i) q^{50} +(-7.92935 - 5.48056i) q^{51} +(0.103202 - 0.585289i) q^{52} +3.29955 q^{53} +(-4.74863 - 2.10962i) q^{54} -0.894051 q^{55} +(-0.0266776 + 0.151296i) q^{56} +(-0.536639 + 6.59606i) q^{57} +(-0.702841 - 0.255813i) q^{58} +(5.57221 - 4.67564i) q^{59} +(4.92689 - 4.98724i) q^{60} +(-3.16654 + 1.15253i) q^{61} +(-2.54180 + 4.40252i) q^{62} +(0.152349 - 0.434982i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-1.84272 - 1.54623i) q^{65} +(0.159577 - 0.347724i) q^{66} +(1.29509 + 7.34481i) q^{67} +(0.966370 + 5.48056i) q^{68} +(10.1040 - 0.945999i) q^{69} +(0.476340 + 0.399697i) q^{70} +(-1.42889 - 2.47490i) q^{71} +(1.06031 + 2.80638i) q^{72} +(0.638922 - 1.10665i) q^{73} +(-3.52175 + 1.28181i) q^{74} +(-5.21836 - 19.0115i) q^{75} +(2.92692 - 2.45598i) q^{76} +(0.0318887 + 0.0116066i) q^{77} +(0.930277 - 0.440710i) q^{78} +(-0.574268 + 3.25684i) q^{79} -4.04750 q^{80} +(-1.77818 - 8.82259i) q^{81} +3.97445 q^{82} +(-1.43627 + 8.14551i) q^{83} +(-0.240475 + 0.113923i) q^{84} +(21.1664 + 7.70392i) q^{85} +(7.81896 - 6.56088i) q^{86} +(-0.342907 - 1.24928i) q^{87} +(-0.207568 + 0.0755487i) q^{88} +(2.47882 - 4.29345i) q^{89} +(11.9828 + 1.96277i) q^{90} +(0.0456525 + 0.0790725i) q^{91} +(-4.48829 - 3.76612i) q^{92} +(-8.76671 + 0.820795i) q^{93} +(-0.0826070 - 0.468487i) q^{94} +(-2.68543 - 15.2298i) q^{95} +(0.722426 - 1.57420i) q^{96} +(4.33127 + 3.63437i) q^{97} +(3.48820 + 6.04174i) q^{98} +(0.651152 - 0.123008i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9} - 3 q^{10} - 12 q^{11} - 3 q^{12} + 12 q^{13} - 3 q^{14} - 18 q^{15} - 6 q^{17} + 6 q^{18} - 9 q^{19} + 6 q^{20} + 24 q^{21} - 12 q^{22} + 30 q^{23} - 9 q^{25} + 18 q^{26} + 12 q^{28} + 15 q^{29} + 27 q^{30} + 36 q^{33} - 15 q^{34} + 3 q^{35} - 3 q^{36} - 15 q^{37} + 3 q^{38} - 42 q^{39} - 3 q^{40} - 12 q^{41} - 15 q^{42} + 9 q^{43} - 3 q^{44} + 18 q^{45} + 3 q^{46} - 9 q^{47} + 3 q^{48} - 39 q^{49} - 27 q^{50} - 27 q^{51} + 12 q^{52} - 12 q^{53} - 36 q^{54} + 18 q^{55} - 3 q^{56} + 18 q^{57} - 3 q^{58} + 12 q^{59} - 18 q^{60} - 36 q^{61} - 12 q^{62} + 3 q^{63} - 6 q^{64} - 15 q^{65} - 18 q^{66} + 36 q^{67} + 3 q^{68} + 18 q^{69} + 39 q^{70} + 12 q^{71} + 24 q^{72} - 21 q^{73} + 33 q^{74} + 30 q^{75} + 3 q^{76} + 3 q^{77} + 18 q^{78} + 39 q^{79} + 6 q^{80} + 6 q^{82} + 18 q^{83} - 9 q^{84} + 45 q^{85} + 9 q^{86} + 27 q^{87} + 6 q^{88} + 12 q^{89} + 27 q^{90} - 6 q^{91} - 6 q^{92} - 33 q^{93} + 36 q^{94} - 15 q^{95} + 6 q^{96} + 39 q^{97} - 12 q^{98} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 0.984808i 0.122788 0.696364i
\(3\) 1.56529 0.741539i 0.903718 0.428128i
\(4\) −0.939693 0.342020i −0.469846 0.171010i
\(5\) −3.10057 + 2.60168i −1.38661 + 1.16351i −0.419925 + 0.907559i \(0.637944\pi\)
−0.966690 + 0.255949i \(0.917612\pi\)
\(6\) −0.458464 1.67027i −0.187167 0.681886i
\(7\) 0.144365 0.0525446i 0.0545648 0.0198600i −0.314594 0.949226i \(-0.601868\pi\)
0.369158 + 0.929366i \(0.379646\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) 1.90024 2.32144i 0.633413 0.773814i
\(10\) 2.02375 + 3.50524i 0.639966 + 1.10845i
\(11\) 0.169211 + 0.141985i 0.0510191 + 0.0428101i 0.667941 0.744215i \(-0.267176\pi\)
−0.616922 + 0.787025i \(0.711620\pi\)
\(12\) −1.72451 + 0.161460i −0.497823 + 0.0466094i
\(13\) 0.103202 + 0.585289i 0.0286231 + 0.162330i 0.995769 0.0918925i \(-0.0292916\pi\)
−0.967146 + 0.254222i \(0.918180\pi\)
\(14\) −0.0266776 0.151296i −0.00712988 0.0404356i
\(15\) −2.92402 + 6.37157i −0.754979 + 1.64513i
\(16\) 0.766044 + 0.642788i 0.191511 + 0.160697i
\(17\) −2.78255 4.81952i −0.674868 1.16891i −0.976507 0.215484i \(-0.930867\pi\)
0.301639 0.953422i \(-0.402466\pi\)
\(18\) −1.95620 2.27448i −0.461081 0.536101i
\(19\) −1.91041 + 3.30893i −0.438278 + 0.759120i −0.997557 0.0698599i \(-0.977745\pi\)
0.559279 + 0.828980i \(0.311078\pi\)
\(20\) 3.80341 1.38433i 0.850468 0.309545i
\(21\) 0.187009 0.189300i 0.0408086 0.0413086i
\(22\) 0.169211 0.141985i 0.0360760 0.0302713i
\(23\) 5.50570 + 2.00391i 1.14802 + 0.417844i 0.844803 0.535078i \(-0.179718\pi\)
0.303215 + 0.952922i \(0.401940\pi\)
\(24\) −0.140451 + 1.72635i −0.0286695 + 0.352389i
\(25\) 1.97651 11.2093i 0.395302 2.24187i
\(26\) 0.594318 0.116555
\(27\) 1.25298 5.04282i 0.241136 0.970491i
\(28\) −0.153630 −0.0290333
\(29\) 0.129880 0.736585i 0.0241181 0.136780i −0.970371 0.241619i \(-0.922322\pi\)
0.994489 + 0.104839i \(0.0334327\pi\)
\(30\) 5.76702 + 3.98601i 1.05291 + 0.727743i
\(31\) −4.77702 1.73869i −0.857978 0.312278i −0.124689 0.992196i \(-0.539793\pi\)
−0.733289 + 0.679917i \(0.762016\pi\)
\(32\) 0.766044 0.642788i 0.135419 0.113630i
\(33\) 0.370152 + 0.0967705i 0.0644351 + 0.0168456i
\(34\) −5.22949 + 1.90338i −0.896850 + 0.326427i
\(35\) −0.310909 + 0.538510i −0.0525532 + 0.0910248i
\(36\) −2.57962 + 1.53152i −0.429937 + 0.255254i
\(37\) −1.87388 3.24566i −0.308065 0.533584i 0.669874 0.742474i \(-0.266348\pi\)
−0.977939 + 0.208891i \(0.933015\pi\)
\(38\) 2.92692 + 2.45598i 0.474809 + 0.398412i
\(39\) 0.595555 + 0.839616i 0.0953652 + 0.134446i
\(40\) −0.702841 3.98601i −0.111129 0.630244i
\(41\) 0.690156 + 3.91407i 0.107784 + 0.611275i 0.990072 + 0.140564i \(0.0448915\pi\)
−0.882287 + 0.470711i \(0.843997\pi\)
\(42\) −0.153950 0.217039i −0.0237550 0.0334899i
\(43\) 7.81896 + 6.56088i 1.19238 + 1.00053i 0.999815 + 0.0192411i \(0.00612500\pi\)
0.192565 + 0.981284i \(0.438319\pi\)
\(44\) −0.110445 0.191296i −0.0166502 0.0288390i
\(45\) 0.147838 + 12.1416i 0.0220384 + 1.80996i
\(46\) 2.92952 5.07408i 0.431935 0.748133i
\(47\) 0.447025 0.162704i 0.0652054 0.0237328i −0.309212 0.950993i \(-0.600065\pi\)
0.374417 + 0.927260i \(0.377843\pi\)
\(48\) 1.67573 + 0.438094i 0.241871 + 0.0632335i
\(49\) −5.34423 + 4.48434i −0.763462 + 0.640620i
\(50\) −10.6958 3.89296i −1.51262 0.550548i
\(51\) −7.92935 5.48056i −1.11033 0.767432i
\(52\) 0.103202 0.585289i 0.0143116 0.0811650i
\(53\) 3.29955 0.453228 0.226614 0.973985i \(-0.427234\pi\)
0.226614 + 0.973985i \(0.427234\pi\)
\(54\) −4.74863 2.10962i −0.646207 0.287083i
\(55\) −0.894051 −0.120554
\(56\) −0.0266776 + 0.151296i −0.00356494 + 0.0202178i
\(57\) −0.536639 + 6.59606i −0.0710795 + 0.873669i
\(58\) −0.702841 0.255813i −0.0922876 0.0335899i
\(59\) 5.57221 4.67564i 0.725440 0.608716i −0.203444 0.979086i \(-0.565214\pi\)
0.928884 + 0.370370i \(0.120769\pi\)
\(60\) 4.92689 4.98724i 0.636058 0.643850i
\(61\) −3.16654 + 1.15253i −0.405434 + 0.147566i −0.536684 0.843783i \(-0.680323\pi\)
0.131250 + 0.991349i \(0.458101\pi\)
\(62\) −2.54180 + 4.40252i −0.322809 + 0.559121i
\(63\) 0.152349 0.434982i 0.0191942 0.0548026i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −1.84272 1.54623i −0.228561 0.191786i
\(66\) 0.159577 0.347724i 0.0196425 0.0428019i
\(67\) 1.29509 + 7.34481i 0.158220 + 0.897312i 0.955782 + 0.294075i \(0.0950115\pi\)
−0.797562 + 0.603237i \(0.793877\pi\)
\(68\) 0.966370 + 5.48056i 0.117190 + 0.664615i
\(69\) 10.1040 0.945999i 1.21638 0.113885i
\(70\) 0.476340 + 0.399697i 0.0569335 + 0.0477729i
\(71\) −1.42889 2.47490i −0.169578 0.293717i 0.768694 0.639617i \(-0.220907\pi\)
−0.938271 + 0.345900i \(0.887574\pi\)
\(72\) 1.06031 + 2.80638i 0.124958 + 0.330735i
\(73\) 0.638922 1.10665i 0.0747802 0.129523i −0.826210 0.563362i \(-0.809508\pi\)
0.900991 + 0.433838i \(0.142841\pi\)
\(74\) −3.52175 + 1.28181i −0.409395 + 0.149008i
\(75\) −5.21836 19.0115i −0.602564 2.19526i
\(76\) 2.92692 2.45598i 0.335740 0.281720i
\(77\) 0.0318887 + 0.0116066i 0.00363406 + 0.00132269i
\(78\) 0.930277 0.440710i 0.105333 0.0499006i
\(79\) −0.574268 + 3.25684i −0.0646102 + 0.366423i 0.935310 + 0.353828i \(0.115120\pi\)
−0.999921 + 0.0125947i \(0.995991\pi\)
\(80\) −4.04750 −0.452524
\(81\) −1.77818 8.82259i −0.197575 0.980288i
\(82\) 3.97445 0.438904
\(83\) −1.43627 + 8.14551i −0.157651 + 0.894085i 0.798670 + 0.601769i \(0.205537\pi\)
−0.956322 + 0.292316i \(0.905574\pi\)
\(84\) −0.240475 + 0.113923i −0.0262380 + 0.0124300i
\(85\) 21.1664 + 7.70392i 2.29581 + 0.835608i
\(86\) 7.81896 6.56088i 0.843140 0.707478i
\(87\) −0.342907 1.24928i −0.0367635 0.133937i
\(88\) −0.207568 + 0.0755487i −0.0221269 + 0.00805352i
\(89\) 2.47882 4.29345i 0.262755 0.455105i −0.704218 0.709984i \(-0.748702\pi\)
0.966973 + 0.254879i \(0.0820356\pi\)
\(90\) 11.9828 + 1.96277i 1.26310 + 0.206895i
\(91\) 0.0456525 + 0.0790725i 0.00478569 + 0.00828905i
\(92\) −4.48829 3.76612i −0.467936 0.392645i
\(93\) −8.76671 + 0.820795i −0.909065 + 0.0851125i
\(94\) −0.0826070 0.468487i −0.00852026 0.0483208i
\(95\) −2.68543 15.2298i −0.275519 1.56255i
\(96\) 0.722426 1.57420i 0.0737323 0.160666i
\(97\) 4.33127 + 3.63437i 0.439774 + 0.369014i 0.835625 0.549301i \(-0.185106\pi\)
−0.395851 + 0.918315i \(0.629550\pi\)
\(98\) 3.48820 + 6.04174i 0.352361 + 0.610308i
\(99\) 0.651152 0.123008i 0.0654433 0.0123628i
\(100\) −5.69113 + 9.85733i −0.569113 + 0.985733i
\(101\) −14.8467 + 5.40376i −1.47730 + 0.537694i −0.950072 0.312029i \(-0.898991\pi\)
−0.527229 + 0.849723i \(0.676769\pi\)
\(102\) −6.77421 + 6.85720i −0.670747 + 0.678964i
\(103\) 8.19426 6.87580i 0.807404 0.677493i −0.142582 0.989783i \(-0.545541\pi\)
0.949987 + 0.312290i \(0.101096\pi\)
\(104\) −0.558476 0.203269i −0.0547631 0.0199321i
\(105\) −0.0873351 + 1.07347i −0.00852303 + 0.104760i
\(106\) 0.572961 3.24943i 0.0556509 0.315612i
\(107\) 1.85236 0.179075 0.0895374 0.995983i \(-0.471461\pi\)
0.0895374 + 0.995983i \(0.471461\pi\)
\(108\) −2.90216 + 4.31016i −0.279261 + 0.414745i
\(109\) −14.5495 −1.39359 −0.696793 0.717273i \(-0.745390\pi\)
−0.696793 + 0.717273i \(0.745390\pi\)
\(110\) −0.155250 + 0.880468i −0.0148025 + 0.0839494i
\(111\) −5.33995 3.69083i −0.506846 0.350318i
\(112\) 0.144365 + 0.0525446i 0.0136412 + 0.00496500i
\(113\) −10.2514 + 8.60195i −0.964371 + 0.809204i −0.981659 0.190647i \(-0.938941\pi\)
0.0172875 + 0.999851i \(0.494497\pi\)
\(114\) 6.40266 + 1.67388i 0.599664 + 0.156773i
\(115\) −22.2843 + 8.11083i −2.07802 + 0.756339i
\(116\) −0.373974 + 0.647742i −0.0347226 + 0.0601413i
\(117\) 1.55482 + 0.872611i 0.143743 + 0.0806729i
\(118\) −3.63700 6.29947i −0.334813 0.579913i
\(119\) −0.654943 0.549562i −0.0600385 0.0503783i
\(120\) −4.05593 5.71806i −0.370254 0.521985i
\(121\) −1.90166 10.7848i −0.172878 0.980439i
\(122\) 0.585154 + 3.31857i 0.0529773 + 0.300449i
\(123\) 3.98273 + 5.61486i 0.359110 + 0.506275i
\(124\) 3.89426 + 3.26767i 0.349715 + 0.293446i
\(125\) 12.9161 + 22.3713i 1.15525 + 2.00095i
\(126\) −0.401919 0.225568i −0.0358058 0.0200952i
\(127\) 9.31545 16.1348i 0.826612 1.43173i −0.0740688 0.997253i \(-0.523598\pi\)
0.900681 0.434481i \(-0.143068\pi\)
\(128\) −0.939693 + 0.342020i −0.0830579 + 0.0302306i
\(129\) 17.1041 + 4.47160i 1.50593 + 0.393702i
\(130\) −1.84272 + 1.54623i −0.161617 + 0.135613i
\(131\) 6.45330 + 2.34881i 0.563828 + 0.205217i 0.608180 0.793799i \(-0.291900\pi\)
−0.0443519 + 0.999016i \(0.514122\pi\)
\(132\) −0.314731 0.217534i −0.0273938 0.0189339i
\(133\) −0.101930 + 0.578075i −0.00883847 + 0.0501254i
\(134\) 7.45812 0.644283
\(135\) 9.23488 + 18.8954i 0.794812 + 1.62626i
\(136\) 5.56510 0.477204
\(137\) 2.60219 14.7577i 0.222320 1.26084i −0.645423 0.763826i \(-0.723319\pi\)
0.867743 0.497014i \(-0.165570\pi\)
\(138\) 0.822910 10.1147i 0.0700508 0.861024i
\(139\) −17.0110 6.19150i −1.44286 0.525156i −0.502269 0.864711i \(-0.667501\pi\)
−0.940586 + 0.339555i \(0.889724\pi\)
\(140\) 0.476340 0.399697i 0.0402581 0.0337805i
\(141\) 0.579071 0.586165i 0.0487666 0.0493640i
\(142\) −2.68543 + 0.977416i −0.225356 + 0.0820229i
\(143\) −0.0656393 + 0.113691i −0.00548904 + 0.00950729i
\(144\) 2.94786 0.556877i 0.245655 0.0464064i
\(145\) 1.51366 + 2.62174i 0.125703 + 0.217723i
\(146\) −0.978886 0.821383i −0.0810132 0.0679781i
\(147\) −5.03993 + 10.9822i −0.415687 + 0.905799i
\(148\) 0.650793 + 3.69083i 0.0534949 + 0.303384i
\(149\) −2.60884 14.7955i −0.213725 1.21209i −0.883106 0.469174i \(-0.844552\pi\)
0.669381 0.742919i \(-0.266559\pi\)
\(150\) −19.6288 + 1.83777i −1.60269 + 0.150054i
\(151\) −4.32258 3.62708i −0.351767 0.295167i 0.449732 0.893163i \(-0.351519\pi\)
−0.801499 + 0.597996i \(0.795964\pi\)
\(152\) −1.91041 3.30893i −0.154955 0.268389i
\(153\) −16.4758 2.69871i −1.33199 0.218178i
\(154\) 0.0169676 0.0293888i 0.00136729 0.00236822i
\(155\) 19.3350 7.03736i 1.55302 0.565254i
\(156\) −0.272474 0.992673i −0.0218153 0.0794774i
\(157\) 5.54978 4.65682i 0.442921 0.371655i −0.393880 0.919162i \(-0.628868\pi\)
0.836801 + 0.547507i \(0.184423\pi\)
\(158\) 3.10764 + 1.13109i 0.247230 + 0.0899845i
\(159\) 5.16474 2.44675i 0.409591 0.194040i
\(160\) −0.702841 + 3.98601i −0.0555645 + 0.315122i
\(161\) 0.900125 0.0709398
\(162\) −8.99733 + 0.219138i −0.706897 + 0.0172171i
\(163\) 14.1079 1.10501 0.552506 0.833509i \(-0.313672\pi\)
0.552506 + 0.833509i \(0.313672\pi\)
\(164\) 0.690156 3.91407i 0.0538921 0.305637i
\(165\) −1.39945 + 0.662974i −0.108947 + 0.0516124i
\(166\) 7.77235 + 2.82890i 0.603251 + 0.219566i
\(167\) −10.5889 + 8.88510i −0.819390 + 0.687550i −0.952829 0.303507i \(-0.901842\pi\)
0.133439 + 0.991057i \(0.457398\pi\)
\(168\) 0.0704339 + 0.256604i 0.00543409 + 0.0197974i
\(169\) 11.8841 4.32546i 0.914161 0.332727i
\(170\) 11.2624 19.5070i 0.863785 1.49612i
\(171\) 4.05124 + 10.7227i 0.309806 + 0.819982i
\(172\) −5.10346 8.83945i −0.389135 0.674002i
\(173\) −3.00999 2.52568i −0.228845 0.192024i 0.521154 0.853463i \(-0.325502\pi\)
−0.749999 + 0.661439i \(0.769946\pi\)
\(174\) −1.28984 + 0.120763i −0.0977827 + 0.00915504i
\(175\) −0.303651 1.72209i −0.0229539 0.130178i
\(176\) 0.0383571 + 0.217534i 0.00289127 + 0.0163972i
\(177\) 5.25493 11.4507i 0.394985 0.860689i
\(178\) −3.79778 3.18671i −0.284656 0.238854i
\(179\) −1.42211 2.46317i −0.106294 0.184106i 0.807972 0.589220i \(-0.200565\pi\)
−0.914266 + 0.405115i \(0.867232\pi\)
\(180\) 4.01375 11.4599i 0.299167 0.854173i
\(181\) −6.46274 + 11.1938i −0.480372 + 0.832028i −0.999746 0.0225186i \(-0.992832\pi\)
0.519375 + 0.854547i \(0.326165\pi\)
\(182\) 0.0857987 0.0312282i 0.00635982 0.00231479i
\(183\) −4.10190 + 4.15215i −0.303221 + 0.306936i
\(184\) −4.48829 + 3.76612i −0.330881 + 0.277642i
\(185\) 14.2543 + 5.18813i 1.04800 + 0.381439i
\(186\) −0.713998 + 8.77605i −0.0523528 + 0.643491i
\(187\) 0.213461 1.21060i 0.0156098 0.0885277i
\(188\) −0.475715 −0.0346951
\(189\) −0.0840866 0.793844i −0.00611640 0.0577437i
\(190\) −15.4648 −1.12193
\(191\) −3.49774 + 19.8367i −0.253088 + 1.43533i 0.547846 + 0.836579i \(0.315448\pi\)
−0.800934 + 0.598753i \(0.795663\pi\)
\(192\) −1.42483 0.984808i −0.102829 0.0710724i
\(193\) −9.03669 3.28909i −0.650476 0.236754i −0.00435663 0.999991i \(-0.501387\pi\)
−0.646119 + 0.763237i \(0.723609\pi\)
\(194\) 4.33127 3.63437i 0.310967 0.260932i
\(195\) −4.03097 1.05384i −0.288664 0.0754668i
\(196\) 6.55567 2.38607i 0.468262 0.170433i
\(197\) −3.77527 + 6.53895i −0.268977 + 0.465881i −0.968598 0.248633i \(-0.920019\pi\)
0.699621 + 0.714514i \(0.253352\pi\)
\(198\) −0.00806817 0.662620i −0.000573380 0.0470903i
\(199\) 6.07071 + 10.5148i 0.430341 + 0.745372i 0.996903 0.0786471i \(-0.0250600\pi\)
−0.566562 + 0.824019i \(0.691727\pi\)
\(200\) 8.71932 + 7.31638i 0.616549 + 0.517346i
\(201\) 7.47365 + 10.5364i 0.527151 + 0.743178i
\(202\) 2.74356 + 15.5595i 0.193036 + 1.09476i
\(203\) −0.0199534 0.113162i −0.00140046 0.00794238i
\(204\) 5.57669 + 7.86204i 0.390447 + 0.550453i
\(205\) −12.3230 10.3403i −0.860678 0.722195i
\(206\) −5.34842 9.26374i −0.372642 0.645435i
\(207\) 15.1141 8.97325i 1.05050 0.623684i
\(208\) −0.297159 + 0.514694i −0.0206043 + 0.0356876i
\(209\) −0.793081 + 0.288658i −0.0548586 + 0.0199669i
\(210\) 1.04200 + 0.272415i 0.0719048 + 0.0187984i
\(211\) −5.53378 + 4.64340i −0.380961 + 0.319665i −0.813080 0.582152i \(-0.802211\pi\)
0.432118 + 0.901817i \(0.357766\pi\)
\(212\) −3.10057 1.12851i −0.212948 0.0775066i
\(213\) −4.07185 2.81436i −0.278999 0.192837i
\(214\) 0.321660 1.82422i 0.0219882 0.124701i
\(215\) −41.3125 −2.81749
\(216\) 3.74072 + 3.60652i 0.254524 + 0.245393i
\(217\) −0.780993 −0.0530173
\(218\) −2.52649 + 14.3284i −0.171115 + 0.970443i
\(219\) 0.179475 2.20600i 0.0121278 0.149068i
\(220\) 0.840133 + 0.305783i 0.0566418 + 0.0206159i
\(221\) 2.53365 2.12598i 0.170432 0.143009i
\(222\) −4.56203 + 4.61792i −0.306183 + 0.309934i
\(223\) 23.9856 8.73004i 1.60619 0.584607i 0.625512 0.780214i \(-0.284890\pi\)
0.980682 + 0.195607i \(0.0626678\pi\)
\(224\) 0.0768150 0.133048i 0.00513242 0.00888961i
\(225\) −22.2660 25.8888i −1.48440 1.72592i
\(226\) 6.69113 + 11.5894i 0.445087 + 0.770914i
\(227\) 10.9999 + 9.22998i 0.730086 + 0.612615i 0.930155 0.367167i \(-0.119672\pi\)
−0.200069 + 0.979782i \(0.564117\pi\)
\(228\) 2.76026 6.01473i 0.182803 0.398335i
\(229\) 0.704853 + 3.99742i 0.0465780 + 0.264157i 0.999200 0.0400010i \(-0.0127361\pi\)
−0.952622 + 0.304158i \(0.901625\pi\)
\(230\) 4.11798 + 23.3542i 0.271531 + 1.53993i
\(231\) 0.0585217 0.00547918i 0.00385045 0.000360503i
\(232\) 0.572961 + 0.480772i 0.0376168 + 0.0315642i
\(233\) −8.48936 14.7040i −0.556157 0.963292i −0.997813 0.0661072i \(-0.978942\pi\)
0.441656 0.897185i \(-0.354391\pi\)
\(234\) 1.12935 1.37967i 0.0738277 0.0901921i
\(235\) −0.962728 + 1.66749i −0.0628014 + 0.108775i
\(236\) −6.83533 + 2.48786i −0.444942 + 0.161946i
\(237\) 1.51618 + 5.52372i 0.0984864 + 0.358804i
\(238\) −0.654943 + 0.549562i −0.0424536 + 0.0356228i
\(239\) −20.0419 7.29464i −1.29640 0.471851i −0.400577 0.916263i \(-0.631190\pi\)
−0.895823 + 0.444412i \(0.853413\pi\)
\(240\) −6.33550 + 3.00138i −0.408954 + 0.193738i
\(241\) −1.86745 + 10.5909i −0.120293 + 0.682217i 0.863699 + 0.504007i \(0.168142\pi\)
−0.983993 + 0.178210i \(0.942970\pi\)
\(242\) −10.9512 −0.703970
\(243\) −9.32565 12.4913i −0.598241 0.801316i
\(244\) 3.36977 0.215727
\(245\) 4.90330 27.8080i 0.313260 1.77659i
\(246\) 6.22115 2.94721i 0.396646 0.187907i
\(247\) −2.13384 0.776653i −0.135773 0.0494172i
\(248\) 3.89426 3.26767i 0.247286 0.207497i
\(249\) 3.79203 + 13.8151i 0.240310 + 0.875496i
\(250\) 24.2743 8.83513i 1.53524 0.558783i
\(251\) −2.08811 + 3.61672i −0.131801 + 0.228285i −0.924371 0.381495i \(-0.875409\pi\)
0.792570 + 0.609781i \(0.208743\pi\)
\(252\) −0.291934 + 0.356643i −0.0183901 + 0.0224664i
\(253\) 0.647101 + 1.12081i 0.0406829 + 0.0704649i
\(254\) −14.2721 11.9757i −0.895511 0.751423i
\(255\) 38.8442 3.63684i 2.43252 0.227748i
\(256\) 0.173648 + 0.984808i 0.0108530 + 0.0615505i
\(257\) 2.83797 + 16.0949i 0.177028 + 1.00397i 0.935777 + 0.352592i \(0.114699\pi\)
−0.758750 + 0.651382i \(0.774189\pi\)
\(258\) 7.37375 16.0677i 0.459070 1.00033i
\(259\) −0.441065 0.370098i −0.0274065 0.0229967i
\(260\) 1.20275 + 2.08323i 0.0745914 + 0.129196i
\(261\) −1.46314 1.70120i −0.0905658 0.105301i
\(262\) 3.43373 5.94740i 0.212137 0.367431i
\(263\) 2.51963 0.917071i 0.155367 0.0565490i −0.263166 0.964751i \(-0.584767\pi\)
0.418533 + 0.908202i \(0.362544\pi\)
\(264\) −0.268882 + 0.272175i −0.0165485 + 0.0167512i
\(265\) −10.2305 + 8.58439i −0.628453 + 0.527335i
\(266\) 0.551593 + 0.200763i 0.0338203 + 0.0123096i
\(267\) 0.696308 8.55862i 0.0426133 0.523779i
\(268\) 1.29509 7.34481i 0.0791101 0.448656i
\(269\) 22.3509 1.36276 0.681380 0.731930i \(-0.261380\pi\)
0.681380 + 0.731930i \(0.261380\pi\)
\(270\) 20.2120 5.81342i 1.23006 0.353794i
\(271\) 25.4813 1.54788 0.773941 0.633258i \(-0.218283\pi\)
0.773941 + 0.633258i \(0.218283\pi\)
\(272\) 0.966370 5.48056i 0.0585948 0.332308i
\(273\) 0.130095 + 0.0899179i 0.00787369 + 0.00544208i
\(274\) −14.0817 5.12531i −0.850705 0.309631i
\(275\) 1.92601 1.61611i 0.116143 0.0974552i
\(276\) −9.81818 2.56682i −0.590985 0.154504i
\(277\) 2.41221 0.877972i 0.144936 0.0527523i −0.268534 0.963270i \(-0.586539\pi\)
0.413469 + 0.910518i \(0.364317\pi\)
\(278\) −9.05137 + 15.6774i −0.542865 + 0.940270i
\(279\) −13.1138 + 7.78564i −0.785100 + 0.466114i
\(280\) −0.310909 0.538510i −0.0185804 0.0321821i
\(281\) 16.2374 + 13.6248i 0.968642 + 0.812787i 0.982337 0.187119i \(-0.0599151\pi\)
−0.0136956 + 0.999906i \(0.504360\pi\)
\(282\) −0.476705 0.672060i −0.0283874 0.0400206i
\(283\) −3.40928 19.3350i −0.202660 1.14934i −0.901079 0.433655i \(-0.857224\pi\)
0.698419 0.715689i \(-0.253887\pi\)
\(284\) 0.496247 + 2.81436i 0.0294468 + 0.167001i
\(285\) −15.4970 21.8477i −0.917961 1.29414i
\(286\) 0.100565 + 0.0843843i 0.00594655 + 0.00498975i
\(287\) 0.305297 + 0.528791i 0.0180211 + 0.0312135i
\(288\) −0.0365258 2.99978i −0.00215230 0.176764i
\(289\) −6.98519 + 12.0987i −0.410894 + 0.711689i
\(290\) 2.84475 1.03540i 0.167049 0.0608010i
\(291\) 9.47470 + 2.47702i 0.555417 + 0.145205i
\(292\) −0.978886 + 0.821383i −0.0572850 + 0.0480678i
\(293\) −20.1808 7.34522i −1.17898 0.429112i −0.323136 0.946352i \(-0.604737\pi\)
−0.855840 + 0.517240i \(0.826959\pi\)
\(294\) 9.94021 + 6.87041i 0.579725 + 0.400690i
\(295\) −5.11247 + 28.9942i −0.297659 + 1.68811i
\(296\) 3.74777 0.217835
\(297\) 0.928024 0.675398i 0.0538494 0.0391906i
\(298\) −15.0237 −0.870301
\(299\) −0.604666 + 3.42923i −0.0349688 + 0.198318i
\(300\) −1.59865 + 19.6497i −0.0922982 + 1.13448i
\(301\) 1.47352 + 0.536318i 0.0849324 + 0.0309129i
\(302\) −4.32258 + 3.62708i −0.248737 + 0.208715i
\(303\) −19.2322 + 19.4678i −1.10486 + 1.11840i
\(304\) −3.59040 + 1.30680i −0.205923 + 0.0749500i
\(305\) 6.81956 11.8118i 0.390487 0.676343i
\(306\) −5.51870 + 15.7568i −0.315483 + 0.900758i
\(307\) −2.82636 4.89540i −0.161309 0.279395i 0.774029 0.633150i \(-0.218238\pi\)
−0.935338 + 0.353754i \(0.884905\pi\)
\(308\) −0.0259959 0.0218132i −0.00148126 0.00124292i
\(309\) 7.72768 16.8390i 0.439613 0.957935i
\(310\) −3.57296 20.2633i −0.202931 1.15088i
\(311\) 1.61574 + 9.16334i 0.0916205 + 0.519605i 0.995731 + 0.0923061i \(0.0294238\pi\)
−0.904110 + 0.427299i \(0.859465\pi\)
\(312\) −1.02491 + 0.0959583i −0.0580239 + 0.00543257i
\(313\) −2.05976 1.72835i −0.116425 0.0976920i 0.582717 0.812675i \(-0.301990\pi\)
−0.699141 + 0.714983i \(0.746434\pi\)
\(314\) −3.62236 6.27412i −0.204422 0.354069i
\(315\) 0.659318 + 1.74505i 0.0371484 + 0.0983227i
\(316\) 1.65354 2.86401i 0.0930189 0.161113i
\(317\) 26.2511 9.55461i 1.47441 0.536641i 0.525114 0.851032i \(-0.324023\pi\)
0.949294 + 0.314391i \(0.101800\pi\)
\(318\) −1.51273 5.51115i −0.0848295 0.309050i
\(319\) 0.126561 0.106197i 0.00708607 0.00594592i
\(320\) 3.80341 + 1.38433i 0.212617 + 0.0773862i
\(321\) 2.89948 1.37360i 0.161833 0.0766669i
\(322\) 0.156305 0.886450i 0.00871054 0.0494000i
\(323\) 21.2633 1.18312
\(324\) −1.34656 + 8.89870i −0.0748089 + 0.494372i
\(325\) 6.76468 0.375237
\(326\) 2.44980 13.8935i 0.135682 0.769491i
\(327\) −22.7741 + 10.7890i −1.25941 + 0.596633i
\(328\) −3.73476 1.35934i −0.206218 0.0750571i
\(329\) 0.0559856 0.0469775i 0.00308659 0.00258995i
\(330\) 0.409891 + 1.49331i 0.0225637 + 0.0822039i
\(331\) −0.794144 + 0.289045i −0.0436501 + 0.0158873i −0.363753 0.931495i \(-0.618505\pi\)
0.320103 + 0.947383i \(0.396283\pi\)
\(332\) 4.13558 7.16304i 0.226970 0.393123i
\(333\) −11.0954 1.81742i −0.608026 0.0995942i
\(334\) 6.91138 + 11.9709i 0.378174 + 0.655017i
\(335\) −23.1244 19.4037i −1.26342 1.06014i
\(336\) 0.264936 0.0248050i 0.0144535 0.00135323i
\(337\) 5.09088 + 28.8718i 0.277318 + 1.57275i 0.731501 + 0.681840i \(0.238820\pi\)
−0.454183 + 0.890908i \(0.650069\pi\)
\(338\) −2.19609 12.4547i −0.119452 0.677444i
\(339\) −9.66770 + 21.0663i −0.525077 + 1.14417i
\(340\) −17.2550 14.4786i −0.935782 0.785214i
\(341\) −0.561457 0.972472i −0.0304046 0.0526623i
\(342\) 11.2632 2.12773i 0.609047 0.115054i
\(343\) −1.07360 + 1.85953i −0.0579688 + 0.100405i
\(344\) −9.59137 + 3.49097i −0.517132 + 0.188221i
\(345\) −28.8668 + 29.2205i −1.55414 + 1.57318i
\(346\) −3.00999 + 2.52568i −0.161818 + 0.135781i
\(347\) 18.9820 + 6.90888i 1.01901 + 0.370888i 0.796885 0.604131i \(-0.206480\pi\)
0.222121 + 0.975019i \(0.428702\pi\)
\(348\) −0.105050 + 1.29122i −0.00563128 + 0.0692165i
\(349\) 1.66866 9.46343i 0.0893212 0.506566i −0.907019 0.421090i \(-0.861648\pi\)
0.996340 0.0854761i \(-0.0272411\pi\)
\(350\) −1.74866 −0.0934697
\(351\) 3.08082 + 0.212924i 0.164442 + 0.0113650i
\(352\) 0.220890 0.0117735
\(353\) −1.70637 + 9.67729i −0.0908208 + 0.515070i 0.905127 + 0.425141i \(0.139775\pi\)
−0.995948 + 0.0899297i \(0.971336\pi\)
\(354\) −10.3642 7.16349i −0.550854 0.380735i
\(355\) 10.8693 + 3.95609i 0.576881 + 0.209968i
\(356\) −3.79778 + 3.18671i −0.201282 + 0.168896i
\(357\) −1.43269 0.374556i −0.0758262 0.0198236i
\(358\) −2.67269 + 0.972781i −0.141256 + 0.0514131i
\(359\) −5.94469 + 10.2965i −0.313749 + 0.543429i −0.979171 0.203039i \(-0.934918\pi\)
0.665422 + 0.746467i \(0.268252\pi\)
\(360\) −10.5889 5.94277i −0.558082 0.313211i
\(361\) 2.20067 + 3.81167i 0.115825 + 0.200614i
\(362\) 9.90149 + 8.30834i 0.520411 + 0.436676i
\(363\) −10.9740 15.4712i −0.575986 0.812027i
\(364\) −0.0158550 0.0899179i −0.000831026 0.00471298i
\(365\) 0.898122 + 5.09350i 0.0470098 + 0.266606i
\(366\) 3.37678 + 4.76060i 0.176507 + 0.248840i
\(367\) −27.7867 23.3158i −1.45045 1.21708i −0.932248 0.361821i \(-0.882155\pi\)
−0.518207 0.855255i \(-0.673400\pi\)
\(368\) 2.92952 + 5.07408i 0.152712 + 0.264505i
\(369\) 10.3977 + 5.83551i 0.541285 + 0.303785i
\(370\) 7.58455 13.1368i 0.394302 0.682951i
\(371\) 0.476340 0.173374i 0.0247303 0.00900111i
\(372\) 8.51874 + 2.22710i 0.441676 + 0.115470i
\(373\) 10.8389 9.09489i 0.561215 0.470916i −0.317502 0.948258i \(-0.602844\pi\)
0.878718 + 0.477342i \(0.158400\pi\)
\(374\) −1.15514 0.420436i −0.0597308 0.0217403i
\(375\) 36.8066 + 25.4398i 1.90069 + 1.31370i
\(376\) −0.0826070 + 0.468487i −0.00426013 + 0.0241604i
\(377\) 0.444519 0.0228939
\(378\) −0.796385 0.0550405i −0.0409616 0.00283098i
\(379\) −29.5237 −1.51653 −0.758265 0.651946i \(-0.773953\pi\)
−0.758265 + 0.651946i \(0.773953\pi\)
\(380\) −2.68543 + 15.2298i −0.137760 + 0.781273i
\(381\) 2.61673 32.1634i 0.134059 1.64778i
\(382\) 18.9279 + 6.88921i 0.968438 + 0.352483i
\(383\) 18.9404 15.8929i 0.967811 0.812090i −0.0143953 0.999896i \(-0.504582\pi\)
0.982206 + 0.187807i \(0.0601379\pi\)
\(384\) −1.21727 + 1.23218i −0.0621184 + 0.0628793i
\(385\) −0.129070 + 0.0469775i −0.00657800 + 0.00239420i
\(386\) −4.80832 + 8.32826i −0.244737 + 0.423897i
\(387\) 30.0886 5.68400i 1.52949 0.288934i
\(388\) −2.82704 4.89657i −0.143521 0.248586i
\(389\) 11.1425 + 9.34969i 0.564948 + 0.474048i 0.879965 0.475038i \(-0.157566\pi\)
−0.315017 + 0.949086i \(0.602010\pi\)
\(390\) −1.73780 + 3.78674i −0.0879968 + 0.191749i
\(391\) −5.66201 32.1108i −0.286340 1.62391i
\(392\) −1.21144 6.87041i −0.0611869 0.347008i
\(393\) 11.8430 1.10882i 0.597400 0.0559324i
\(394\) 5.78404 + 4.85339i 0.291396 + 0.244510i
\(395\) −6.69270 11.5921i −0.336746 0.583262i
\(396\) −0.653954 0.107117i −0.0328624 0.00538284i
\(397\) −2.10870 + 3.65238i −0.105833 + 0.183308i −0.914078 0.405538i \(-0.867084\pi\)
0.808245 + 0.588846i \(0.200418\pi\)
\(398\) 11.4092 4.15261i 0.571891 0.208151i
\(399\) 0.269115 + 0.980438i 0.0134726 + 0.0490833i
\(400\) 8.71932 7.31638i 0.435966 0.365819i
\(401\) 15.2143 + 5.53755i 0.759765 + 0.276532i 0.692709 0.721217i \(-0.256417\pi\)
0.0670561 + 0.997749i \(0.478639\pi\)
\(402\) 11.6741 5.53049i 0.582250 0.275836i
\(403\) 0.524638 2.97537i 0.0261341 0.148214i
\(404\) 15.7995 0.786056
\(405\) 28.4669 + 22.7288i 1.41453 + 1.12940i
\(406\) −0.114907 −0.00570275
\(407\) 0.143753 0.815266i 0.00712559 0.0404112i
\(408\) 8.71098 4.12674i 0.431258 0.204304i
\(409\) −3.70550 1.34869i −0.183225 0.0666885i 0.248778 0.968560i \(-0.419971\pi\)
−0.432003 + 0.901872i \(0.642193\pi\)
\(410\) −12.3230 + 10.3403i −0.608591 + 0.510669i
\(411\) −6.87028 25.0297i −0.338886 1.23463i
\(412\) −10.0517 + 3.65854i −0.495214 + 0.180243i
\(413\) 0.558753 0.967788i 0.0274944 0.0476217i
\(414\) −6.21239 16.4427i −0.305322 0.808114i
\(415\) −16.7388 28.9924i −0.821674 1.42318i
\(416\) 0.455274 + 0.382020i 0.0223216 + 0.0187301i
\(417\) −31.2183 + 2.92286i −1.52877 + 0.143133i
\(418\) 0.146555 + 0.831157i 0.00716826 + 0.0406532i
\(419\) −5.98994 33.9707i −0.292628 1.65957i −0.676690 0.736268i \(-0.736586\pi\)
0.384062 0.923307i \(-0.374525\pi\)
\(420\) 0.449217 0.978864i 0.0219196 0.0477637i
\(421\) −8.80184 7.38562i −0.428976 0.359953i 0.402589 0.915381i \(-0.368110\pi\)
−0.831565 + 0.555427i \(0.812555\pi\)
\(422\) 3.61192 + 6.25603i 0.175826 + 0.304539i
\(423\) 0.471748 1.34692i 0.0229372 0.0654895i
\(424\) −1.64978 + 2.85750i −0.0801202 + 0.138772i
\(425\) −59.5234 + 21.6647i −2.88731 + 1.05089i
\(426\) −3.47867 + 3.52129i −0.168542 + 0.170607i
\(427\) −0.396579 + 0.332769i −0.0191918 + 0.0161038i
\(428\) −1.74065 0.633546i −0.0841376 0.0306236i
\(429\) −0.0184382 + 0.226632i −0.000890207 + 0.0109419i
\(430\) −7.17384 + 40.6849i −0.345954 + 1.96200i
\(431\) 24.6371 1.18673 0.593364 0.804934i \(-0.297799\pi\)
0.593364 + 0.804934i \(0.297799\pi\)
\(432\) 4.20130 3.05763i 0.202135 0.147110i
\(433\) 12.8011 0.615181 0.307590 0.951519i \(-0.400477\pi\)
0.307590 + 0.951519i \(0.400477\pi\)
\(434\) −0.135618 + 0.769128i −0.00650988 + 0.0369193i
\(435\) 4.31343 + 2.98133i 0.206813 + 0.142944i
\(436\) 13.6720 + 4.97621i 0.654771 + 0.238317i
\(437\) −17.1489 + 14.3897i −0.820345 + 0.688351i
\(438\) −2.14132 0.559817i −0.102316 0.0267491i
\(439\) 34.1541 12.4311i 1.63009 0.593303i 0.644822 0.764333i \(-0.276932\pi\)
0.985266 + 0.171029i \(0.0547093\pi\)
\(440\) 0.447025 0.774271i 0.0213111 0.0369119i
\(441\) 0.254818 + 20.9276i 0.0121342 + 0.996554i
\(442\) −1.65372 2.86433i −0.0786595 0.136242i
\(443\) −29.5753 24.8166i −1.40516 1.17907i −0.958752 0.284245i \(-0.908257\pi\)
−0.446412 0.894828i \(-0.647298\pi\)
\(444\) 3.75557 + 5.29462i 0.178232 + 0.251271i
\(445\) 3.48444 + 19.7612i 0.165178 + 0.936772i
\(446\) −4.43236 25.1372i −0.209878 1.19028i
\(447\) −15.0550 21.2246i −0.712077 1.00389i
\(448\) −0.117687 0.0987515i −0.00556021 0.00466557i
\(449\) 7.76357 + 13.4469i 0.366385 + 0.634598i 0.988997 0.147932i \(-0.0472618\pi\)
−0.622612 + 0.782531i \(0.713928\pi\)
\(450\) −29.3619 + 17.4322i −1.38413 + 0.821760i
\(451\) −0.438957 + 0.760296i −0.0206697 + 0.0358010i
\(452\) 12.5752 4.57700i 0.591488 0.215284i
\(453\) −9.45569 2.47205i −0.444267 0.116147i
\(454\) 10.9999 9.22998i 0.516249 0.433184i
\(455\) −0.347270 0.126396i −0.0162803 0.00592554i
\(456\) −5.44404 3.76277i −0.254940 0.176208i
\(457\) −6.26933 + 35.5551i −0.293267 + 1.66320i 0.380897 + 0.924618i \(0.375615\pi\)
−0.674164 + 0.738582i \(0.735496\pi\)
\(458\) 4.05908 0.189669
\(459\) −27.7905 + 7.99316i −1.29715 + 0.373089i
\(460\) 23.7145 1.10569
\(461\) 1.72646 9.79122i 0.0804091 0.456023i −0.917844 0.396941i \(-0.870072\pi\)
0.998253 0.0590816i \(-0.0188172\pi\)
\(462\) 0.00476625 0.0585841i 0.000221746 0.00272558i
\(463\) 18.0852 + 6.58248i 0.840492 + 0.305914i 0.726158 0.687528i \(-0.241304\pi\)
0.114334 + 0.993442i \(0.463527\pi\)
\(464\) 0.572961 0.480772i 0.0265991 0.0223193i
\(465\) 25.0463 25.3531i 1.16149 1.17572i
\(466\) −15.9548 + 5.80707i −0.739091 + 0.269007i
\(467\) −15.7918 + 27.3521i −0.730756 + 1.26571i 0.225805 + 0.974173i \(0.427499\pi\)
−0.956561 + 0.291534i \(0.905835\pi\)
\(468\) −1.16260 1.35177i −0.0537414 0.0624854i
\(469\) 0.572895 + 0.992284i 0.0264539 + 0.0458194i
\(470\) 1.47498 + 1.23766i 0.0680359 + 0.0570889i
\(471\) 5.23378 11.4046i 0.241160 0.525498i
\(472\) 1.26312 + 7.16349i 0.0581397 + 0.329727i
\(473\) 0.391508 + 2.22035i 0.0180015 + 0.102092i
\(474\) 5.70309 0.533960i 0.261952 0.0245256i
\(475\) 33.3149 + 27.9545i 1.52859 + 1.28264i
\(476\) 0.427484 + 0.740423i 0.0195937 + 0.0339372i
\(477\) 6.26994 7.65972i 0.287081 0.350714i
\(478\) −10.6640 + 18.4707i −0.487762 + 0.844829i
\(479\) −10.6027 + 3.85905i −0.484448 + 0.176325i −0.572686 0.819775i \(-0.694099\pi\)
0.0882381 + 0.996099i \(0.471876\pi\)
\(480\) 1.85563 + 6.76043i 0.0846978 + 0.308570i
\(481\) 1.70626 1.43172i 0.0777988 0.0652809i
\(482\) 10.1057 + 3.67817i 0.460301 + 0.167536i
\(483\) 1.40895 0.667478i 0.0641096 0.0303713i
\(484\) −1.90166 + 10.7848i −0.0864390 + 0.490220i
\(485\) −22.8849 −1.03915
\(486\) −13.9209 + 7.01489i −0.631465 + 0.318202i
\(487\) −29.3219 −1.32870 −0.664352 0.747420i \(-0.731292\pi\)
−0.664352 + 0.747420i \(0.731292\pi\)
\(488\) 0.585154 3.31857i 0.0264887 0.150225i
\(489\) 22.0828 10.4615i 0.998620 0.473087i
\(490\) −26.5341 9.65761i −1.19869 0.436287i
\(491\) −7.76464 + 6.51531i −0.350413 + 0.294032i −0.800956 0.598723i \(-0.795675\pi\)
0.450543 + 0.892755i \(0.351231\pi\)
\(492\) −1.82214 6.63841i −0.0821486 0.299283i
\(493\) −3.91138 + 1.42363i −0.176160 + 0.0641169i
\(494\) −1.13539 + 1.96655i −0.0510836 + 0.0884794i
\(495\) −1.69891 + 2.07549i −0.0763604 + 0.0932862i
\(496\) −2.54180 4.40252i −0.114130 0.197679i
\(497\) −0.336324 0.282209i −0.0150862 0.0126588i
\(498\) 14.2637 1.33546i 0.639171 0.0598433i
\(499\) 3.87086 + 21.9527i 0.173284 + 0.982740i 0.940106 + 0.340881i \(0.110725\pi\)
−0.766823 + 0.641859i \(0.778164\pi\)
\(500\) −4.48571 25.4398i −0.200607 1.13770i
\(501\) −9.98593 + 21.7598i −0.446139 + 0.972155i
\(502\) 3.19918 + 2.68443i 0.142786 + 0.119812i
\(503\) 7.31535 + 12.6706i 0.326175 + 0.564952i 0.981750 0.190179i \(-0.0609067\pi\)
−0.655574 + 0.755131i \(0.727573\pi\)
\(504\) 0.300531 + 0.349429i 0.0133867 + 0.0155648i
\(505\) 31.9743 55.3811i 1.42284 2.46443i
\(506\) 1.21615 0.442643i 0.0540646 0.0196779i
\(507\) 15.3945 15.5831i 0.683694 0.692069i
\(508\) −14.2721 + 11.9757i −0.633222 + 0.531336i
\(509\) −6.70321 2.43977i −0.297115 0.108141i 0.189162 0.981946i \(-0.439423\pi\)
−0.486276 + 0.873805i \(0.661645\pi\)
\(510\) 3.16363 38.8856i 0.140088 1.72188i
\(511\) 0.0340898 0.193333i 0.00150804 0.00855254i
\(512\) 1.00000 0.0441942
\(513\) 14.2926 + 13.7799i 0.631035 + 0.608396i
\(514\) 16.3432 0.720868
\(515\) −7.51818 + 42.6377i −0.331291 + 1.87884i
\(516\) −14.5432 10.0519i −0.640228 0.442508i
\(517\) 0.0987433 + 0.0359396i 0.00434273 + 0.00158062i
\(518\) −0.441065 + 0.370098i −0.0193793 + 0.0162612i
\(519\) −6.58438 1.72139i −0.289022 0.0755605i
\(520\) 2.26043 0.822730i 0.0991265 0.0360791i
\(521\) 4.12053 7.13696i 0.180524 0.312676i −0.761535 0.648123i \(-0.775554\pi\)
0.942059 + 0.335447i \(0.108887\pi\)
\(522\) −1.92942 + 1.14550i −0.0844485 + 0.0501371i
\(523\) 11.2705 + 19.5211i 0.492826 + 0.853599i 0.999966 0.00826425i \(-0.00263062\pi\)
−0.507140 + 0.861864i \(0.669297\pi\)
\(524\) −5.26078 4.41432i −0.229818 0.192840i
\(525\) −1.75230 2.47040i −0.0764766 0.107817i
\(526\) −0.465609 2.64060i −0.0203015 0.115136i
\(527\) 4.91264 + 27.8610i 0.213998 + 1.21364i
\(528\) 0.221350 + 0.312059i 0.00963301 + 0.0135806i
\(529\) 8.67807 + 7.28176i 0.377307 + 0.316598i
\(530\) 6.67747 + 11.5657i 0.290051 + 0.502383i
\(531\) −0.265689 21.8204i −0.0115299 0.946924i
\(532\) 0.293496 0.508350i 0.0127247 0.0220398i
\(533\) −2.21963 + 0.807881i −0.0961430 + 0.0349932i
\(534\) −8.30768 2.17192i −0.359509 0.0939881i
\(535\) −5.74337 + 4.81926i −0.248308 + 0.208355i
\(536\) −7.00834 2.55083i −0.302714 0.110179i
\(537\) −4.05254 2.80101i −0.174880 0.120873i
\(538\) 3.88120 22.0114i 0.167330 0.948977i
\(539\) −1.54101 −0.0663762
\(540\) −2.21533 20.9144i −0.0953324 0.900014i
\(541\) −31.4683 −1.35293 −0.676464 0.736476i \(-0.736488\pi\)
−0.676464 + 0.736476i \(0.736488\pi\)
\(542\) 4.42479 25.0942i 0.190061 1.07789i
\(543\) −1.81540 + 22.3139i −0.0779062 + 0.957579i
\(544\) −5.22949 1.90338i −0.224212 0.0816066i
\(545\) 45.1115 37.8531i 1.93237 1.62145i
\(546\) 0.111143 0.112504i 0.00475646 0.00481473i
\(547\) −28.3635 + 10.3235i −1.21274 + 0.441400i −0.867652 0.497171i \(-0.834372\pi\)
−0.345085 + 0.938571i \(0.612150\pi\)
\(548\) −7.49271 + 12.9777i −0.320073 + 0.554382i
\(549\) −3.34167 + 9.54102i −0.142619 + 0.407201i
\(550\) −1.25711 2.17738i −0.0536034 0.0928439i
\(551\) 2.18918 + 1.83694i 0.0932623 + 0.0782563i
\(552\) −4.23273 + 9.22330i −0.180157 + 0.392570i
\(553\) 0.0882249 + 0.500348i 0.00375170 + 0.0212770i
\(554\) −0.445758 2.52802i −0.0189385 0.107405i
\(555\) 26.1592 2.44919i 1.11040 0.103963i
\(556\) 13.8675 + 11.6362i 0.588113 + 0.493486i
\(557\) −16.4210 28.4420i −0.695779 1.20512i −0.969917 0.243434i \(-0.921726\pi\)
0.274138 0.961690i \(-0.411607\pi\)
\(558\) 5.39018 + 14.2665i 0.228184 + 0.603949i
\(559\) −3.03308 + 5.25345i −0.128286 + 0.222197i
\(560\) −0.584317 + 0.212674i −0.0246919 + 0.00898712i
\(561\) −0.563578 2.05322i −0.0237943 0.0866871i
\(562\) 16.2374 13.6248i 0.684933 0.574727i
\(563\) −17.5885 6.40168i −0.741266 0.269799i −0.0563401 0.998412i \(-0.517943\pi\)
−0.684926 + 0.728613i \(0.740165\pi\)
\(564\) −0.744629 + 0.352761i −0.0313545 + 0.0148539i
\(565\) 9.40560 53.3418i 0.395697 2.24411i
\(566\) −19.6332 −0.825246
\(567\) −0.720286 1.18024i −0.0302492 0.0495654i
\(568\) 2.85777 0.119910
\(569\) −1.38771 + 7.87008i −0.0581757 + 0.329931i −0.999981 0.00622922i \(-0.998017\pi\)
0.941805 + 0.336160i \(0.109128\pi\)
\(570\) −24.2068 + 11.4677i −1.01391 + 0.480330i
\(571\) 26.7013 + 9.71847i 1.11741 + 0.406705i 0.833708 0.552206i \(-0.186214\pi\)
0.283706 + 0.958911i \(0.408436\pi\)
\(572\) 0.100565 0.0843843i 0.00420485 0.00352828i
\(573\) 9.23471 + 33.6438i 0.385786 + 1.40549i
\(574\) 0.573771 0.208836i 0.0239488 0.00871663i
\(575\) 33.3446 57.7545i 1.39057 2.40853i
\(576\) −2.96055 0.484935i −0.123356 0.0202056i
\(577\) −23.5780 40.8383i −0.981564 1.70012i −0.656307 0.754494i \(-0.727883\pi\)
−0.325257 0.945626i \(-0.605451\pi\)
\(578\) 10.7019 + 8.97999i 0.445142 + 0.373518i
\(579\) −16.5840 + 1.55270i −0.689207 + 0.0645280i
\(580\) −0.525688 2.98133i −0.0218280 0.123793i
\(581\) 0.220655 + 1.25139i 0.00915429 + 0.0519166i
\(582\) 4.08465 8.90063i 0.169314 0.368943i
\(583\) 0.558322 + 0.468487i 0.0231233 + 0.0194028i
\(584\) 0.638922 + 1.10665i 0.0264388 + 0.0457933i
\(585\) −7.09109 + 1.33957i −0.293180 + 0.0553843i
\(586\) −10.7380 + 18.5988i −0.443582 + 0.768307i
\(587\) 16.5971 6.04086i 0.685036 0.249333i 0.0240279 0.999711i \(-0.492351\pi\)
0.661008 + 0.750378i \(0.270129\pi\)
\(588\) 8.49213 8.59616i 0.350210 0.354500i
\(589\) 14.8793 12.4852i 0.613090 0.514443i
\(590\) 27.6660 + 10.0696i 1.13899 + 0.414559i
\(591\) −1.06048 + 13.0348i −0.0436224 + 0.536182i
\(592\) 0.650793 3.69083i 0.0267474 0.151692i
\(593\) 4.89941 0.201195 0.100597 0.994927i \(-0.467925\pi\)
0.100597 + 0.994927i \(0.467925\pi\)
\(594\) −0.503987 1.03121i −0.0206789 0.0423109i
\(595\) 3.46048 0.141866
\(596\) −2.60884 + 14.7955i −0.106862 + 0.606046i
\(597\) 17.2995 + 11.9570i 0.708021 + 0.489366i
\(598\) 3.27214 + 1.19096i 0.133808 + 0.0487020i
\(599\) 13.8351 11.6090i 0.565288 0.474333i −0.314791 0.949161i \(-0.601934\pi\)
0.880078 + 0.474828i \(0.157490\pi\)
\(600\) 19.0736 + 4.98651i 0.778677 + 0.203573i
\(601\) −3.04117 + 1.10690i −0.124052 + 0.0451513i −0.403300 0.915068i \(-0.632137\pi\)
0.279248 + 0.960219i \(0.409915\pi\)
\(602\) 0.784045 1.35801i 0.0319553 0.0553482i
\(603\) 19.5115 + 10.9504i 0.794571 + 0.445936i
\(604\) 2.82136 + 4.88675i 0.114800 + 0.198839i
\(605\) 33.9549 + 28.4916i 1.38046 + 1.15835i
\(606\) 15.8324 + 22.3206i 0.643148 + 0.906713i
\(607\) 4.71790 + 26.7566i 0.191494 + 1.08602i 0.917324 + 0.398141i \(0.130345\pi\)
−0.725830 + 0.687874i \(0.758544\pi\)
\(608\) 0.663478 + 3.76277i 0.0269076 + 0.152601i
\(609\) −0.115147 0.162334i −0.00466597 0.00657810i
\(610\) −10.4482 8.76706i −0.423034 0.354968i
\(611\) 0.141363 + 0.244848i 0.00571893 + 0.00990547i
\(612\) 14.5591 + 8.17100i 0.588518 + 0.330293i
\(613\) −13.6622 + 23.6636i −0.551810 + 0.955763i 0.446334 + 0.894866i \(0.352729\pi\)
−0.998144 + 0.0608964i \(0.980604\pi\)
\(614\) −5.31182 + 1.93335i −0.214368 + 0.0780235i
\(615\) −26.9568 7.04744i −1.08700 0.284180i
\(616\) −0.0259959 + 0.0218132i −0.00104741 + 0.000878878i
\(617\) −25.0923 9.13284i −1.01018 0.367674i −0.216676 0.976244i \(-0.569522\pi\)
−0.793501 + 0.608569i \(0.791744\pi\)
\(618\) −15.2412 10.5343i −0.613092 0.423753i
\(619\) 6.92886 39.2955i 0.278494 1.57942i −0.449145 0.893459i \(-0.648271\pi\)
0.727639 0.685960i \(-0.240618\pi\)
\(620\) −20.5759 −0.826347
\(621\) 17.0039 25.2534i 0.682343 1.01338i
\(622\) 9.30470 0.373085
\(623\) 0.132258 0.750073i 0.00529881 0.0300510i
\(624\) −0.0834727 + 1.02600i −0.00334158 + 0.0410728i
\(625\) −44.7712 16.2954i −1.79085 0.651816i
\(626\) −2.05976 + 1.72835i −0.0823247 + 0.0690786i
\(627\) −1.02735 + 1.03993i −0.0410283 + 0.0415309i
\(628\) −6.80782 + 2.47784i −0.271661 + 0.0988767i
\(629\) −10.4284 + 18.0624i −0.415806 + 0.720197i
\(630\) 1.83303 0.346276i 0.0730298 0.0137960i
\(631\) 4.36875 + 7.56690i 0.173917 + 0.301234i 0.939786 0.341763i \(-0.111024\pi\)
−0.765869 + 0.642997i \(0.777691\pi\)
\(632\) −2.53337 2.12575i −0.100772 0.0845578i
\(633\) −5.21869 + 11.3718i −0.207424 + 0.451987i
\(634\) −4.85100 27.5114i −0.192658 1.09262i
\(635\) 13.0946 + 74.2629i 0.519642 + 2.94703i
\(636\) −5.69011 + 0.532744i −0.225627 + 0.0211247i
\(637\) −3.17617 2.66512i −0.125845 0.105596i
\(638\) −0.0826070 0.143079i −0.00327044 0.00566457i
\(639\) −8.46057 1.38583i −0.334695 0.0548228i
\(640\) 2.02375 3.50524i 0.0799958 0.138557i
\(641\) −17.0222 + 6.19556i −0.672335 + 0.244710i −0.655553 0.755149i \(-0.727564\pi\)
−0.0167821 + 0.999859i \(0.505342\pi\)
\(642\) −0.849243 3.09395i −0.0335169 0.122109i
\(643\) −24.5762 + 20.6219i −0.969191 + 0.813247i −0.982424 0.186665i \(-0.940232\pi\)
0.0132331 + 0.999912i \(0.495788\pi\)
\(644\) −0.845841 0.307861i −0.0333308 0.0121314i
\(645\) −64.6659 + 30.6349i −2.54622 + 1.20625i
\(646\) 3.69233 20.9402i 0.145273 0.823882i
\(647\) −11.1390 −0.437918 −0.218959 0.975734i \(-0.570266\pi\)
−0.218959 + 0.975734i \(0.570266\pi\)
\(648\) 8.52968 + 2.87135i 0.335077 + 0.112797i
\(649\) 1.60675 0.0630705
\(650\) 1.17467 6.66191i 0.0460745 0.261302i
\(651\) −1.22248 + 0.579137i −0.0479127 + 0.0226982i
\(652\) −13.2570 4.82517i −0.519186 0.188968i
\(653\) 1.15447 0.968718i 0.0451780 0.0379089i −0.619919 0.784666i \(-0.712835\pi\)
0.665097 + 0.746757i \(0.268390\pi\)
\(654\) 6.67041 + 24.3016i 0.260834 + 0.950266i
\(655\) −26.1197 + 9.50681i −1.02058 + 0.371462i
\(656\) −1.98722 + 3.44197i −0.0775881 + 0.134386i
\(657\) −1.35491 3.58611i −0.0528600 0.139908i
\(658\) −0.0365420 0.0632926i −0.00142456 0.00246740i
\(659\) −6.06158 5.08627i −0.236126 0.198133i 0.517045 0.855958i \(-0.327032\pi\)
−0.753171 + 0.657825i \(0.771477\pi\)
\(660\) 1.54180 0.144353i 0.0600144 0.00561893i
\(661\) −5.26138 29.8388i −0.204644 1.16059i −0.897999 0.439998i \(-0.854979\pi\)
0.693355 0.720597i \(-0.256132\pi\)
\(662\) 0.146752 + 0.832272i 0.00570368 + 0.0323472i
\(663\) 2.38938 5.20657i 0.0927959 0.202206i
\(664\) −6.33608 5.31660i −0.245888 0.206324i
\(665\) −1.18793 2.05755i −0.0460658 0.0797883i
\(666\) −3.71652 + 10.6113i −0.144012 + 0.411179i
\(667\) 2.19113 3.79515i 0.0848409 0.146949i
\(668\) 12.9892 4.72767i 0.502565 0.182919i
\(669\) 31.0707 31.4513i 1.20126 1.21598i
\(670\) −23.1244 + 19.4037i −0.893373 + 0.749629i
\(671\) −0.699457 0.254581i −0.0270022 0.00982801i
\(672\) 0.0215775 0.265219i 0.000832371 0.0102310i
\(673\) −3.85949 + 21.8883i −0.148772 + 0.843731i 0.815488 + 0.578774i \(0.196469\pi\)
−0.964260 + 0.264956i \(0.914642\pi\)
\(674\) 29.3172 1.12926
\(675\) −54.0502 24.0122i −2.08039 0.924232i
\(676\) −12.6468 −0.486415
\(677\) 7.00672 39.7371i 0.269290 1.52722i −0.487245 0.873266i \(-0.661998\pi\)
0.756535 0.653954i \(-0.226891\pi\)
\(678\) 19.0675 + 13.1790i 0.732283 + 0.506135i
\(679\) 0.816250 + 0.297091i 0.0313248 + 0.0114013i
\(680\) −17.2550 + 14.4786i −0.661698 + 0.555230i
\(681\) 24.0623 + 6.29073i 0.922070 + 0.241061i
\(682\) −1.05519 + 0.384059i −0.0404055 + 0.0147064i
\(683\) 12.5504 21.7380i 0.480229 0.831780i −0.519514 0.854462i \(-0.673887\pi\)
0.999743 + 0.0226815i \(0.00722037\pi\)
\(684\) −0.139558 11.4616i −0.00533615 0.438246i
\(685\) 30.3267 + 52.5274i 1.15872 + 2.00697i
\(686\) 1.64485 + 1.38019i 0.0628005 + 0.0526959i
\(687\) 4.06754 + 5.73443i 0.155186 + 0.218782i
\(688\) 1.77241 + 10.0519i 0.0675726 + 0.383223i
\(689\) 0.340521 + 1.93119i 0.0129728 + 0.0735725i
\(690\) 23.7639 + 33.5024i 0.904675 + 1.27541i
\(691\) −2.21137 1.85556i −0.0841245 0.0705889i 0.599756 0.800183i \(-0.295264\pi\)
−0.683880 + 0.729594i \(0.739709\pi\)
\(692\) 1.96463 + 3.40284i 0.0746840 + 0.129356i
\(693\) 0.0875402 0.0519726i 0.00332538 0.00197428i
\(694\) 10.1001 17.4939i 0.383395 0.664059i
\(695\) 68.8521 25.0601i 2.61171 0.950584i
\(696\) 1.25336 + 0.327672i 0.0475085 + 0.0124204i
\(697\) 16.9435 14.2173i 0.641782 0.538519i
\(698\) −9.02990 3.28661i −0.341787 0.124400i
\(699\) −24.1919 16.7208i −0.915021 0.632438i
\(700\) −0.303651 + 1.72209i −0.0114769 + 0.0650889i
\(701\) −24.5608 −0.927648 −0.463824 0.885927i \(-0.653523\pi\)
−0.463824 + 0.885927i \(0.653523\pi\)
\(702\) 0.744667 2.99704i 0.0281057 0.113116i
\(703\) 14.3195 0.540072
\(704\) 0.0383571 0.217534i 0.00144564 0.00819862i
\(705\) −0.270433 + 3.32400i −0.0101851 + 0.125189i
\(706\) 9.23396 + 3.36089i 0.347525 + 0.126489i
\(707\) −1.85941 + 1.56023i −0.0699302 + 0.0586784i
\(708\) −8.85440 + 8.96287i −0.332769 + 0.336845i
\(709\) 20.9978 7.64257i 0.788588 0.287023i 0.0838392 0.996479i \(-0.473282\pi\)
0.704749 + 0.709457i \(0.251060\pi\)
\(710\) 5.78342 10.0172i 0.217048 0.375938i
\(711\) 6.46931 + 7.52190i 0.242618 + 0.282093i
\(712\) 2.47882 + 4.29345i 0.0928979 + 0.160904i
\(713\) −22.8167 19.1454i −0.854490 0.717003i
\(714\) −0.617651 + 1.34589i −0.0231150 + 0.0503686i
\(715\) −0.0922680 0.523278i −0.00345063 0.0195695i
\(716\) 0.493894 + 2.80101i 0.0184577 + 0.104679i
\(717\) −36.7805 + 3.44362i −1.37359 + 0.128605i
\(718\) 9.10779 + 7.64235i 0.339900 + 0.285210i
\(719\) 18.3086 + 31.7114i 0.682796 + 1.18264i 0.974124 + 0.226014i \(0.0725695\pi\)
−0.291328 + 0.956623i \(0.594097\pi\)
\(720\) −7.69122 + 9.39603i −0.286635 + 0.350170i
\(721\) 0.821678 1.42319i 0.0306009 0.0530023i
\(722\) 4.13591 1.50535i 0.153923 0.0560232i
\(723\) 4.93043 + 17.9625i 0.183365 + 0.668033i
\(724\) 9.90149 8.30834i 0.367986 0.308777i
\(725\) −7.99992 2.91173i −0.297110 0.108139i
\(726\) −17.1418 + 8.12075i −0.636191 + 0.301389i
\(727\) 2.38849 13.5458i 0.0885842 0.502386i −0.907941 0.419097i \(-0.862347\pi\)
0.996525 0.0832885i \(-0.0265423\pi\)
\(728\) −0.0913051 −0.00338399
\(729\) −23.8601 12.6371i −0.883707 0.468040i
\(730\) 5.17208 0.191427
\(731\) 9.86367 55.9396i 0.364821 2.06900i
\(732\) 5.27465 2.49881i 0.194957 0.0923588i
\(733\) −30.6892 11.1699i −1.13353 0.412571i −0.293957 0.955819i \(-0.594972\pi\)
−0.839573 + 0.543247i \(0.817195\pi\)
\(734\) −27.7867 + 23.3158i −1.02563 + 0.860603i
\(735\) −12.9456 47.1634i −0.477507 1.73965i
\(736\) 5.50570 2.00391i 0.202943 0.0738652i
\(737\) −0.823710 + 1.42671i −0.0303418 + 0.0525535i
\(738\) 7.55241 9.22645i 0.278008 0.339630i
\(739\) 14.0540 + 24.3423i 0.516986 + 0.895445i 0.999805 + 0.0197257i \(0.00627929\pi\)
−0.482820 + 0.875720i \(0.660387\pi\)
\(740\) −11.6202 9.75050i −0.427167 0.358436i
\(741\) −3.91598 + 0.366639i −0.143857 + 0.0134688i
\(742\) −0.0880241 0.499209i −0.00323147 0.0183266i
\(743\) −2.01338 11.4184i −0.0738636 0.418901i −0.999209 0.0397752i \(-0.987336\pi\)
0.925345 0.379126i \(-0.123775\pi\)
\(744\) 3.67253 8.00259i 0.134641 0.293389i
\(745\) 46.5820 + 39.0870i 1.70663 + 1.43204i
\(746\) −7.07457 12.2535i −0.259018 0.448633i
\(747\) 16.1801 + 18.8126i 0.591997 + 0.688318i
\(748\) −0.614637 + 1.06458i −0.0224734 + 0.0389250i
\(749\) 0.267417 0.0973316i 0.00977119 0.00355642i
\(750\) 31.4447 31.8299i 1.14820 1.16226i
\(751\) −31.0515 + 26.0553i −1.13309 + 0.950772i −0.999191 0.0402230i \(-0.987193\pi\)
−0.133896 + 0.990995i \(0.542749\pi\)
\(752\) 0.447025 + 0.162704i 0.0163013 + 0.00593320i
\(753\) −0.586556 + 7.20962i −0.0213753 + 0.262733i
\(754\) 0.0771899 0.437766i 0.00281109 0.0159425i
\(755\) 22.8390 0.831194
\(756\) −0.192495 + 0.774729i −0.00700098 + 0.0281766i
\(757\) 51.1841 1.86032 0.930158 0.367159i \(-0.119669\pi\)
0.930158 + 0.367159i \(0.119669\pi\)
\(758\) −5.12674 + 29.0752i −0.186211 + 1.05606i
\(759\) 1.84402 + 1.27454i 0.0669338 + 0.0462629i
\(760\) 14.5321 + 5.28926i 0.527136 + 0.191862i
\(761\) 3.01606 2.53078i 0.109332 0.0917406i −0.586483 0.809962i \(-0.699488\pi\)
0.695815 + 0.718221i \(0.255043\pi\)
\(762\) −31.2204 8.16209i −1.13099 0.295681i
\(763\) −2.10043