Properties

Label 54.2.e.b.13.1
Level $54$
Weight $2$
Character 54.13
Analytic conductor $0.431$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,2,Mod(7,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 54.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.431192170915\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 318 x^{8} - 678 x^{7} + 1225 x^{6} - 1698 x^{5} + 1905 x^{4} - 1584 x^{3} + 936 x^{2} - 342 x + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 13.1
Root \(0.500000 + 2.42499i\) of defining polynomial
Character \(\chi\) \(=\) 54.13
Dual form 54.2.e.b.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 + 0.984808i) q^{2} +(0.140451 - 1.72635i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(2.42692 + 2.03643i) q^{5} +(1.72451 - 0.161460i) q^{6} +(-3.46344 - 1.26059i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-2.96055 - 0.484935i) q^{9} +O(q^{10})\) \(q+(0.173648 + 0.984808i) q^{2} +(0.140451 - 1.72635i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(2.42692 + 2.03643i) q^{5} +(1.72451 - 0.161460i) q^{6} +(-3.46344 - 1.26059i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-2.96055 - 0.484935i) q^{9} +(-1.58406 + 2.74367i) q^{10} +(-1.75046 + 1.46881i) q^{11} +(0.458464 + 1.67027i) q^{12} +(0.538357 - 3.05317i) q^{13} +(0.640018 - 3.62972i) q^{14} +(3.85644 - 3.90368i) q^{15} +(0.766044 - 0.642788i) q^{16} +(-0.862878 + 1.49455i) q^{17} +(-0.0365258 - 2.99978i) q^{18} +(1.69740 + 2.93998i) q^{19} +(-2.97705 - 1.08356i) q^{20} +(-2.66266 + 5.80205i) q^{21} +(-1.75046 - 1.46881i) q^{22} +(3.15087 - 1.14682i) q^{23} +(-1.56529 + 0.741539i) q^{24} +(0.874658 + 4.96043i) q^{25} +3.10027 q^{26} +(-1.25298 + 5.04282i) q^{27} +3.68572 q^{28} +(-0.101661 - 0.576550i) q^{29} +(4.51404 + 3.11998i) q^{30} +(4.35827 - 1.58628i) q^{31} +(0.766044 + 0.642788i) q^{32} +(2.28983 + 3.22820i) q^{33} +(-1.62168 - 0.590243i) q^{34} +(-5.83839 - 10.1124i) q^{35} +(2.94786 - 0.556877i) q^{36} +(3.65360 - 6.32822i) q^{37} +(-2.60057 + 2.18213i) q^{38} +(-5.19523 - 1.35821i) q^{39} +(0.550137 - 3.11998i) q^{40} +(-1.22952 + 6.97295i) q^{41} +(-6.17627 - 1.61469i) q^{42} +(1.27004 - 1.06569i) q^{43} +(1.14253 - 1.97893i) q^{44} +(-6.19747 - 7.20583i) q^{45} +(1.67654 + 2.90386i) q^{46} +(3.61968 + 1.31746i) q^{47} +(-1.00208 - 1.41274i) q^{48} +(5.04404 + 4.23245i) q^{49} +(-4.73319 + 1.72274i) q^{50} +(2.45892 + 1.69954i) q^{51} +(0.538357 + 3.05317i) q^{52} -2.58267 q^{53} +(-5.18379 - 0.358266i) q^{54} -7.23936 q^{55} +(0.640018 + 3.62972i) q^{56} +(5.31383 - 2.51737i) q^{57} +(0.550137 - 0.200234i) q^{58} +(-7.40243 - 6.21138i) q^{59} +(-2.28873 + 4.98724i) q^{60} +(-12.3018 - 4.47750i) q^{61} +(2.31899 + 4.01660i) q^{62} +(9.64238 + 5.41158i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(7.52411 - 6.31348i) q^{65} +(-2.78154 + 2.81561i) q^{66} +(-1.49490 + 8.47798i) q^{67} +(0.299674 - 1.69954i) q^{68} +(-1.53727 - 5.60057i) q^{69} +(8.94493 - 7.50569i) q^{70} +(-0.993732 + 1.72119i) q^{71} +(1.06031 + 2.80638i) q^{72} +(-5.32371 - 9.22094i) q^{73} +(6.86652 + 2.49921i) q^{74} +(8.68627 - 0.813264i) q^{75} +(-2.60057 - 2.18213i) q^{76} +(7.91420 - 2.88053i) q^{77} +(0.435437 - 5.35215i) q^{78} +(2.44726 + 13.8791i) q^{79} +3.16812 q^{80} +(8.52968 + 2.87135i) q^{81} -7.08052 q^{82} +(-0.538035 - 3.05135i) q^{83} +(0.517664 - 6.36283i) q^{84} +(-5.13767 + 1.86996i) q^{85} +(1.27004 + 1.06569i) q^{86} +(-1.00960 + 0.0945255i) q^{87} +(2.14726 + 0.781539i) q^{88} +(8.67300 + 15.0221i) q^{89} +(6.02018 - 7.35459i) q^{90} +(-5.71337 + 9.89585i) q^{91} +(-2.56861 + 2.15532i) q^{92} +(-2.12635 - 7.74668i) q^{93} +(-0.668890 + 3.79346i) q^{94} +(-1.86760 + 10.5917i) q^{95} +(1.21727 - 1.23218i) q^{96} +(7.04084 - 5.90797i) q^{97} +(-3.29226 + 5.70237i) q^{98} +(5.89461 - 3.49963i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{5} + 3 q^{6} - 3 q^{7} - 6 q^{8} - 12 q^{9} - 3 q^{10} - 12 q^{11} - 3 q^{12} + 12 q^{13} - 3 q^{14} - 18 q^{15} - 6 q^{17} + 6 q^{18} - 9 q^{19} + 6 q^{20} + 24 q^{21} - 12 q^{22} + 30 q^{23} - 9 q^{25} + 18 q^{26} + 12 q^{28} + 15 q^{29} + 27 q^{30} + 36 q^{33} - 15 q^{34} + 3 q^{35} - 3 q^{36} - 15 q^{37} + 3 q^{38} - 42 q^{39} - 3 q^{40} - 12 q^{41} - 15 q^{42} + 9 q^{43} - 3 q^{44} + 18 q^{45} + 3 q^{46} - 9 q^{47} + 3 q^{48} - 39 q^{49} - 27 q^{50} - 27 q^{51} + 12 q^{52} - 12 q^{53} - 36 q^{54} + 18 q^{55} - 3 q^{56} + 18 q^{57} - 3 q^{58} + 12 q^{59} - 18 q^{60} - 36 q^{61} - 12 q^{62} + 3 q^{63} - 6 q^{64} - 15 q^{65} - 18 q^{66} + 36 q^{67} + 3 q^{68} + 18 q^{69} + 39 q^{70} + 12 q^{71} + 24 q^{72} - 21 q^{73} + 33 q^{74} + 30 q^{75} + 3 q^{76} + 3 q^{77} + 18 q^{78} + 39 q^{79} + 6 q^{80} + 6 q^{82} + 18 q^{83} - 9 q^{84} + 45 q^{85} + 9 q^{86} + 27 q^{87} + 6 q^{88} + 12 q^{89} + 27 q^{90} - 6 q^{91} - 6 q^{92} - 33 q^{93} + 36 q^{94} - 15 q^{95} + 6 q^{96} + 39 q^{97} - 12 q^{98} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 + 0.984808i 0.122788 + 0.696364i
\(3\) 0.140451 1.72635i 0.0810896 0.996707i
\(4\) −0.939693 + 0.342020i −0.469846 + 0.171010i
\(5\) 2.42692 + 2.03643i 1.08535 + 0.910717i 0.996354 0.0853149i \(-0.0271896\pi\)
0.0889963 + 0.996032i \(0.471634\pi\)
\(6\) 1.72451 0.161460i 0.704028 0.0659156i
\(7\) −3.46344 1.26059i −1.30906 0.476458i −0.409122 0.912480i \(-0.634165\pi\)
−0.899936 + 0.436021i \(0.856387\pi\)
\(8\) −0.500000 0.866025i −0.176777 0.306186i
\(9\) −2.96055 0.484935i −0.986849 0.161645i
\(10\) −1.58406 + 2.74367i −0.500923 + 0.867624i
\(11\) −1.75046 + 1.46881i −0.527785 + 0.442864i −0.867336 0.497724i \(-0.834169\pi\)
0.339551 + 0.940588i \(0.389725\pi\)
\(12\) 0.458464 + 1.67027i 0.132347 + 0.482166i
\(13\) 0.538357 3.05317i 0.149313 0.846798i −0.814489 0.580179i \(-0.802982\pi\)
0.963802 0.266619i \(-0.0859065\pi\)
\(14\) 0.640018 3.62972i 0.171052 0.970085i
\(15\) 3.85644 3.90368i 0.995728 1.00793i
\(16\) 0.766044 0.642788i 0.191511 0.160697i
\(17\) −0.862878 + 1.49455i −0.209279 + 0.362481i −0.951487 0.307687i \(-0.900445\pi\)
0.742209 + 0.670169i \(0.233778\pi\)
\(18\) −0.0365258 2.99978i −0.00860921 0.707054i
\(19\) 1.69740 + 2.93998i 0.389410 + 0.674478i 0.992370 0.123293i \(-0.0393456\pi\)
−0.602960 + 0.797771i \(0.706012\pi\)
\(20\) −2.97705 1.08356i −0.665690 0.242291i
\(21\) −2.66266 + 5.80205i −0.581040 + 1.26611i
\(22\) −1.75046 1.46881i −0.373200 0.313152i
\(23\) 3.15087 1.14682i 0.657002 0.239129i 0.00806071 0.999968i \(-0.497434\pi\)
0.648942 + 0.760838i \(0.275212\pi\)
\(24\) −1.56529 + 0.741539i −0.319513 + 0.151366i
\(25\) 0.874658 + 4.96043i 0.174932 + 0.992086i
\(26\) 3.10027 0.608014
\(27\) −1.25298 + 5.04282i −0.241136 + 0.970491i
\(28\) 3.68572 0.696535
\(29\) −0.101661 0.576550i −0.0188780 0.107063i 0.973913 0.226923i \(-0.0728665\pi\)
−0.992791 + 0.119860i \(0.961755\pi\)
\(30\) 4.51404 + 3.11998i 0.824147 + 0.569629i
\(31\) 4.35827 1.58628i 0.782769 0.284904i 0.0804420 0.996759i \(-0.474367\pi\)
0.702327 + 0.711855i \(0.252145\pi\)
\(32\) 0.766044 + 0.642788i 0.135419 + 0.113630i
\(33\) 2.28983 + 3.22820i 0.398608 + 0.561958i
\(34\) −1.62168 0.590243i −0.278116 0.101226i
\(35\) −5.83839 10.1124i −0.986868 1.70931i
\(36\) 2.94786 0.556877i 0.491310 0.0928128i
\(37\) 3.65360 6.32822i 0.600648 1.04035i −0.392075 0.919933i \(-0.628243\pi\)
0.992723 0.120420i \(-0.0384240\pi\)
\(38\) −2.60057 + 2.18213i −0.421867 + 0.353989i
\(39\) −5.19523 1.35821i −0.831902 0.217488i
\(40\) 0.550137 3.11998i 0.0869844 0.493313i
\(41\) −1.22952 + 6.97295i −0.192019 + 1.08899i 0.724582 + 0.689188i \(0.242033\pi\)
−0.916601 + 0.399803i \(0.869078\pi\)
\(42\) −6.17627 1.61469i −0.953019 0.249153i
\(43\) 1.27004 1.06569i 0.193679 0.162516i −0.540791 0.841157i \(-0.681875\pi\)
0.734470 + 0.678641i \(0.237431\pi\)
\(44\) 1.14253 1.97893i 0.172243 0.298334i
\(45\) −6.19747 7.20583i −0.923864 1.07418i
\(46\) 1.67654 + 2.90386i 0.247193 + 0.428151i
\(47\) 3.61968 + 1.31746i 0.527984 + 0.192171i 0.592238 0.805763i \(-0.298244\pi\)
−0.0642537 + 0.997934i \(0.520467\pi\)
\(48\) −1.00208 1.41274i −0.144638 0.203911i
\(49\) 5.04404 + 4.23245i 0.720577 + 0.604636i
\(50\) −4.73319 + 1.72274i −0.669374 + 0.243632i
\(51\) 2.45892 + 1.69954i 0.344317 + 0.237983i
\(52\) 0.538357 + 3.05317i 0.0746567 + 0.423399i
\(53\) −2.58267 −0.354757 −0.177379 0.984143i \(-0.556762\pi\)
−0.177379 + 0.984143i \(0.556762\pi\)
\(54\) −5.18379 0.358266i −0.705424 0.0487539i
\(55\) −7.23936 −0.976155
\(56\) 0.640018 + 3.62972i 0.0855261 + 0.485042i
\(57\) 5.31383 2.51737i 0.703834 0.333434i
\(58\) 0.550137 0.200234i 0.0722366 0.0262920i
\(59\) −7.40243 6.21138i −0.963714 0.808652i 0.0178389 0.999841i \(-0.494321\pi\)
−0.981553 + 0.191188i \(0.938766\pi\)
\(60\) −2.28873 + 4.98724i −0.295474 + 0.643850i
\(61\) −12.3018 4.47750i −1.57509 0.573285i −0.600960 0.799279i \(-0.705215\pi\)
−0.974129 + 0.225994i \(0.927437\pi\)
\(62\) 2.31899 + 4.01660i 0.294512 + 0.510109i
\(63\) 9.64238 + 5.41158i 1.21483 + 0.681795i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) 7.52411 6.31348i 0.933251 0.783091i
\(66\) −2.78154 + 2.81561i −0.342383 + 0.346578i
\(67\) −1.49490 + 8.47798i −0.182631 + 1.03575i 0.746331 + 0.665574i \(0.231813\pi\)
−0.928962 + 0.370175i \(0.879298\pi\)
\(68\) 0.299674 1.69954i 0.0363408 0.206099i
\(69\) −1.53727 5.60057i −0.185066 0.674230i
\(70\) 8.94493 7.50569i 1.06912 0.897102i
\(71\) −0.993732 + 1.72119i −0.117934 + 0.204268i −0.918949 0.394377i \(-0.870961\pi\)
0.801015 + 0.598645i \(0.204294\pi\)
\(72\) 1.06031 + 2.80638i 0.124958 + 0.330735i
\(73\) −5.32371 9.22094i −0.623094 1.07923i −0.988906 0.148541i \(-0.952542\pi\)
0.365812 0.930689i \(-0.380791\pi\)
\(74\) 6.86652 + 2.49921i 0.798217 + 0.290527i
\(75\) 8.68627 0.813264i 1.00300 0.0939077i
\(76\) −2.60057 2.18213i −0.298305 0.250308i
\(77\) 7.91420 2.88053i 0.901907 0.328267i
\(78\) 0.435437 5.35215i 0.0493036 0.606012i
\(79\) 2.44726 + 13.8791i 0.275338 + 1.56152i 0.737886 + 0.674925i \(0.235824\pi\)
−0.462548 + 0.886594i \(0.653065\pi\)
\(80\) 3.16812 0.354206
\(81\) 8.52968 + 2.87135i 0.947742 + 0.319038i
\(82\) −7.08052 −0.781912
\(83\) −0.538035 3.05135i −0.0590571 0.334929i 0.940936 0.338584i \(-0.109948\pi\)
−0.999993 + 0.00365453i \(0.998837\pi\)
\(84\) 0.517664 6.36283i 0.0564817 0.694242i
\(85\) −5.13767 + 1.86996i −0.557258 + 0.202825i
\(86\) 1.27004 + 1.06569i 0.136952 + 0.114916i
\(87\) −1.00960 + 0.0945255i −0.108241 + 0.0101342i
\(88\) 2.14726 + 0.781539i 0.228899 + 0.0833123i
\(89\) 8.67300 + 15.0221i 0.919336 + 1.59234i 0.800425 + 0.599432i \(0.204607\pi\)
0.118911 + 0.992905i \(0.462060\pi\)
\(90\) 6.02018 7.35459i 0.634582 0.775242i
\(91\) −5.71337 + 9.89585i −0.598924 + 1.03737i
\(92\) −2.56861 + 2.15532i −0.267797 + 0.224708i
\(93\) −2.12635 7.74668i −0.220492 0.803294i
\(94\) −0.668890 + 3.79346i −0.0689907 + 0.391266i
\(95\) −1.86760 + 10.5917i −0.191612 + 1.08669i
\(96\) 1.21727 1.23218i 0.124237 0.125759i
\(97\) 7.04084 5.90797i 0.714889 0.599863i −0.211077 0.977469i \(-0.567697\pi\)
0.925966 + 0.377606i \(0.123253\pi\)
\(98\) −3.29226 + 5.70237i −0.332569 + 0.576026i
\(99\) 5.89461 3.49963i 0.592430 0.351726i
\(100\) −2.51848 4.36213i −0.251848 0.436213i
\(101\) −11.2389 4.09062i −1.11831 0.407032i −0.284276 0.958743i \(-0.591753\pi\)
−0.834036 + 0.551710i \(0.813975\pi\)
\(102\) −1.24673 + 2.71668i −0.123445 + 0.268991i
\(103\) −9.76437 8.19328i −0.962112 0.807308i 0.0191837 0.999816i \(-0.493893\pi\)
−0.981295 + 0.192508i \(0.938338\pi\)
\(104\) −2.91331 + 1.06036i −0.285673 + 0.103977i
\(105\) −18.2775 + 8.65879i −1.78370 + 0.845011i
\(106\) −0.448476 2.54343i −0.0435599 0.247040i
\(107\) 6.09894 0.589607 0.294803 0.955558i \(-0.404746\pi\)
0.294803 + 0.955558i \(0.404746\pi\)
\(108\) −0.547332 5.16725i −0.0526670 0.497218i
\(109\) 11.2390 1.07650 0.538250 0.842785i \(-0.319086\pi\)
0.538250 + 0.842785i \(0.319086\pi\)
\(110\) −1.25710 7.12937i −0.119860 0.679759i
\(111\) −10.4115 7.19618i −0.988220 0.683032i
\(112\) −3.46344 + 1.26059i −0.327265 + 0.119115i
\(113\) −5.39062 4.52327i −0.507107 0.425513i 0.353003 0.935622i \(-0.385161\pi\)
−0.860110 + 0.510109i \(0.829605\pi\)
\(114\) 3.40187 + 4.79596i 0.318614 + 0.449183i
\(115\) 9.98233 + 3.63327i 0.930857 + 0.338804i
\(116\) 0.292722 + 0.507009i 0.0271786 + 0.0470746i
\(117\) −3.07442 + 8.77800i −0.284230 + 0.811526i
\(118\) 4.83159 8.36857i 0.444784 0.770389i
\(119\) 4.87254 4.08855i 0.446665 0.374796i
\(120\) −5.30891 1.38793i −0.484635 0.126700i
\(121\) −1.00342 + 5.69068i −0.0912200 + 0.517334i
\(122\) 2.27329 12.8925i 0.205814 1.16723i
\(123\) 11.8650 + 3.10193i 1.06983 + 0.279692i
\(124\) −3.55290 + 2.98123i −0.319059 + 0.267723i
\(125\) −0.0585380 + 0.101391i −0.00523579 + 0.00906866i
\(126\) −3.65499 + 10.4356i −0.325612 + 0.929677i
\(127\) −2.99250 5.18316i −0.265541 0.459931i 0.702164 0.712015i \(-0.252217\pi\)
−0.967705 + 0.252084i \(0.918884\pi\)
\(128\) −0.939693 0.342020i −0.0830579 0.0302306i
\(129\) −1.66137 2.34220i −0.146275 0.206219i
\(130\) 7.52411 + 6.31348i 0.659908 + 0.553729i
\(131\) −15.4251 + 5.61427i −1.34770 + 0.490521i −0.912228 0.409683i \(-0.865639\pi\)
−0.435468 + 0.900204i \(0.643417\pi\)
\(132\) −3.25584 2.25035i −0.283385 0.195868i
\(133\) −2.17273 12.3222i −0.188400 1.06847i
\(134\) −8.60876 −0.743684
\(135\) −13.3102 + 9.68691i −1.14556 + 0.833717i
\(136\) 1.72576 0.147982
\(137\) −0.0366673 0.207951i −0.00313270 0.0177664i 0.983201 0.182524i \(-0.0584268\pi\)
−0.986334 + 0.164758i \(0.947316\pi\)
\(138\) 5.24854 2.48645i 0.446786 0.211660i
\(139\) −3.45009 + 1.25573i −0.292633 + 0.106510i −0.484165 0.874977i \(-0.660877\pi\)
0.191532 + 0.981486i \(0.438654\pi\)
\(140\) 8.94493 + 7.50569i 0.755985 + 0.634347i
\(141\) 2.78277 6.06378i 0.234352 0.510663i
\(142\) −1.86760 0.679753i −0.156726 0.0570436i
\(143\) 3.54217 + 6.13522i 0.296211 + 0.513053i
\(144\) −2.57962 + 1.53152i −0.214968 + 0.127627i
\(145\) 0.927377 1.60626i 0.0770145 0.133393i
\(146\) 8.15640 6.84404i 0.675029 0.566416i
\(147\) 8.01512 8.11331i 0.661076 0.669174i
\(148\) −1.26888 + 7.19618i −0.104301 + 0.591523i
\(149\) 2.68710 15.2393i 0.220136 1.24845i −0.651633 0.758535i \(-0.725916\pi\)
0.871769 0.489918i \(-0.162973\pi\)
\(150\) 2.30926 + 8.41309i 0.188551 + 0.686926i
\(151\) 15.4325 12.9494i 1.25588 1.05381i 0.259772 0.965670i \(-0.416352\pi\)
0.996108 0.0881390i \(-0.0280920\pi\)
\(152\) 1.69740 2.93998i 0.137677 0.238464i
\(153\) 3.27935 4.00624i 0.265120 0.323885i
\(154\) 4.21106 + 7.29377i 0.339337 + 0.587748i
\(155\) 13.8075 + 5.02552i 1.10905 + 0.403660i
\(156\) 5.34645 0.500569i 0.428059 0.0400776i
\(157\) 13.7868 + 11.5685i 1.10031 + 0.923269i 0.997446 0.0714264i \(-0.0227551\pi\)
0.102863 + 0.994695i \(0.467200\pi\)
\(158\) −13.2433 + 4.82016i −1.05358 + 0.383471i
\(159\) −0.362739 + 4.45859i −0.0287671 + 0.353589i
\(160\) 0.550137 + 3.11998i 0.0434922 + 0.246656i
\(161\) −12.3585 −0.973989
\(162\) −1.34656 + 8.89870i −0.105796 + 0.699148i
\(163\) 3.05289 0.239121 0.119560 0.992827i \(-0.461851\pi\)
0.119560 + 0.992827i \(0.461851\pi\)
\(164\) −1.22952 6.97295i −0.0960093 0.544496i
\(165\) −1.01678 + 12.4976i −0.0791559 + 0.972940i
\(166\) 2.91156 1.05972i 0.225981 0.0822504i
\(167\) −3.14170 2.63620i −0.243112 0.203995i 0.513088 0.858336i \(-0.328502\pi\)
−0.756199 + 0.654341i \(0.772946\pi\)
\(168\) 6.35605 0.595094i 0.490380 0.0459125i
\(169\) 3.18396 + 1.15887i 0.244920 + 0.0891435i
\(170\) −2.73370 4.73490i −0.209665 0.363150i
\(171\) −3.59953 9.52708i −0.275263 0.728554i
\(172\) −0.828957 + 1.43580i −0.0632074 + 0.109478i
\(173\) −13.0435 + 10.9448i −0.991680 + 0.832118i −0.985810 0.167864i \(-0.946313\pi\)
−0.00586990 + 0.999983i \(0.501868\pi\)
\(174\) −0.268405 0.977851i −0.0203478 0.0741307i
\(175\) 3.22374 18.2828i 0.243692 1.38205i
\(176\) −0.396798 + 2.25035i −0.0299098 + 0.169627i
\(177\) −11.7627 + 11.9068i −0.884137 + 0.894967i
\(178\) −13.2878 + 11.1498i −0.995964 + 0.835713i
\(179\) 7.27802 12.6059i 0.543985 0.942210i −0.454685 0.890652i \(-0.650248\pi\)
0.998670 0.0515575i \(-0.0164185\pi\)
\(180\) 8.28825 + 4.65161i 0.617770 + 0.346710i
\(181\) 6.51190 + 11.2789i 0.484026 + 0.838357i 0.999832 0.0183482i \(-0.00584075\pi\)
−0.515806 + 0.856706i \(0.672507\pi\)
\(182\) −10.7376 3.90818i −0.795926 0.289693i
\(183\) −9.45753 + 20.6084i −0.699121 + 1.52341i
\(184\) −2.56861 2.15532i −0.189361 0.158893i
\(185\) 21.7539 7.91778i 1.59938 0.582127i
\(186\) 7.25976 3.43924i 0.532311 0.252177i
\(187\) −0.684776 3.88356i −0.0500758 0.283994i
\(188\) −3.85198 −0.280935
\(189\) 10.6966 15.8860i 0.778060 1.15554i
\(190\) −10.7551 −0.780258
\(191\) 0.625632 + 3.54814i 0.0452692 + 0.256734i 0.999040 0.0437996i \(-0.0139463\pi\)
−0.953771 + 0.300534i \(0.902835\pi\)
\(192\) 1.42483 + 0.984808i 0.102829 + 0.0710724i
\(193\) −1.38592 + 0.504435i −0.0997610 + 0.0363100i −0.391418 0.920213i \(-0.628015\pi\)
0.291657 + 0.956523i \(0.405793\pi\)
\(194\) 7.04084 + 5.90797i 0.505503 + 0.424167i
\(195\) −9.84248 13.8760i −0.704835 0.993678i
\(196\) −6.18743 2.25204i −0.441959 0.160860i
\(197\) −1.26931 2.19851i −0.0904346 0.156637i 0.817259 0.576270i \(-0.195492\pi\)
−0.907694 + 0.419633i \(0.862159\pi\)
\(198\) 4.47005 + 5.19735i 0.317673 + 0.369360i
\(199\) 0.925891 1.60369i 0.0656347 0.113683i −0.831341 0.555763i \(-0.812426\pi\)
0.896975 + 0.442081i \(0.145759\pi\)
\(200\) 3.85853 3.23769i 0.272839 0.228939i
\(201\) 14.4260 + 3.77145i 1.01753 + 0.266018i
\(202\) 2.07686 11.7785i 0.146128 0.828731i
\(203\) −0.374695 + 2.12500i −0.0262984 + 0.149146i
\(204\) −2.89190 0.756044i −0.202474 0.0529337i
\(205\) −17.1838 + 14.4189i −1.20017 + 1.00706i
\(206\) 6.37324 11.0388i 0.444045 0.769108i
\(207\) −9.88444 + 1.86726i −0.687016 + 0.129783i
\(208\) −1.55014 2.68492i −0.107483 0.186165i
\(209\) −7.28951 2.65317i −0.504226 0.183523i
\(210\) −11.7011 16.4962i −0.807453 1.13835i
\(211\) −14.5459 12.2054i −1.00138 0.840257i −0.0142043 0.999899i \(-0.504522\pi\)
−0.987175 + 0.159642i \(0.948966\pi\)
\(212\) 2.42692 0.883326i 0.166681 0.0606671i
\(213\) 2.83181 + 1.95727i 0.194032 + 0.134110i
\(214\) 1.05907 + 6.00628i 0.0723965 + 0.410581i
\(215\) 5.25247 0.358215
\(216\) 4.99370 1.43630i 0.339778 0.0977278i
\(217\) −17.0943 −1.16043
\(218\) 1.95163 + 11.0683i 0.132181 + 0.749637i
\(219\) −16.6663 + 7.89549i −1.12620 + 0.533527i
\(220\) 6.80277 2.47601i 0.458643 0.166932i
\(221\) 4.09858 + 3.43912i 0.275700 + 0.231340i
\(222\) 5.27891 11.5030i 0.354297 0.772029i
\(223\) 6.81687 + 2.48114i 0.456491 + 0.166149i 0.560023 0.828477i \(-0.310792\pi\)
−0.103532 + 0.994626i \(0.533014\pi\)
\(224\) −1.84286 3.19193i −0.123131 0.213270i
\(225\) −0.183979 15.1097i −0.0122652 1.00732i
\(226\) 3.51848 6.09418i 0.234046 0.405379i
\(227\) −21.8531 + 18.3369i −1.45044 + 1.21706i −0.518182 + 0.855271i \(0.673391\pi\)
−0.932258 + 0.361793i \(0.882165\pi\)
\(228\) −4.13237 + 4.18299i −0.273673 + 0.277026i
\(229\) 0.322184 1.82720i 0.0212905 0.120744i −0.972310 0.233694i \(-0.924919\pi\)
0.993601 + 0.112949i \(0.0360298\pi\)
\(230\) −1.84466 + 10.4616i −0.121633 + 0.689816i
\(231\) −3.86124 14.0672i −0.254051 0.925556i
\(232\) −0.448476 + 0.376316i −0.0294439 + 0.0247064i
\(233\) −4.26735 + 7.39126i −0.279563 + 0.484218i −0.971276 0.237955i \(-0.923523\pi\)
0.691713 + 0.722172i \(0.256856\pi\)
\(234\) −9.17851 1.50343i −0.600018 0.0982824i
\(235\) 6.10176 + 10.5686i 0.398035 + 0.689417i
\(236\) 9.08043 + 3.30500i 0.591085 + 0.215137i
\(237\) 24.3038 2.27548i 1.57870 0.147808i
\(238\) 4.87254 + 4.08855i 0.315840 + 0.265021i
\(239\) 6.84845 2.49263i 0.442989 0.161235i −0.110889 0.993833i \(-0.535370\pi\)
0.553878 + 0.832598i \(0.313147\pi\)
\(240\) 0.444966 5.46927i 0.0287224 0.353040i
\(241\) −0.231806 1.31464i −0.0149319 0.0846833i 0.976431 0.215829i \(-0.0692455\pi\)
−0.991363 + 0.131146i \(0.958134\pi\)
\(242\) −5.77847 −0.371454
\(243\) 6.15494 14.3219i 0.394840 0.918750i
\(244\) 13.0913 0.838087
\(245\) 3.62239 + 20.5436i 0.231426 + 1.31248i
\(246\) −0.994467 + 12.2234i −0.0634049 + 0.779337i
\(247\) 9.89008 3.59969i 0.629291 0.229043i
\(248\) −3.55290 2.98123i −0.225609 0.189308i
\(249\) −5.34326 + 0.500270i −0.338615 + 0.0317033i
\(250\) −0.110015 0.0400423i −0.00695798 0.00253250i
\(251\) 1.43928 + 2.49291i 0.0908466 + 0.157351i 0.907868 0.419257i \(-0.137709\pi\)
−0.817021 + 0.576608i \(0.804376\pi\)
\(252\) −10.9117 1.78733i −0.687375 0.112591i
\(253\) −3.83102 + 6.63552i −0.240854 + 0.417171i
\(254\) 4.58477 3.84708i 0.287674 0.241387i
\(255\) 2.50660 + 9.13203i 0.156970 + 0.571870i
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) −4.47629 + 25.3863i −0.279223 + 1.58355i 0.445996 + 0.895035i \(0.352850\pi\)
−0.725219 + 0.688518i \(0.758262\pi\)
\(258\) 2.01812 2.04285i 0.125643 0.127182i
\(259\) −20.6313 + 17.3117i −1.28197 + 1.07570i
\(260\) −4.91101 + 8.50613i −0.304568 + 0.527528i
\(261\) 0.0213838 + 1.75620i 0.00132362 + 0.108706i
\(262\) −8.20752 14.2158i −0.507062 0.878257i
\(263\) 14.1609 + 5.15414i 0.873197 + 0.317818i 0.739461 0.673199i \(-0.235080\pi\)
0.133736 + 0.991017i \(0.457303\pi\)
\(264\) 1.65079 3.59715i 0.101599 0.221389i
\(265\) −6.26793 5.25942i −0.385036 0.323083i
\(266\) 11.7577 4.27945i 0.720910 0.262390i
\(267\) 27.1515 12.8627i 1.66164 0.787187i
\(268\) −1.49490 8.47798i −0.0913153 0.517875i
\(269\) 16.0615 0.979286 0.489643 0.871923i \(-0.337127\pi\)
0.489643 + 0.871923i \(0.337127\pi\)
\(270\) −11.8510 11.4259i −0.721231 0.695357i
\(271\) 9.41446 0.571888 0.285944 0.958246i \(-0.407693\pi\)
0.285944 + 0.958246i \(0.407693\pi\)
\(272\) 0.299674 + 1.69954i 0.0181704 + 0.103050i
\(273\) 16.2812 + 11.2531i 0.985384 + 0.681071i
\(274\) 0.198424 0.0722205i 0.0119872 0.00436300i
\(275\) −8.81700 7.39834i −0.531685 0.446137i
\(276\) 3.36007 + 4.73704i 0.202253 + 0.285136i
\(277\) −5.23856 1.90668i −0.314755 0.114561i 0.179812 0.983701i \(-0.442451\pi\)
−0.494567 + 0.869140i \(0.664673\pi\)
\(278\) −1.83576 3.17962i −0.110101 0.190701i
\(279\) −13.6721 + 2.58278i −0.818528 + 0.154627i
\(280\) −5.83839 + 10.1124i −0.348911 + 0.604331i
\(281\) 21.4529 18.0011i 1.27977 1.07386i 0.286499 0.958081i \(-0.407509\pi\)
0.993275 0.115777i \(-0.0369359\pi\)
\(282\) 6.45488 + 1.68753i 0.384383 + 0.100491i
\(283\) 1.06884 6.06171i 0.0635361 0.360331i −0.936419 0.350883i \(-0.885881\pi\)
0.999955 0.00944797i \(-0.00300743\pi\)
\(284\) 0.345119 1.95727i 0.0204791 0.116143i
\(285\) 18.0227 + 4.71175i 1.06757 + 0.279100i
\(286\) −5.42692 + 4.55372i −0.320900 + 0.269267i
\(287\) 13.0484 22.6005i 0.770222 1.33406i
\(288\) −1.95620 2.27448i −0.115270 0.134025i
\(289\) 7.01088 + 12.1432i 0.412405 + 0.714306i
\(290\) 1.74290 + 0.634363i 0.102347 + 0.0372511i
\(291\) −9.21031 12.9847i −0.539918 0.761177i
\(292\) 8.15640 + 6.84404i 0.477317 + 0.400517i
\(293\) −2.19428 + 0.798651i −0.128191 + 0.0466577i −0.405319 0.914175i \(-0.632840\pi\)
0.277128 + 0.960833i \(0.410617\pi\)
\(294\) 9.38186 + 6.48449i 0.547161 + 0.378183i
\(295\) −5.31608 30.1490i −0.309514 1.75534i
\(296\) −7.30720 −0.424722
\(297\) −5.21367 10.6677i −0.302528 0.619001i
\(298\) 15.4744 0.896408
\(299\) −1.80516 10.2376i −0.104395 0.592054i
\(300\) −7.88427 + 3.73510i −0.455199 + 0.215646i
\(301\) −5.74209 + 2.08995i −0.330969 + 0.120463i
\(302\) 15.4325 + 12.9494i 0.888042 + 0.745155i
\(303\) −8.64035 + 18.8277i −0.496375 + 1.08162i
\(304\) 3.19007 + 1.16109i 0.182963 + 0.0665930i
\(305\) −20.7374 35.9183i −1.18742 2.05668i
\(306\) 4.51483 + 2.53385i 0.258096 + 0.144851i
\(307\) −3.41265 + 5.91088i −0.194770 + 0.337351i −0.946825 0.321749i \(-0.895729\pi\)
0.752055 + 0.659100i \(0.229063\pi\)
\(308\) −6.45172 + 5.41363i −0.367621 + 0.308470i
\(309\) −15.5159 + 15.7059i −0.882666 + 0.893479i
\(310\) −2.55152 + 14.4704i −0.144917 + 0.821864i
\(311\) 1.49254 8.46464i 0.0846344 0.479986i −0.912800 0.408406i \(-0.866085\pi\)
0.997435 0.0715798i \(-0.0228040\pi\)
\(312\) 1.42137 + 5.17830i 0.0804690 + 0.293164i
\(313\) −16.5993 + 13.9285i −0.938250 + 0.787285i −0.977280 0.211953i \(-0.932018\pi\)
0.0390299 + 0.999238i \(0.487573\pi\)
\(314\) −8.99872 + 15.5862i −0.507827 + 0.879582i
\(315\) 12.3810 + 32.7694i 0.697589 + 1.84635i
\(316\) −7.04660 12.2051i −0.396402 0.686588i
\(317\) −33.1899 12.0801i −1.86413 0.678488i −0.975554 0.219760i \(-0.929473\pi\)
−0.888577 0.458728i \(-0.848305\pi\)
\(318\) −4.45384 + 0.416997i −0.249759 + 0.0233840i
\(319\) 1.02480 + 0.859908i 0.0573777 + 0.0481456i
\(320\) −2.97705 + 1.08356i −0.166422 + 0.0605728i
\(321\) 0.856604 10.5289i 0.0478110 0.587665i
\(322\) −2.14604 12.1708i −0.119594 0.678251i
\(323\) −5.85859 −0.325981
\(324\) −8.99733 + 0.219138i −0.499852 + 0.0121744i
\(325\) 15.6159 0.866217
\(326\) 0.530129 + 3.00651i 0.0293611 + 0.166515i
\(327\) 1.57853 19.4024i 0.0872929 1.07296i
\(328\) 6.65351 2.42168i 0.367379 0.133715i
\(329\) −10.8758 9.12586i −0.599601 0.503125i
\(330\) −12.4843 + 1.16886i −0.687240 + 0.0643438i
\(331\) 24.2569 + 8.82879i 1.33328 + 0.485274i 0.907690 0.419642i \(-0.137844\pi\)
0.425590 + 0.904916i \(0.360067\pi\)
\(332\) 1.54921 + 2.68331i 0.0850240 + 0.147266i
\(333\) −13.8854 + 16.9632i −0.760917 + 0.929579i
\(334\) 2.05060 3.55174i 0.112204 0.194343i
\(335\) −20.8928 + 17.5311i −1.14149 + 0.957826i
\(336\) 1.68977 + 6.15616i 0.0921846 + 0.335846i
\(337\) −0.587727 + 3.33317i −0.0320156 + 0.181569i −0.996622 0.0821241i \(-0.973830\pi\)
0.964607 + 0.263693i \(0.0849407\pi\)
\(338\) −0.588371 + 3.33682i −0.0320032 + 0.181499i
\(339\) −8.56585 + 8.67078i −0.465233 + 0.470932i
\(340\) 4.18826 3.51437i 0.227141 0.190594i
\(341\) −5.29904 + 9.17821i −0.286959 + 0.497028i
\(342\) 8.75729 5.19920i 0.473540 0.281141i
\(343\) 0.765664 + 1.32617i 0.0413420 + 0.0716064i
\(344\) −1.55793 0.567040i −0.0839980 0.0305728i
\(345\) 7.67431 16.7227i 0.413171 0.900318i
\(346\) −13.0435 10.9448i −0.701224 0.588397i
\(347\) 15.2230 5.54073i 0.817216 0.297442i 0.100615 0.994925i \(-0.467919\pi\)
0.716601 + 0.697483i \(0.245697\pi\)
\(348\) 0.916387 0.434130i 0.0491235 0.0232718i
\(349\) 0.780120 + 4.42428i 0.0417589 + 0.236826i 0.998542 0.0539752i \(-0.0171892\pi\)
−0.956783 + 0.290801i \(0.906078\pi\)
\(350\) 18.5648 0.992330
\(351\) 14.7221 + 6.54040i 0.785806 + 0.349101i
\(352\) −2.28507 −0.121795
\(353\) −4.03327 22.8738i −0.214669 1.21745i −0.881479 0.472222i \(-0.843452\pi\)
0.666810 0.745228i \(-0.267659\pi\)
\(354\) −13.7684 9.51638i −0.731785 0.505790i
\(355\) −5.91679 + 2.15353i −0.314030 + 0.114298i
\(356\) −13.2878 11.1498i −0.704253 0.590938i
\(357\) −6.37389 8.98593i −0.337342 0.475586i
\(358\) 13.6782 + 4.97846i 0.722916 + 0.263120i
\(359\) 5.77697 + 10.0060i 0.304897 + 0.528097i 0.977238 0.212144i \(-0.0680447\pi\)
−0.672341 + 0.740241i \(0.734711\pi\)
\(360\) −3.14170 + 8.97008i −0.165582 + 0.472765i
\(361\) 3.73768 6.47385i 0.196720 0.340729i
\(362\) −9.97681 + 8.37154i −0.524370 + 0.439998i
\(363\) 9.68315 + 2.53151i 0.508234 + 0.132870i
\(364\) 1.98423 11.2531i 0.104002 0.589825i
\(365\) 5.85755 33.2198i 0.306598 1.73880i
\(366\) −21.9376 5.73524i −1.14669 0.299786i
\(367\) 11.9271 10.0080i 0.622589 0.522414i −0.276027 0.961150i \(-0.589018\pi\)
0.898616 + 0.438735i \(0.144573\pi\)
\(368\) 1.67654 2.90386i 0.0873959 0.151374i
\(369\) 7.02147 20.0475i 0.365523 1.04363i
\(370\) 11.5750 + 20.0485i 0.601757 + 1.04227i
\(371\) 8.94493 + 3.25569i 0.464398 + 0.169027i
\(372\) 4.64763 + 6.55225i 0.240969 + 0.339718i
\(373\) −7.47450 6.27185i −0.387015 0.324744i 0.428434 0.903573i \(-0.359065\pi\)
−0.815449 + 0.578829i \(0.803510\pi\)
\(374\) 3.70565 1.34875i 0.191614 0.0697420i
\(375\) 0.166814 + 0.115297i 0.00861423 + 0.00595392i
\(376\) −0.668890 3.79346i −0.0344953 0.195633i
\(377\) −1.81504 −0.0934792
\(378\) 17.5021 + 7.77547i 0.900212 + 0.399927i
\(379\) −18.7904 −0.965197 −0.482599 0.875842i \(-0.660307\pi\)
−0.482599 + 0.875842i \(0.660307\pi\)
\(380\) −1.86760 10.5917i −0.0958061 0.543343i
\(381\) −9.36823 + 4.43811i −0.479949 + 0.227371i
\(382\) −3.38559 + 1.23226i −0.173222 + 0.0630477i
\(383\) 23.5697 + 19.7773i 1.20435 + 1.01057i 0.999495 + 0.0317817i \(0.0101181\pi\)
0.204859 + 0.978791i \(0.434326\pi\)
\(384\) −0.722426 + 1.57420i −0.0368662 + 0.0803330i
\(385\) 25.0731 + 9.12586i 1.27784 + 0.465097i
\(386\) −0.737435 1.27727i −0.0375344 0.0650116i
\(387\) −4.27679 + 2.53913i −0.217402 + 0.129071i
\(388\) −4.59558 + 7.95978i −0.233305 + 0.404097i
\(389\) 22.6754 19.0269i 1.14969 0.964704i 0.149978 0.988689i \(-0.452080\pi\)
0.999712 + 0.0239850i \(0.00763540\pi\)
\(390\) 11.9560 12.1025i 0.605417 0.612833i
\(391\) −1.00483 + 5.69870i −0.0508167 + 0.288196i
\(392\) 1.14339 6.48449i 0.0577499 0.327516i
\(393\) 7.52571 + 27.4176i 0.379622 + 1.38303i
\(394\) 1.94470 1.63179i 0.0979724 0.0822086i
\(395\) −22.3244 + 38.6670i −1.12326 + 1.94555i
\(396\) −4.34218 + 5.30465i −0.218203 + 0.266569i
\(397\) −8.07134 13.9800i −0.405089 0.701635i 0.589243 0.807956i \(-0.299426\pi\)
−0.994332 + 0.106321i \(0.966093\pi\)
\(398\) 1.74011 + 0.633347i 0.0872237 + 0.0317468i
\(399\) −21.5775 + 2.02022i −1.08023 + 0.101138i
\(400\) 3.85853 + 3.23769i 0.192927 + 0.161885i
\(401\) −23.8328 + 8.67444i −1.19016 + 0.433181i −0.859778 0.510668i \(-0.829398\pi\)
−0.330377 + 0.943849i \(0.607176\pi\)
\(402\) −1.20911 + 14.8617i −0.0603050 + 0.741235i
\(403\) −2.49689 14.1605i −0.124379 0.705387i
\(404\) 11.9602 0.595041
\(405\) 14.8535 + 24.3386i 0.738078 + 1.20939i
\(406\) −2.15778 −0.107089
\(407\) 2.89948 + 16.4438i 0.143722 + 0.815087i
\(408\) 0.242384 2.97925i 0.0119998 0.147495i
\(409\) 21.3980 7.78825i 1.05806 0.385104i 0.246364 0.969177i \(-0.420764\pi\)
0.811701 + 0.584073i \(0.198542\pi\)
\(410\) −17.1838 14.4189i −0.848649 0.712101i
\(411\) −0.364145 + 0.0340936i −0.0179619 + 0.00168171i
\(412\) 11.9778 + 4.35955i 0.590102 + 0.214780i
\(413\) 17.8079 + 30.8442i 0.876269 + 1.51774i
\(414\) −3.55530 9.41003i −0.174734 0.462478i
\(415\) 4.90808 8.50104i 0.240928 0.417300i
\(416\) 2.37495 1.99282i 0.116441 0.0977060i
\(417\) 1.68326 + 6.13242i 0.0824294 + 0.300306i
\(418\) 1.34705 7.63949i 0.0658863 0.373660i
\(419\) −0.854828 + 4.84797i −0.0417611 + 0.236839i −0.998543 0.0539688i \(-0.982813\pi\)
0.956782 + 0.290808i \(0.0939240\pi\)
\(420\) 14.2138 14.3879i 0.693560 0.702056i
\(421\) 15.1046 12.6742i 0.736151 0.617704i −0.195650 0.980674i \(-0.562682\pi\)
0.931801 + 0.362970i \(0.118237\pi\)
\(422\) 9.49415 16.4443i 0.462168 0.800498i
\(423\) −10.0773 5.65570i −0.489977 0.274989i
\(424\) 1.29134 + 2.23666i 0.0627128 + 0.108622i
\(425\) −8.16833 2.97303i −0.396222 0.144213i
\(426\) −1.43580 + 3.12866i −0.0695645 + 0.151584i
\(427\) 36.9624 + 31.0151i 1.78874 + 1.50093i
\(428\) −5.73113 + 2.08596i −0.277025 + 0.100829i
\(429\) 11.0890 5.25331i 0.535383 0.253632i
\(430\) 0.912081 + 5.17267i 0.0439845 + 0.249448i
\(431\) −6.16323 −0.296873 −0.148436 0.988922i \(-0.547424\pi\)
−0.148436 + 0.988922i \(0.547424\pi\)
\(432\) 2.28163 + 4.66842i 0.109775 + 0.224610i
\(433\) −14.7838 −0.710466 −0.355233 0.934778i \(-0.615599\pi\)
−0.355233 + 0.934778i \(0.615599\pi\)
\(434\) −2.96839 16.8346i −0.142487 0.808085i
\(435\) −2.64272 1.82658i −0.126709 0.0875776i
\(436\) −10.5612 + 3.84396i −0.505790 + 0.184092i
\(437\) 8.71993 + 7.31689i 0.417131 + 0.350014i
\(438\) −10.6696 15.0420i −0.509813 0.718736i
\(439\) −27.9719 10.1809i −1.33502 0.485909i −0.426782 0.904354i \(-0.640353\pi\)
−0.908242 + 0.418445i \(0.862575\pi\)
\(440\) 3.61968 + 6.26947i 0.172561 + 0.298885i
\(441\) −12.8806 14.9764i −0.613364 0.713162i
\(442\) −2.67516 + 4.63351i −0.127244 + 0.220394i
\(443\) 23.3447 19.5885i 1.10914 0.930680i 0.111136 0.993805i \(-0.464551\pi\)
0.998006 + 0.0631253i \(0.0201068\pi\)
\(444\) 12.2449 + 3.20124i 0.581117 + 0.151924i
\(445\) −9.54269 + 54.1193i −0.452367 + 2.56550i
\(446\) −1.25971 + 7.14415i −0.0596488 + 0.338285i
\(447\) −25.9309 6.77925i −1.22649 0.320647i
\(448\) 2.82342 2.36913i 0.133394 0.111931i
\(449\) −5.92055 + 10.2547i −0.279408 + 0.483949i −0.971238 0.238112i \(-0.923472\pi\)
0.691830 + 0.722061i \(0.256805\pi\)
\(450\) 14.8482 2.80496i 0.699953 0.132227i
\(451\) −8.08973 14.0118i −0.380930 0.659791i
\(452\) 6.61257 + 2.40678i 0.311029 + 0.113205i
\(453\) −20.1877 28.4606i −0.948500 1.33720i
\(454\) −21.8531 18.3369i −1.02562 0.860594i
\(455\) −34.0180 + 12.3816i −1.59479 + 0.580456i
\(456\) −4.83702 3.34322i −0.226514 0.156561i
\(457\) −0.0323668 0.183561i −0.00151406 0.00858664i 0.984041 0.177940i \(-0.0569432\pi\)
−0.985555 + 0.169353i \(0.945832\pi\)
\(458\) 1.85538 0.0866963
\(459\) −6.45557 6.22397i −0.301320 0.290510i
\(460\) −10.6230 −0.495299
\(461\) 1.80687 + 10.2473i 0.0841543 + 0.477263i 0.997536 + 0.0701583i \(0.0223505\pi\)
−0.913382 + 0.407105i \(0.866538\pi\)
\(462\) 13.1830 6.24533i 0.613330 0.290559i
\(463\) −24.2332 + 8.82016i −1.12621 + 0.409907i −0.836915 0.547332i \(-0.815643\pi\)
−0.289296 + 0.957240i \(0.593421\pi\)
\(464\) −0.448476 0.376316i −0.0208200 0.0174700i
\(465\) 10.6151 23.1307i 0.492262 1.07266i
\(466\) −8.01999 2.91904i −0.371519 0.135222i
\(467\) −10.8506 18.7937i −0.502104 0.869670i −0.999997 0.00243153i \(-0.999226\pi\)
0.497893 0.867239i \(-0.334107\pi\)
\(468\) −0.113240 9.30014i −0.00523452 0.429899i
\(469\) 15.8647 27.4785i 0.732566 1.26884i
\(470\) −9.34844 + 7.84427i −0.431211 + 0.361829i
\(471\) 21.9077 22.1760i 1.00945 1.02182i
\(472\) −1.67799 + 9.51638i −0.0772360 + 0.438027i
\(473\) −0.657857 + 3.73089i −0.0302483 + 0.171547i
\(474\) 6.46123 + 23.5395i 0.296774 + 1.08120i
\(475\) −13.0989 + 10.9913i −0.601020 + 0.504316i
\(476\) −3.18032 + 5.50848i −0.145770 + 0.252481i
\(477\) 7.64612 + 1.25243i 0.350092 + 0.0573447i
\(478\) 3.64398 + 6.31156i 0.166672 + 0.288684i
\(479\) 36.7619 + 13.3802i 1.67970 + 0.611359i 0.993268 0.115839i \(-0.0369558\pi\)
0.686427 + 0.727199i \(0.259178\pi\)
\(480\) 5.46344 0.511522i 0.249371 0.0233477i
\(481\) −17.3542 14.5619i −0.791284 0.663966i
\(482\) 1.25441 0.456569i 0.0571370 0.0207962i
\(483\) −1.73577 + 21.3351i −0.0789804 + 0.970782i
\(484\) −1.00342 5.69068i −0.0456100 0.258667i
\(485\) 29.1187 1.32221
\(486\) 15.1731 + 3.57446i 0.688266 + 0.162141i
\(487\) −10.4833 −0.475043 −0.237522 0.971382i \(-0.576335\pi\)
−0.237522 + 0.971382i \(0.576335\pi\)
\(488\) 2.27329 + 12.8925i 0.102907 + 0.583614i
\(489\) 0.428782 5.27035i 0.0193902 0.238334i
\(490\) −19.6025 + 7.13472i −0.885550 + 0.322314i
\(491\) 5.25278 + 4.40761i 0.237055 + 0.198913i 0.753574 0.657363i \(-0.228328\pi\)
−0.516519 + 0.856276i \(0.672773\pi\)
\(492\) −12.2104 + 1.14322i −0.550488 + 0.0515402i
\(493\) 0.949403 + 0.345554i 0.0427589 + 0.0155630i
\(494\) 5.26240 + 9.11475i 0.236767 + 0.410092i
\(495\) 21.4325 + 3.51062i 0.963317 + 0.157791i
\(496\) 2.31899 4.01660i 0.104126 0.180351i
\(497\) 5.61145 4.70857i 0.251708 0.211208i
\(498\) −1.42052 5.17521i −0.0636549 0.231907i
\(499\) 3.26002 18.4885i 0.145939 0.827659i −0.820670 0.571402i \(-0.806400\pi\)
0.966609 0.256257i \(-0.0824892\pi\)
\(500\) 0.0203300 0.115297i 0.000909186 0.00515625i
\(501\) −4.99225 + 5.05340i −0.223037 + 0.225769i
\(502\) −2.20511 + 1.85030i −0.0984187 + 0.0825831i
\(503\) 6.21350 10.7621i 0.277046 0.479858i −0.693603 0.720357i \(-0.743978\pi\)
0.970649 + 0.240499i \(0.0773112\pi\)
\(504\) −0.134624 11.0563i −0.00599662 0.492488i
\(505\) −18.9456 32.8148i −0.843069 1.46024i
\(506\) −7.19996 2.62057i −0.320077 0.116499i
\(507\) 2.44779 5.33385i 0.108710 0.236885i
\(508\) 4.58477 + 3.84708i 0.203416 + 0.170687i
\(509\) −30.9889 + 11.2790i −1.37356 + 0.499935i −0.920219 0.391403i \(-0.871990\pi\)
−0.453340 + 0.891338i \(0.649768\pi\)
\(510\) −8.55803 + 4.05428i −0.378956 + 0.179527i
\(511\) 6.81455 + 38.6472i 0.301458 + 1.70965i
\(512\) 1.00000 0.0441942
\(513\) −16.9526 + 4.87594i −0.748476 + 0.215278i
\(514\) −25.7779 −1.13702
\(515\) −7.01231 39.7688i −0.308999 1.75242i
\(516\) 2.36225 + 1.63273i 0.103992 + 0.0718768i
\(517\) −8.27121 + 3.01047i −0.363767 + 0.132400i
\(518\) −20.6313 17.3117i −0.906488 0.760634i
\(519\) 17.0626 + 24.0548i 0.748963 + 1.05589i
\(520\) −9.22969 3.35933i −0.404749 0.147316i
\(521\) −7.16598 12.4118i −0.313947 0.543773i 0.665266 0.746607i \(-0.268318\pi\)
−0.979213 + 0.202834i \(0.934985\pi\)
\(522\) −1.72581 + 0.326020i −0.0755366 + 0.0142695i
\(523\) 2.85442 4.94400i 0.124815 0.216186i −0.796846 0.604183i \(-0.793500\pi\)
0.921661 + 0.387997i \(0.126833\pi\)
\(524\) 12.5746 10.5514i 0.549326 0.460939i
\(525\) −31.1096 8.13313i −1.35773 0.354959i
\(526\) −2.61682 + 14.8408i −0.114099 + 0.647087i
\(527\) −1.38988 + 7.88241i −0.0605442 + 0.343363i
\(528\) 3.82916 + 1.00108i 0.166643 + 0.0435662i
\(529\) −9.00623 + 7.55712i −0.391575 + 0.328571i
\(530\) 4.09110 7.08599i 0.177706 0.307796i
\(531\) 18.9031 + 21.9788i 0.820326 + 0.953797i
\(532\) 6.25613 + 10.8359i 0.271238 + 0.469798i
\(533\) 20.6277 + 7.50787i 0.893485 + 0.325202i
\(534\) 17.3821 + 24.5054i 0.752198 + 1.06045i
\(535\) 14.8016 + 12.4200i 0.639930 + 0.536965i
\(536\) 8.08959 2.94437i 0.349417 0.127177i
\(537\) −20.7400 14.3349i −0.894995 0.618597i
\(538\) 2.78905 + 15.8175i 0.120244 + 0.681939i
\(539\) −15.0461 −0.648081
\(540\) 9.19438 13.6551i 0.395663 0.587621i
\(541\) 18.0099 0.774305 0.387153 0.922016i \(-0.373459\pi\)
0.387153 + 0.922016i \(0.373459\pi\)
\(542\) 1.63480 + 9.27143i 0.0702208 + 0.398242i
\(543\) 20.3860 9.65766i 0.874846 0.414450i
\(544\) −1.62168 + 0.590243i −0.0695289 + 0.0253065i
\(545\) 27.2761 + 22.8874i 1.16838 + 0.980387i
\(546\) −8.25498 + 17.9880i −0.353281 + 0.769813i
\(547\) 19.3837 + 7.05509i 0.828788 + 0.301654i 0.721361 0.692559i \(-0.243517\pi\)
0.107426 + 0.994213i \(0.465739\pi\)
\(548\) 0.105579 + 0.182869i 0.00451012 + 0.00781176i
\(549\) 34.2489 + 19.2214i 1.46171 + 0.820351i
\(550\) 5.75489 9.96776i 0.245389 0.425027i
\(551\) 1.52249 1.27752i 0.0648601 0.0544241i
\(552\) −4.08160 + 4.13160i −0.173724 + 0.175853i
\(553\) 9.01990 51.1544i 0.383565 2.17531i
\(554\) 0.968047 5.49007i 0.0411284 0.233251i
\(555\) −10.6135 38.6669i −0.450517 1.64132i
\(556\) 2.81254 2.36000i 0.119278 0.100086i
\(557\) 1.90209 3.29452i 0.0805942 0.139593i −0.822911 0.568170i \(-0.807652\pi\)
0.903505 + 0.428577i \(0.140985\pi\)
\(558\) −4.91768 13.0159i −0.208182 0.551007i
\(559\) −2.57000 4.45136i −0.108699 0.188273i
\(560\) −10.9726 3.99369i −0.463676 0.168764i
\(561\) −6.80054 + 0.636710i −0.287119 + 0.0268819i
\(562\) 21.4529 + 18.0011i 0.904937 + 0.759332i
\(563\) 10.4037 3.78663i 0.438463 0.159587i −0.113351 0.993555i \(-0.536158\pi\)
0.551813 + 0.833968i \(0.313936\pi\)
\(564\) −0.541015 + 6.64986i −0.0227809 + 0.280009i
\(565\) −3.87129 21.9552i −0.162866 0.923662i
\(566\) 6.15522 0.258723
\(567\) −25.9225 20.6972i −1.08864 0.869199i
\(568\) 1.98746 0.0833921
\(569\) 8.11202 + 46.0056i 0.340074 + 1.92865i 0.369836 + 0.929097i \(0.379414\pi\)
−0.0297623 + 0.999557i \(0.509475\pi\)
\(570\) −1.51057 + 18.5670i −0.0632707 + 0.777688i
\(571\) 29.7753 10.8373i 1.24606 0.453528i 0.366990 0.930225i \(-0.380388\pi\)
0.879068 + 0.476697i \(0.158166\pi\)
\(572\) −5.42692 4.55372i −0.226911 0.190401i
\(573\) 6.21319 0.581718i 0.259560 0.0243016i
\(574\) 24.5230 + 8.92563i 1.02357 + 0.372549i
\(575\) 8.44468 + 14.6266i 0.352167 + 0.609972i
\(576\) 1.90024 2.32144i 0.0791766 0.0967267i
\(577\) −22.1642 + 38.3895i −0.922707 + 1.59818i −0.127499 + 0.991839i \(0.540695\pi\)
−0.795208 + 0.606336i \(0.792639\pi\)
\(578\) −10.7413 + 9.01302i −0.446779 + 0.374892i
\(579\) 0.676175 + 2.46343i 0.0281009 + 0.102377i
\(580\) −0.322075 + 1.82658i −0.0133734 + 0.0758445i
\(581\) −1.98305 + 11.2464i −0.0822707 + 0.466580i
\(582\) 11.1881 11.3252i 0.463761 0.469443i
\(583\) 4.52087 3.79346i 0.187235 0.157109i
\(584\) −5.32371 + 9.22094i −0.220297 + 0.381565i
\(585\) −25.3371 + 15.0426i −1.04756 + 0.621937i
\(586\) −1.16755 2.02226i −0.0482310 0.0835386i
\(587\) −38.5694 14.0381i −1.59193 0.579414i −0.614174 0.789170i \(-0.710511\pi\)
−0.977754 + 0.209756i \(0.932733\pi\)
\(588\) −4.75683 + 10.3653i −0.196169 + 0.427460i
\(589\) 12.0614 + 10.1207i 0.496980 + 0.417015i
\(590\) 28.7678 10.4706i 1.18435 0.431069i
\(591\) −3.97367 + 1.88249i −0.163455 + 0.0774351i
\(592\) −1.26888 7.19618i −0.0521507 0.295761i
\(593\) −9.69265 −0.398029 −0.199015 0.979996i \(-0.563774\pi\)
−0.199015 + 0.979996i \(0.563774\pi\)
\(594\) 9.60025 6.98688i 0.393903 0.286675i
\(595\) 20.1513 0.826121
\(596\) 2.68710 + 15.2393i 0.110068 + 0.624226i
\(597\) −2.63848 1.82365i −0.107986 0.0746370i
\(598\) 9.76857 3.55547i 0.399467 0.145394i
\(599\) −22.8572 19.1794i −0.933918 0.783651i 0.0425983 0.999092i \(-0.486436\pi\)
−0.976517 + 0.215442i \(0.930881\pi\)
\(600\) −5.04744 7.11590i −0.206061 0.290505i
\(601\) −11.7938 4.29259i −0.481079 0.175098i 0.0900856 0.995934i \(-0.471286\pi\)
−0.571165 + 0.820836i \(0.693508\pi\)
\(602\) −3.05530 5.29194i −0.124525 0.215683i
\(603\) 8.53698 24.3745i 0.347653 0.992607i
\(604\) −10.0729 + 17.4467i −0.409859 + 0.709896i
\(605\) −14.0239 + 11.7674i −0.570151 + 0.478413i
\(606\) −20.0420 5.23969i −0.814152 0.212848i
\(607\) −0.482765 + 2.73790i −0.0195948 + 0.111128i −0.993036 0.117808i \(-0.962413\pi\)
0.973442 + 0.228935i \(0.0735245\pi\)
\(608\) −0.589500 + 3.34322i −0.0239074 + 0.135586i
\(609\) 3.61586 + 0.945312i 0.146522 + 0.0383060i
\(610\) 31.7716 26.6595i 1.28639 1.07941i
\(611\) 5.97110 10.3422i 0.241565 0.418403i
\(612\) −1.71136 + 4.88624i −0.0691778 + 0.197514i
\(613\) 4.29646 + 7.44168i 0.173532 + 0.300567i 0.939652 0.342131i \(-0.111149\pi\)
−0.766120 + 0.642697i \(0.777815\pi\)
\(614\) −6.41368 2.33439i −0.258835 0.0942082i
\(615\) 22.4786 + 31.6904i 0.906425 + 1.27788i
\(616\) −6.45172 5.41363i −0.259947 0.218121i
\(617\) 18.8681 6.86743i 0.759602 0.276472i 0.0669615 0.997756i \(-0.478670\pi\)
0.692640 + 0.721283i \(0.256447\pi\)
\(618\) −18.1616 12.5528i −0.730567 0.504949i
\(619\) 1.45723 + 8.26436i 0.0585710 + 0.332173i 0.999987 0.00507458i \(-0.00161530\pi\)
−0.941416 + 0.337247i \(0.890504\pi\)
\(620\) −14.6936 −0.590111
\(621\) 1.83525 + 17.3262i 0.0736461 + 0.695278i
\(622\) 8.59522 0.344637
\(623\) −11.1018 62.9612i −0.444783 2.52249i
\(624\) −4.85282 + 2.29898i −0.194268 + 0.0920327i
\(625\) 23.3174 8.48684i 0.932696 0.339474i
\(626\) −16.5993 13.9285i −0.663443 0.556695i
\(627\) −5.60411 + 12.2116i −0.223806 + 0.487684i
\(628\) −16.9121 6.15549i −0.674865 0.245631i
\(629\) 6.30522 + 10.9210i 0.251405 + 0.435447i
\(630\) −30.1217 + 17.8832i −1.20008 + 0.712485i
\(631\) −8.78157 + 15.2101i −0.349589 + 0.605506i −0.986176 0.165699i \(-0.947012\pi\)
0.636588 + 0.771204i \(0.280345\pi\)
\(632\) 10.7960 9.05893i 0.429442 0.360345i
\(633\) −23.1138 + 23.3970i −0.918691 + 0.929946i
\(634\) 6.13325 34.7834i 0.243582 1.38142i
\(635\) 3.29257 18.6731i 0.130662 0.741019i
\(636\) −1.18406 4.31376i −0.0469511 0.171052i
\(637\) 15.6379 13.1218i 0.619596 0.519903i
\(638\) −0.668890 + 1.15855i −0.0264816 + 0.0458675i
\(639\) 3.77666 4.61378i 0.149402 0.182518i
\(640\) −1.58406 2.74367i −0.0626154 0.108453i
\(641\) 12.6056 + 4.58808i 0.497893 + 0.181218i 0.578746 0.815508i \(-0.303542\pi\)
−0.0808532 + 0.996726i \(0.525765\pi\)
\(642\) 10.5177 0.984732i 0.415100 0.0388643i
\(643\) −7.99375 6.70755i −0.315243 0.264520i 0.471412 0.881913i \(-0.343744\pi\)
−0.786655 + 0.617393i \(0.788189\pi\)
\(644\) 11.6132 4.22687i 0.457625 0.166562i
\(645\) 0.737715 9.06758i 0.0290475 0.357035i
\(646\) −1.01733 5.76958i −0.0400264 0.227001i
\(647\) −37.9585 −1.49230 −0.746152 0.665775i \(-0.768101\pi\)
−0.746152 + 0.665775i \(0.768101\pi\)
\(648\) −1.77818 8.82259i −0.0698535 0.346584i
\(649\) 22.0810 0.866756
\(650\) 2.71168 + 15.3787i 0.106361 + 0.603202i
\(651\) −2.40091 + 29.5106i −0.0940991 + 1.15661i
\(652\) −2.86878 + 1.04415i −0.112350 + 0.0408921i
\(653\) −20.9178 17.5521i −0.818578 0.686868i 0.134061 0.990973i \(-0.457198\pi\)
−0.952639 + 0.304105i \(0.901643\pi\)
\(654\) 19.3817 1.81464i 0.757886 0.0709582i
\(655\) −48.8684 17.7867i −1.90945 0.694982i
\(656\) 3.54026 + 6.13191i 0.138224 + 0.239411i
\(657\) 11.2895 + 29.8807i 0.440447 + 1.16576i
\(658\) 7.09866 12.2952i 0.276735 0.479318i
\(659\) −26.3174 + 22.0829i −1.02518 + 0.860228i −0.990270 0.139162i \(-0.955559\pi\)
−0.0349104 + 0.999390i \(0.511115\pi\)
\(660\) −3.31899 12.0917i −0.129191 0.470669i
\(661\) −4.26787 + 24.2043i −0.166001 + 0.941439i 0.782025 + 0.623247i \(0.214187\pi\)
−0.948026 + 0.318192i \(0.896924\pi\)
\(662\) −4.48249 + 25.4215i −0.174217 + 0.988034i
\(663\) 6.51276 6.59254i 0.252935 0.256033i
\(664\) −2.37353 + 1.99163i −0.0921108 + 0.0772901i
\(665\) 19.8202 34.3295i 0.768593 1.33124i
\(666\) −19.1167 10.7288i −0.740757 0.415734i
\(667\) −0.981523 1.70005i −0.0380047 0.0658261i
\(668\) 3.85386 + 1.40269i 0.149110 + 0.0542718i
\(669\) 5.24074 11.4198i 0.202619 0.441515i
\(670\) −20.8928 17.5311i −0.807157 0.677285i
\(671\) 28.1105 10.2314i 1.08519 0.394979i
\(672\) −5.76920 + 2.73310i −0.222552 + 0.105432i
\(673\) 7.44524 + 42.2241i 0.286993 + 1.62762i 0.698078 + 0.716021i \(0.254039\pi\)
−0.411085 + 0.911597i \(0.634850\pi\)
\(674\) −3.38459 −0.130369
\(675\) −26.1105 1.80457i −1.00499 0.0694580i
\(676\) −3.38830 −0.130319
\(677\) 1.30018 + 7.37368i 0.0499699 + 0.283393i 0.999546 0.0301446i \(-0.00959678\pi\)
−0.949576 + 0.313538i \(0.898486\pi\)
\(678\) −10.0265 6.93005i −0.385065 0.266147i
\(679\) −31.8331 + 11.5863i −1.22164 + 0.444641i
\(680\) 4.18826 + 3.51437i 0.160613 + 0.134770i
\(681\) 28.5866 + 40.3014i 1.09544 + 1.54435i
\(682\) −9.95894 3.62476i −0.381348 0.138799i
\(683\) −8.37724 14.5098i −0.320546 0.555202i 0.660055 0.751218i \(-0.270533\pi\)
−0.980601 + 0.196015i \(0.937200\pi\)
\(684\) 6.64090 + 7.72141i 0.253921 + 0.295236i
\(685\) 0.334487 0.579349i 0.0127801 0.0221358i
\(686\) −1.17307 + 0.984318i −0.0447878 + 0.0375815i
\(687\) −3.10912 0.812833i −0.118620 0.0310115i
\(688\) 0.287894 1.63273i 0.0109759 0.0622471i
\(689\) −1.39040 + 7.88535i −0.0529700 + 0.300408i
\(690\) 17.8012 + 4.65386i 0.677682 + 0.177170i
\(691\) −11.4550 + 9.61189i −0.435769 + 0.365653i −0.834123 0.551578i \(-0.814026\pi\)
0.398354 + 0.917232i \(0.369581\pi\)
\(692\) 8.51355 14.7459i 0.323637 0.560555i
\(693\) −24.8272 + 4.69008i −0.943109 + 0.178161i
\(694\) 8.10001 + 14.0296i 0.307472 + 0.532558i
\(695\) −10.9303 3.97830i −0.414609 0.150905i
\(696\) 0.586663 + 0.827079i 0.0222374 + 0.0313504i
\(697\) −9.36048 7.85437i −0.354553 0.297506i
\(698\) −4.22160 + 1.53654i −0.159790 + 0.0581587i
\(699\) 12.1605 + 8.40503i 0.459953 + 0.317908i
\(700\) 3.22374 + 18.2828i 0.121846 + 0.691023i
\(701\) −42.1025 −1.59019 −0.795094 0.606486i \(-0.792579\pi\)
−0.795094 + 0.606486i \(0.792579\pi\)
\(702\) −3.88458 + 15.6341i −0.146614 + 0.590072i
\(703\) 24.8065 0.935593
\(704\) −0.396798 2.25035i −0.0149549 0.0848133i
\(705\) 19.1020 9.04939i 0.719423 0.340820i
\(706\) 21.8259 7.94399i 0.821430 0.298976i
\(707\) 33.7687 + 28.3353i 1.27000 + 1.06566i
\(708\) 6.98094 15.2118i 0.262360 0.571693i
\(709\) −26.7677 9.74265i −1.00528 0.365893i −0.213663 0.976907i \(-0.568539\pi\)
−0.791619 + 0.611015i \(0.790762\pi\)
\(710\) −3.14826 5.45294i −0.118152 0.204645i
\(711\) −0.514765 42.2764i −0.0193052 1.58549i
\(712\) 8.67300 15.0221i 0.325035 0.562976i
\(713\) 11.9132 9.99634i 0.446152 0.374366i
\(714\) 7.74260 7.83745i 0.289760 0.293309i
\(715\) −3.89736 + 22.1030i −0.145753 + 0.826606i
\(716\) −2.52763 + 14.3349i −0.0944620 + 0.535721i
\(717\) −3.34127 12.1729i −0.124782 0.454605i
\(718\) −8.85083 + 7.42673i −0.330310 + 0.277163i
\(719\) −1.26744 + 2.19526i −0.0472674 + 0.0818695i −0.888691 0.458506i \(-0.848385\pi\)
0.841424 + 0.540376i \(0.181718\pi\)
\(720\) −9.37935 1.53633i −0.349548 0.0572556i
\(721\) 23.4900 + 40.6858i 0.874812 + 1.51522i
\(722\) 7.02454 + 2.55672i 0.261426 + 0.0951513i
\(723\) −2.30208 + 0.215535i −0.0856152 + 0.00801585i
\(724\) −9.97681 8.37154i −0.370785 0.311126i
\(725\) 2.77102 1.00857i 0.102913 0.0374573i
\(726\) −0.811593 + 9.97564i −0.0301210 + 0.370231i
\(727\) 3.45271 + 19.5813i 0.128054 + 0.726231i 0.979447 + 0.201702i \(0.0646473\pi\)
−0.851393 + 0.524529i \(0.824242\pi\)
\(728\) 11.4267 0.423503
\(729\) −23.8601 12.6371i −0.883707 0.468040i
\(730\) 33.7323 1.24849
\(731\) 0.496834 + 2.81769i 0.0183761 + 0.104216i
\(732\) 1.83869 22.6002i 0.0679601 0.835327i
\(733\) 9.40733 3.42399i 0.347468 0.126468i −0.162390 0.986727i \(-0.551920\pi\)
0.509858 + 0.860259i \(0.329698\pi\)
\(734\) 11.9271 + 10.0080i 0.440237 + 0.369403i
\(735\) 35.9742 3.36813i 1.32693 0.124235i
\(736\) 3.15087 + 1.14682i 0.116143 + 0.0422725i
\(737\) −9.83580 17.0361i −0.362306 0.627533i
\(738\) 20.9622 + 3.43359i 0.771629 + 0.126392i
\(739\) 20.1957 34.9800i 0.742911 1.28676i −0.208253 0.978075i \(-0.566778\pi\)
0.951164 0.308685i \(-0.0998890\pi\)
\(740\) −17.7340 + 14.8806i −0.651913 + 0.547020i
\(741\) −4.82525 17.5793i −0.177260 0.645791i
\(742\) −1.65296 + 9.37439i −0.0606820 + 0.344145i
\(743\) 6.19059 35.1086i 0.227111 1.28801i −0.631498 0.775377i \(-0.717560\pi\)
0.858609 0.512631i \(-0.171329\pi\)
\(744\) −5.64565 + 5.71481i −0.206980 + 0.209515i
\(745\) 37.5551 31.5124i 1.37591 1.15453i
\(746\) 4.87863 8.45004i 0.178619 0.309378i
\(747\) 0.113172 + 9.29458i 0.00414076 + 0.340071i
\(748\) 1.97173 + 3.41514i 0.0720937 + 0.124870i
\(749\) −21.1233 7.68826i −0.771830 0.280923i
\(750\) −0.0845787 + 0.184301i −0.00308838 + 0.00672971i
\(751\) −7.25347 6.08638i −0.264683 0.222095i 0.500781 0.865574i \(-0.333046\pi\)
−0.765464 + 0.643479i \(0.777491\pi\)
\(752\) 3.61968 1.31746i 0.131996 0.0480426i
\(753\) 4.50577 2.13457i 0.164199 0.0777879i
\(754\) −0.315178 1.78746i −0.0114781 0.0650956i
\(755\) 63.8240 2.32279
\(756\) −4.61813 + 18.5864i −0.167960 + 0.675982i
\(757\) −37.9651 −1.37987 −0.689933 0.723873i \(-0.742360\pi\)
−0.689933 + 0.723873i \(0.742360\pi\)
\(758\) −3.26292 18.5049i −0.118514 0.672129i
\(759\) 10.9171 + 7.54563i 0.396267 + 0.273889i
\(760\) 10.1065 3.67846i 0.366601 0.133432i
\(761\) 34.3845 + 28.8520i 1.24644 + 1.04588i 0.996993 + 0.0774952i \(0.0246922\pi\)
0.249444 + 0.968389i \(0.419752\pi\)
\(762\) −5.99746 8.45523i −0.217265 0.306301i
\(763\) −38.9256 14.1678i −1.40920 0.512908i
\(764\) −1.80144 3.12018i −0.0651737 0.112884i
\(765\)