Properties

Label 54.2.e.a.7.1
Level $54$
Weight $2$
Character 54.7
Analytic conductor $0.431$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,2,Mod(7,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 54.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.431192170915\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 7.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 54.7
Dual form 54.2.e.a.31.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.939693 - 0.342020i) q^{2} +(-1.11334 - 1.32683i) q^{3} +(0.766044 - 0.642788i) q^{4} +(0.439693 + 2.49362i) q^{5} +(-1.50000 - 0.866025i) q^{6} +(-1.79813 - 1.50881i) q^{7} +(0.500000 - 0.866025i) q^{8} +(-0.520945 + 2.95442i) q^{9} +O(q^{10})\) \(q+(0.939693 - 0.342020i) q^{2} +(-1.11334 - 1.32683i) q^{3} +(0.766044 - 0.642788i) q^{4} +(0.439693 + 2.49362i) q^{5} +(-1.50000 - 0.866025i) q^{6} +(-1.79813 - 1.50881i) q^{7} +(0.500000 - 0.866025i) q^{8} +(-0.520945 + 2.95442i) q^{9} +(1.26604 + 2.19285i) q^{10} +(-0.745100 + 4.22567i) q^{11} +(-1.70574 - 0.300767i) q^{12} +(-0.713011 - 0.259515i) q^{13} +(-2.20574 - 0.802823i) q^{14} +(2.81908 - 3.35965i) q^{15} +(0.173648 - 0.984808i) q^{16} +(-2.46064 - 4.26195i) q^{17} +(0.520945 + 2.95442i) q^{18} +(3.62449 - 6.27779i) q^{19} +(1.93969 + 1.62760i) q^{20} +4.06564i q^{21} +(0.745100 + 4.22567i) q^{22} +(-0.233956 + 0.196312i) q^{23} +(-1.70574 + 0.300767i) q^{24} +(-1.32635 + 0.482753i) q^{25} -0.758770 q^{26} +(4.50000 - 2.59808i) q^{27} -2.34730 q^{28} +(2.91875 - 1.06234i) q^{29} +(1.50000 - 4.12122i) q^{30} +(-6.58512 + 5.52557i) q^{31} +(-0.173648 - 0.984808i) q^{32} +(6.43629 - 3.71599i) q^{33} +(-3.76991 - 3.16333i) q^{34} +(2.97178 - 5.14728i) q^{35} +(1.50000 + 2.59808i) q^{36} +(3.78699 + 6.55926i) q^{37} +(1.25877 - 7.13884i) q^{38} +(0.449493 + 1.23497i) q^{39} +(2.37939 + 0.866025i) q^{40} +(-4.60607 - 1.67647i) q^{41} +(1.39053 + 3.82045i) q^{42} +(-0.283119 + 1.60565i) q^{43} +(2.14543 + 3.71599i) q^{44} -7.59627 q^{45} +(-0.152704 + 0.264490i) q^{46} +(-1.39053 - 1.16679i) q^{47} +(-1.50000 + 0.866025i) q^{48} +(-0.258770 - 1.46756i) q^{49} +(-1.08125 + 0.907278i) q^{50} +(-2.91534 + 8.00984i) q^{51} +(-0.713011 + 0.259515i) q^{52} +0.573978 q^{53} +(3.34002 - 3.98048i) q^{54} -10.8648 q^{55} +(-2.20574 + 0.802823i) q^{56} +(-12.3648 + 2.18025i) q^{57} +(2.37939 - 1.99654i) q^{58} +(0.950837 + 5.39246i) q^{59} -4.38571i q^{60} +(8.46451 + 7.10257i) q^{61} +(-4.29813 + 7.44459i) q^{62} +(5.39440 - 4.52644i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(0.333626 - 1.89209i) q^{65} +(4.77719 - 5.69323i) q^{66} +(-0.0393628 - 0.0143269i) q^{67} +(-4.62449 - 1.68317i) q^{68} +(0.520945 + 0.0918566i) q^{69} +(1.03209 - 5.85327i) q^{70} +(2.10220 + 3.64111i) q^{71} +(2.29813 + 1.92836i) q^{72} +(5.54576 - 9.60554i) q^{73} +(5.80200 + 4.86846i) q^{74} +(2.11721 + 1.22237i) q^{75} +(-1.25877 - 7.13884i) q^{76} +(7.71554 - 6.47410i) q^{77} +(0.844770 + 1.00676i) q^{78} +(6.92989 - 2.52227i) q^{79} +2.53209 q^{80} +(-8.45723 - 3.07818i) q^{81} -4.90167 q^{82} +(-6.41147 + 2.33359i) q^{83} +(2.61334 + 3.11446i) q^{84} +(9.54576 - 8.00984i) q^{85} +(0.283119 + 1.60565i) q^{86} +(-4.65910 - 2.68993i) q^{87} +(3.28699 + 2.75811i) q^{88} +(-3.96064 + 6.86002i) q^{89} +(-7.13816 + 2.59808i) q^{90} +(0.890530 + 1.54244i) q^{91} +(-0.0530334 + 0.300767i) q^{92} +(14.6630 + 2.58548i) q^{93} +(-1.70574 - 0.620838i) q^{94} +(17.2481 + 6.27779i) q^{95} +(-1.11334 + 1.32683i) q^{96} +(-0.570108 + 3.23324i) q^{97} +(-0.745100 - 1.29055i) q^{98} +(-12.0963 - 4.40268i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} - 9 q^{6} + 3 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{5} - 9 q^{6} + 3 q^{7} + 3 q^{8} + 3 q^{10} - 3 q^{11} - 12 q^{13} - 3 q^{14} - 6 q^{17} + 9 q^{19} + 6 q^{20} + 3 q^{22} - 6 q^{23} - 9 q^{25} + 18 q^{26} + 27 q^{27} - 12 q^{28} + 15 q^{29} + 9 q^{30} - 18 q^{31} - 9 q^{33} + 6 q^{34} + 3 q^{35} + 9 q^{36} + 15 q^{37} - 15 q^{38} + 3 q^{40} - 3 q^{41} - 9 q^{42} - 18 q^{43} - 3 q^{44} - 18 q^{45} - 3 q^{46} + 9 q^{47} - 9 q^{48} + 21 q^{49} - 9 q^{50} + 27 q^{51} - 12 q^{52} - 12 q^{53} - 18 q^{55} - 3 q^{56} - 27 q^{57} + 3 q^{58} - 6 q^{59} + 18 q^{61} - 12 q^{62} - 9 q^{63} - 3 q^{64} + 21 q^{65} + 18 q^{66} - 9 q^{67} - 15 q^{68} - 3 q^{70} + 12 q^{71} + 3 q^{73} - 3 q^{74} - 18 q^{75} + 15 q^{76} + 39 q^{77} + 18 q^{78} + 33 q^{79} + 6 q^{80} - 6 q^{82} - 18 q^{83} + 9 q^{84} + 27 q^{85} + 18 q^{86} + 9 q^{87} + 12 q^{88} - 15 q^{89} - 9 q^{90} - 12 q^{91} + 12 q^{92} + 27 q^{93} + 21 q^{95} - 12 q^{97} - 3 q^{98} - 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.939693 0.342020i 0.664463 0.241845i
\(3\) −1.11334 1.32683i −0.642788 0.766044i
\(4\) 0.766044 0.642788i 0.383022 0.321394i
\(5\) 0.439693 + 2.49362i 0.196637 + 1.11518i 0.910069 + 0.414457i \(0.136028\pi\)
−0.713432 + 0.700724i \(0.752860\pi\)
\(6\) −1.50000 0.866025i −0.612372 0.353553i
\(7\) −1.79813 1.50881i −0.679631 0.570278i 0.236268 0.971688i \(-0.424076\pi\)
−0.915898 + 0.401410i \(0.868520\pi\)
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) −0.520945 + 2.95442i −0.173648 + 0.984808i
\(10\) 1.26604 + 2.19285i 0.400358 + 0.693441i
\(11\) −0.745100 + 4.22567i −0.224656 + 1.27409i 0.638685 + 0.769468i \(0.279479\pi\)
−0.863342 + 0.504620i \(0.831633\pi\)
\(12\) −1.70574 0.300767i −0.492404 0.0868241i
\(13\) −0.713011 0.259515i −0.197754 0.0719765i 0.241245 0.970464i \(-0.422444\pi\)
−0.438998 + 0.898488i \(0.644667\pi\)
\(14\) −2.20574 0.802823i −0.589508 0.214563i
\(15\) 2.81908 3.35965i 0.727883 0.867457i
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) −2.46064 4.26195i −0.596792 1.03367i −0.993291 0.115639i \(-0.963108\pi\)
0.396499 0.918035i \(-0.370225\pi\)
\(18\) 0.520945 + 2.95442i 0.122788 + 0.696364i
\(19\) 3.62449 6.27779i 0.831514 1.44022i −0.0653235 0.997864i \(-0.520808\pi\)
0.896837 0.442360i \(-0.145859\pi\)
\(20\) 1.93969 + 1.62760i 0.433728 + 0.363941i
\(21\) 4.06564i 0.887195i
\(22\) 0.745100 + 4.22567i 0.158856 + 0.900916i
\(23\) −0.233956 + 0.196312i −0.0487831 + 0.0409339i −0.666853 0.745189i \(-0.732359\pi\)
0.618070 + 0.786123i \(0.287915\pi\)
\(24\) −1.70574 + 0.300767i −0.348182 + 0.0613939i
\(25\) −1.32635 + 0.482753i −0.265270 + 0.0965505i
\(26\) −0.758770 −0.148807
\(27\) 4.50000 2.59808i 0.866025 0.500000i
\(28\) −2.34730 −0.443597
\(29\) 2.91875 1.06234i 0.541998 0.197271i −0.0564897 0.998403i \(-0.517991\pi\)
0.598488 + 0.801132i \(0.295769\pi\)
\(30\) 1.50000 4.12122i 0.273861 0.752428i
\(31\) −6.58512 + 5.52557i −1.18272 + 0.992422i −0.182766 + 0.983156i \(0.558505\pi\)
−0.999957 + 0.00926586i \(0.997051\pi\)
\(32\) −0.173648 0.984808i −0.0306970 0.174091i
\(33\) 6.43629 3.71599i 1.12041 0.646871i
\(34\) −3.76991 3.16333i −0.646535 0.542507i
\(35\) 2.97178 5.14728i 0.502323 0.870049i
\(36\) 1.50000 + 2.59808i 0.250000 + 0.433013i
\(37\) 3.78699 + 6.55926i 0.622577 + 1.07834i 0.989004 + 0.147888i \(0.0472477\pi\)
−0.366427 + 0.930447i \(0.619419\pi\)
\(38\) 1.25877 7.13884i 0.204200 1.15807i
\(39\) 0.449493 + 1.23497i 0.0719765 + 0.197754i
\(40\) 2.37939 + 0.866025i 0.376214 + 0.136931i
\(41\) −4.60607 1.67647i −0.719347 0.261821i −0.0436983 0.999045i \(-0.513914\pi\)
−0.675648 + 0.737224i \(0.736136\pi\)
\(42\) 1.39053 + 3.82045i 0.214563 + 0.589508i
\(43\) −0.283119 + 1.60565i −0.0431752 + 0.244859i −0.998756 0.0498718i \(-0.984119\pi\)
0.955580 + 0.294730i \(0.0952298\pi\)
\(44\) 2.14543 + 3.71599i 0.323436 + 0.560207i
\(45\) −7.59627 −1.13238
\(46\) −0.152704 + 0.264490i −0.0225149 + 0.0389970i
\(47\) −1.39053 1.16679i −0.202830 0.170194i 0.535715 0.844399i \(-0.320042\pi\)
−0.738545 + 0.674205i \(0.764487\pi\)
\(48\) −1.50000 + 0.866025i −0.216506 + 0.125000i
\(49\) −0.258770 1.46756i −0.0369672 0.209651i
\(50\) −1.08125 + 0.907278i −0.152912 + 0.128308i
\(51\) −2.91534 + 8.00984i −0.408230 + 1.12160i
\(52\) −0.713011 + 0.259515i −0.0988768 + 0.0359882i
\(53\) 0.573978 0.0788419 0.0394210 0.999223i \(-0.487449\pi\)
0.0394210 + 0.999223i \(0.487449\pi\)
\(54\) 3.34002 3.98048i 0.454519 0.541675i
\(55\) −10.8648 −1.46501
\(56\) −2.20574 + 0.802823i −0.294754 + 0.107282i
\(57\) −12.3648 + 2.18025i −1.63776 + 0.288782i
\(58\) 2.37939 1.99654i 0.312429 0.262159i
\(59\) 0.950837 + 5.39246i 0.123788 + 0.702039i 0.982020 + 0.188777i \(0.0604522\pi\)
−0.858232 + 0.513263i \(0.828437\pi\)
\(60\) 4.38571i 0.566192i
\(61\) 8.46451 + 7.10257i 1.08377 + 0.909390i 0.996228 0.0867707i \(-0.0276547\pi\)
0.0875408 + 0.996161i \(0.472099\pi\)
\(62\) −4.29813 + 7.44459i −0.545863 + 0.945463i
\(63\) 5.39440 4.52644i 0.679631 0.570278i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 0.333626 1.89209i 0.0413812 0.234684i
\(66\) 4.77719 5.69323i 0.588031 0.700788i
\(67\) −0.0393628 0.0143269i −0.00480894 0.00175031i 0.339615 0.940565i \(-0.389703\pi\)
−0.344423 + 0.938814i \(0.611926\pi\)
\(68\) −4.62449 1.68317i −0.560801 0.204115i
\(69\) 0.520945 + 0.0918566i 0.0627144 + 0.0110582i
\(70\) 1.03209 5.85327i 0.123358 0.699599i
\(71\) 2.10220 + 3.64111i 0.249485 + 0.432120i 0.963383 0.268129i \(-0.0864054\pi\)
−0.713898 + 0.700250i \(0.753072\pi\)
\(72\) 2.29813 + 1.92836i 0.270838 + 0.227260i
\(73\) 5.54576 9.60554i 0.649082 1.12424i −0.334260 0.942481i \(-0.608487\pi\)
0.983342 0.181762i \(-0.0581802\pi\)
\(74\) 5.80200 + 4.86846i 0.674469 + 0.565947i
\(75\) 2.11721 + 1.22237i 0.244474 + 0.141147i
\(76\) −1.25877 7.13884i −0.144391 0.818881i
\(77\) 7.71554 6.47410i 0.879267 0.737793i
\(78\) 0.844770 + 1.00676i 0.0956514 + 0.113993i
\(79\) 6.92989 2.52227i 0.779674 0.283778i 0.0786372 0.996903i \(-0.474943\pi\)
0.701037 + 0.713125i \(0.252721\pi\)
\(80\) 2.53209 0.283096
\(81\) −8.45723 3.07818i −0.939693 0.342020i
\(82\) −4.90167 −0.541299
\(83\) −6.41147 + 2.33359i −0.703751 + 0.256144i −0.669011 0.743252i \(-0.733282\pi\)
−0.0347393 + 0.999396i \(0.511060\pi\)
\(84\) 2.61334 + 3.11446i 0.285139 + 0.339815i
\(85\) 9.54576 8.00984i 1.03538 0.868789i
\(86\) 0.283119 + 1.60565i 0.0305295 + 0.173141i
\(87\) −4.65910 2.68993i −0.499508 0.288391i
\(88\) 3.28699 + 2.75811i 0.350394 + 0.294016i
\(89\) −3.96064 + 6.86002i −0.419827 + 0.727161i −0.995922 0.0902216i \(-0.971242\pi\)
0.576095 + 0.817383i \(0.304576\pi\)
\(90\) −7.13816 + 2.59808i −0.752428 + 0.273861i
\(91\) 0.890530 + 1.54244i 0.0933529 + 0.161692i
\(92\) −0.0530334 + 0.300767i −0.00552912 + 0.0313572i
\(93\) 14.6630 + 2.58548i 1.52048 + 0.268102i
\(94\) −1.70574 0.620838i −0.175933 0.0640345i
\(95\) 17.2481 + 6.27779i 1.76962 + 0.644088i
\(96\) −1.11334 + 1.32683i −0.113630 + 0.135419i
\(97\) −0.570108 + 3.23324i −0.0578857 + 0.328286i −0.999975 0.00707624i \(-0.997748\pi\)
0.942089 + 0.335362i \(0.108859\pi\)
\(98\) −0.745100 1.29055i −0.0752665 0.130365i
\(99\) −12.0963 4.40268i −1.21572 0.442486i
\(100\) −0.705737 + 1.22237i −0.0705737 + 0.122237i
\(101\) −9.18732 7.70908i −0.914172 0.767082i 0.0587358 0.998274i \(-0.481293\pi\)
−0.972908 + 0.231192i \(0.925737\pi\)
\(102\) 8.52390i 0.843992i
\(103\) 0.418748 + 2.37484i 0.0412605 + 0.234000i 0.998463 0.0554184i \(-0.0176493\pi\)
−0.957203 + 0.289418i \(0.906538\pi\)
\(104\) −0.581252 + 0.487728i −0.0569964 + 0.0478257i
\(105\) −10.1382 + 1.78763i −0.989383 + 0.174455i
\(106\) 0.539363 0.196312i 0.0523876 0.0190675i
\(107\) −2.42602 −0.234532 −0.117266 0.993101i \(-0.537413\pi\)
−0.117266 + 0.993101i \(0.537413\pi\)
\(108\) 1.77719 4.88279i 0.171010 0.469846i
\(109\) −2.32770 −0.222953 −0.111476 0.993767i \(-0.535558\pi\)
−0.111476 + 0.993767i \(0.535558\pi\)
\(110\) −10.2096 + 3.71599i −0.973448 + 0.354306i
\(111\) 4.48680 12.3274i 0.425868 1.17006i
\(112\) −1.79813 + 1.50881i −0.169908 + 0.142569i
\(113\) −2.96198 16.7982i −0.278640 1.58024i −0.727157 0.686471i \(-0.759159\pi\)
0.448518 0.893774i \(-0.351952\pi\)
\(114\) −10.8735 + 6.27779i −1.01839 + 0.587969i
\(115\) −0.592396 0.497079i −0.0552412 0.0463529i
\(116\) 1.55303 2.68993i 0.144196 0.249754i
\(117\) 1.13816 1.97134i 0.105223 0.182251i
\(118\) 2.73783 + 4.74205i 0.252037 + 0.436541i
\(119\) −2.00593 + 11.3762i −0.183883 + 1.04285i
\(120\) −1.50000 4.12122i −0.136931 0.376214i
\(121\) −6.96451 2.53487i −0.633137 0.230443i
\(122\) 10.3833 + 3.77920i 0.940056 + 0.342152i
\(123\) 2.90373 + 7.97794i 0.261821 + 0.719347i
\(124\) −1.49273 + 8.46567i −0.134051 + 0.760240i
\(125\) 4.54323 + 7.86911i 0.406359 + 0.703835i
\(126\) 3.52094 6.09845i 0.313671 0.543294i
\(127\) −6.32295 + 10.9517i −0.561071 + 0.971803i 0.436332 + 0.899786i \(0.356277\pi\)
−0.997403 + 0.0720178i \(0.977056\pi\)
\(128\) −0.766044 0.642788i −0.0677094 0.0568149i
\(129\) 2.44562 1.41198i 0.215325 0.124318i
\(130\) −0.333626 1.89209i −0.0292609 0.165947i
\(131\) −3.97565 + 3.33597i −0.347354 + 0.291465i −0.799727 0.600364i \(-0.795022\pi\)
0.452372 + 0.891829i \(0.350578\pi\)
\(132\) 2.54189 6.98378i 0.221243 0.607860i
\(133\) −15.9893 + 5.81964i −1.38645 + 0.504627i
\(134\) −0.0418891 −0.00361866
\(135\) 8.45723 + 10.0789i 0.727883 + 0.867457i
\(136\) −4.92127 −0.421996
\(137\) 16.0817 5.85327i 1.37395 0.500078i 0.453614 0.891198i \(-0.350134\pi\)
0.920340 + 0.391120i \(0.127912\pi\)
\(138\) 0.520945 0.0918566i 0.0443457 0.00781935i
\(139\) 9.34389 7.84046i 0.792539 0.665019i −0.153834 0.988097i \(-0.549162\pi\)
0.946372 + 0.323078i \(0.104718\pi\)
\(140\) −1.03209 5.85327i −0.0872274 0.494691i
\(141\) 3.14403i 0.264775i
\(142\) 3.22075 + 2.70253i 0.270279 + 0.226791i
\(143\) 1.62789 2.81959i 0.136131 0.235786i
\(144\) 2.81908 + 1.02606i 0.234923 + 0.0855050i
\(145\) 3.93242 + 6.81115i 0.326570 + 0.565635i
\(146\) 1.92602 10.9230i 0.159399 0.903995i
\(147\) −1.65910 + 1.97724i −0.136840 + 0.163080i
\(148\) 7.11721 + 2.59045i 0.585031 + 0.212934i
\(149\) −7.23783 2.63435i −0.592946 0.215815i 0.0280788 0.999606i \(-0.491061\pi\)
−0.621025 + 0.783791i \(0.713283\pi\)
\(150\) 2.40760 + 0.424525i 0.196580 + 0.0346624i
\(151\) −0.135630 + 0.769193i −0.0110374 + 0.0625961i −0.989829 0.142262i \(-0.954562\pi\)
0.978792 + 0.204858i \(0.0656734\pi\)
\(152\) −3.62449 6.27779i −0.293985 0.509196i
\(153\) 13.8735 5.04952i 1.12160 0.408230i
\(154\) 5.03596 8.72254i 0.405809 0.702882i
\(155\) −16.6741 13.9912i −1.33930 1.12380i
\(156\) 1.13816 + 0.657115i 0.0911254 + 0.0526113i
\(157\) −1.80793 10.2533i −0.144289 0.818302i −0.967935 0.251199i \(-0.919175\pi\)
0.823647 0.567103i \(-0.191936\pi\)
\(158\) 5.64930 4.74033i 0.449434 0.377120i
\(159\) −0.639033 0.761570i −0.0506786 0.0603964i
\(160\) 2.37939 0.866025i 0.188107 0.0684653i
\(161\) 0.716881 0.0564982
\(162\) −9.00000 −0.707107
\(163\) −10.5740 −0.828218 −0.414109 0.910227i \(-0.635907\pi\)
−0.414109 + 0.910227i \(0.635907\pi\)
\(164\) −4.60607 + 1.67647i −0.359673 + 0.130910i
\(165\) 12.0963 + 14.4158i 0.941693 + 1.12227i
\(166\) −5.22668 + 4.38571i −0.405669 + 0.340397i
\(167\) 0.260992 + 1.48016i 0.0201962 + 0.114538i 0.993239 0.116085i \(-0.0370346\pi\)
−0.973043 + 0.230623i \(0.925923\pi\)
\(168\) 3.52094 + 2.03282i 0.271647 + 0.156835i
\(169\) −9.51754 7.98617i −0.732119 0.614320i
\(170\) 6.23055 10.7916i 0.477862 0.827680i
\(171\) 16.6591 + 13.9786i 1.27395 + 1.06897i
\(172\) 0.815207 + 1.41198i 0.0621590 + 0.107663i
\(173\) −1.93629 + 10.9812i −0.147213 + 0.834888i 0.818350 + 0.574720i \(0.194889\pi\)
−0.965563 + 0.260168i \(0.916222\pi\)
\(174\) −5.29813 0.934204i −0.401650 0.0708218i
\(175\) 3.11334 + 1.13316i 0.235346 + 0.0856591i
\(176\) 4.03209 + 1.46756i 0.303930 + 0.110622i
\(177\) 6.09627 7.26525i 0.458223 0.546089i
\(178\) −1.37551 + 7.80093i −0.103099 + 0.584705i
\(179\) −3.90420 6.76227i −0.291814 0.505436i 0.682425 0.730956i \(-0.260925\pi\)
−0.974239 + 0.225520i \(0.927592\pi\)
\(180\) −5.81908 + 4.88279i −0.433728 + 0.363941i
\(181\) −5.23783 + 9.07218i −0.389325 + 0.674330i −0.992359 0.123385i \(-0.960625\pi\)
0.603034 + 0.797715i \(0.293958\pi\)
\(182\) 1.36437 + 1.14484i 0.101134 + 0.0848614i
\(183\) 19.1385i 1.41476i
\(184\) 0.0530334 + 0.300767i 0.00390968 + 0.0221729i
\(185\) −14.6912 + 12.3274i −1.08012 + 0.906326i
\(186\) 14.6630 2.58548i 1.07514 0.189576i
\(187\) 19.8430 7.22227i 1.45107 0.528144i
\(188\) −1.81521 −0.132388
\(189\) −12.0116 2.11797i −0.873716 0.154060i
\(190\) 18.3550 1.33161
\(191\) 11.4918 4.18269i 0.831521 0.302649i 0.109038 0.994038i \(-0.465223\pi\)
0.722483 + 0.691389i \(0.243001\pi\)
\(192\) −0.592396 + 1.62760i −0.0427525 + 0.117462i
\(193\) −12.5385 + 10.5210i −0.902540 + 0.757321i −0.970685 0.240354i \(-0.922736\pi\)
0.0681452 + 0.997675i \(0.478292\pi\)
\(194\) 0.570108 + 3.23324i 0.0409313 + 0.232133i
\(195\) −2.88191 + 1.66387i −0.206378 + 0.119152i
\(196\) −1.14156 0.957882i −0.0815399 0.0684201i
\(197\) −9.49794 + 16.4509i −0.676700 + 1.17208i 0.299269 + 0.954169i \(0.403257\pi\)
−0.975969 + 0.217910i \(0.930076\pi\)
\(198\) −12.8726 −0.914814
\(199\) −11.5214 19.9557i −0.816731 1.41462i −0.908078 0.418801i \(-0.862451\pi\)
0.0913469 0.995819i \(-0.470883\pi\)
\(200\) −0.245100 + 1.39003i −0.0173312 + 0.0982900i
\(201\) 0.0248149 + 0.0681784i 0.00175031 + 0.00480894i
\(202\) −11.2699 4.10191i −0.792948 0.288610i
\(203\) −6.85117 2.49362i −0.480858 0.175018i
\(204\) 2.91534 + 8.00984i 0.204115 + 0.560801i
\(205\) 2.15523 12.2229i 0.150528 0.853685i
\(206\) 1.20574 + 2.08840i 0.0840077 + 0.145506i
\(207\) −0.458111 0.793471i −0.0318409 0.0551501i
\(208\) −0.379385 + 0.657115i −0.0263056 + 0.0455627i
\(209\) 23.8273 + 19.9935i 1.64817 + 1.38298i
\(210\) −8.91534 + 5.14728i −0.615217 + 0.355196i
\(211\) 3.03849 + 17.2321i 0.209178 + 1.18631i 0.890728 + 0.454536i \(0.150195\pi\)
−0.681550 + 0.731771i \(0.738694\pi\)
\(212\) 0.439693 0.368946i 0.0301982 0.0253393i
\(213\) 2.49067 6.84305i 0.170658 0.468878i
\(214\) −2.27972 + 0.829748i −0.155838 + 0.0567204i
\(215\) −4.12836 −0.281552
\(216\) 5.19615i 0.353553i
\(217\) 20.1780 1.36977
\(218\) −2.18732 + 0.796119i −0.148144 + 0.0539200i
\(219\) −18.9192 + 3.33597i −1.27844 + 0.225424i
\(220\) −8.32295 + 6.98378i −0.561133 + 0.470847i
\(221\) 0.648423 + 3.67739i 0.0436176 + 0.247368i
\(222\) 13.1185i 0.880457i
\(223\) −3.23190 2.71188i −0.216424 0.181601i 0.528130 0.849163i \(-0.322893\pi\)
−0.744554 + 0.667562i \(0.767338\pi\)
\(224\) −1.17365 + 2.03282i −0.0784177 + 0.135823i
\(225\) −0.735300 4.17009i −0.0490200 0.278006i
\(226\) −8.52869 14.7721i −0.567320 0.982627i
\(227\) 2.77244 15.7233i 0.184013 1.04359i −0.743203 0.669066i \(-0.766694\pi\)
0.927216 0.374526i \(-0.122194\pi\)
\(228\) −8.07057 + 9.61814i −0.534487 + 0.636977i
\(229\) 16.7713 + 6.10424i 1.10828 + 0.403379i 0.830361 0.557226i \(-0.188134\pi\)
0.277915 + 0.960606i \(0.410357\pi\)
\(230\) −0.726682 0.264490i −0.0479160 0.0174400i
\(231\) −17.1800 3.02931i −1.13036 0.199314i
\(232\) 0.539363 3.05888i 0.0354109 0.200825i
\(233\) 0.368241 + 0.637812i 0.0241243 + 0.0417844i 0.877835 0.478962i \(-0.158987\pi\)
−0.853711 + 0.520747i \(0.825654\pi\)
\(234\) 0.395277 2.24173i 0.0258401 0.146546i
\(235\) 2.29813 3.98048i 0.149914 0.259658i
\(236\) 4.19459 + 3.51968i 0.273045 + 0.229112i
\(237\) −11.0620 6.38662i −0.718551 0.414856i
\(238\) 2.00593 + 11.3762i 0.130025 + 0.737409i
\(239\) −2.20187 + 1.84759i −0.142427 + 0.119510i −0.711218 0.702972i \(-0.751856\pi\)
0.568791 + 0.822482i \(0.307411\pi\)
\(240\) −2.81908 3.35965i −0.181971 0.216864i
\(241\) −2.05051 + 0.746324i −0.132085 + 0.0480749i −0.407217 0.913332i \(-0.633501\pi\)
0.275132 + 0.961406i \(0.411278\pi\)
\(242\) −7.41147 −0.476428
\(243\) 5.33157 + 14.6484i 0.342020 + 0.939693i
\(244\) 11.0496 0.707380
\(245\) 3.54576 1.29055i 0.226530 0.0824503i
\(246\) 5.45723 + 6.50368i 0.347941 + 0.414659i
\(247\) −4.21348 + 3.53553i −0.268097 + 0.224960i
\(248\) 1.49273 + 8.46567i 0.0947882 + 0.537571i
\(249\) 10.2344 + 5.90885i 0.648580 + 0.374458i
\(250\) 6.96064 + 5.84067i 0.440229 + 0.369396i
\(251\) 13.0189 22.5494i 0.821745 1.42330i −0.0826372 0.996580i \(-0.526334\pi\)
0.904382 0.426724i \(-0.140332\pi\)
\(252\) 1.22281 6.93491i 0.0770299 0.436858i
\(253\) −0.655230 1.13489i −0.0411939 0.0713500i
\(254\) −2.19594 + 12.4538i −0.137785 + 0.781419i
\(255\) −21.2554 3.74789i −1.33106 0.234702i
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) −9.38965 3.41755i −0.585710 0.213181i 0.0321313 0.999484i \(-0.489771\pi\)
−0.617842 + 0.786302i \(0.711993\pi\)
\(258\) 1.81521 2.16328i 0.113010 0.134680i
\(259\) 3.08718 17.5083i 0.191828 1.08791i
\(260\) −0.960637 1.66387i −0.0595762 0.103189i
\(261\) 1.61809 + 9.17664i 0.100157 + 0.568020i
\(262\) −2.59492 + 4.49454i −0.160315 + 0.277673i
\(263\) 11.6612 + 9.78487i 0.719058 + 0.603361i 0.927125 0.374753i \(-0.122273\pi\)
−0.208067 + 0.978115i \(0.566717\pi\)
\(264\) 7.43199i 0.457407i
\(265\) 0.252374 + 1.43128i 0.0155032 + 0.0879230i
\(266\) −13.0346 + 10.9373i −0.799204 + 0.670611i
\(267\) 13.5116 2.38246i 0.826897 0.145804i
\(268\) −0.0393628 + 0.0143269i −0.00240447 + 0.000875155i
\(269\) 30.5476 1.86252 0.931259 0.364358i \(-0.118711\pi\)
0.931259 + 0.364358i \(0.118711\pi\)
\(270\) 11.3944 + 6.57856i 0.693441 + 0.400358i
\(271\) 25.8307 1.56910 0.784551 0.620064i \(-0.212893\pi\)
0.784551 + 0.620064i \(0.212893\pi\)
\(272\) −4.62449 + 1.68317i −0.280401 + 0.102057i
\(273\) 1.05509 2.89884i 0.0638571 0.175446i
\(274\) 13.1099 11.0005i 0.792000 0.664567i
\(275\) −1.05169 5.96443i −0.0634192 0.359668i
\(276\) 0.458111 0.264490i 0.0275750 0.0159205i
\(277\) −17.1860 14.4207i −1.03261 0.866459i −0.0414465 0.999141i \(-0.513197\pi\)
−0.991159 + 0.132682i \(0.957641\pi\)
\(278\) 6.09879 10.5634i 0.365781 0.633552i
\(279\) −12.8944 22.3338i −0.771968 1.33709i
\(280\) −2.97178 5.14728i −0.177598 0.307609i
\(281\) 1.01485 5.75552i 0.0605410 0.343345i −0.939459 0.342662i \(-0.888671\pi\)
1.00000 0.000683195i \(-0.000217468\pi\)
\(282\) 1.07532 + 2.95442i 0.0640345 + 0.175933i
\(283\) 6.96451 + 2.53487i 0.413997 + 0.150683i 0.540617 0.841269i \(-0.318191\pi\)
−0.126620 + 0.991951i \(0.540413\pi\)
\(284\) 3.95084 + 1.43799i 0.234439 + 0.0853288i
\(285\) −10.8735 29.8746i −0.644088 1.76962i
\(286\) 0.565360 3.20631i 0.0334304 0.189593i
\(287\) 5.75284 + 9.96421i 0.339579 + 0.588169i
\(288\) 3.00000 0.176777
\(289\) −3.60947 + 6.25179i −0.212322 + 0.367752i
\(290\) 6.02481 + 5.05542i 0.353789 + 0.296864i
\(291\) 4.92468 2.84326i 0.288690 0.166675i
\(292\) −1.92602 10.9230i −0.112712 0.639221i
\(293\) −6.79994 + 5.70583i −0.397257 + 0.333338i −0.819432 0.573176i \(-0.805711\pi\)
0.422175 + 0.906514i \(0.361267\pi\)
\(294\) −0.882789 + 2.42544i −0.0514853 + 0.141455i
\(295\) −13.0287 + 4.74205i −0.758559 + 0.276093i
\(296\) 7.57398 0.440229
\(297\) 7.62567 + 20.9513i 0.442486 + 1.21572i
\(298\) −7.70233 −0.446184
\(299\) 0.217759 0.0792577i 0.0125933 0.00458359i
\(300\) 2.40760 0.424525i 0.139003 0.0245100i
\(301\) 2.93170 2.45999i 0.168981 0.141792i
\(302\) 0.135630 + 0.769193i 0.00780460 + 0.0442621i
\(303\) 20.7728i 1.19337i
\(304\) −5.55303 4.65955i −0.318488 0.267243i
\(305\) −13.9893 + 24.2302i −0.801026 + 1.38742i
\(306\) 11.3097 9.49000i 0.646535 0.542507i
\(307\) 8.04963 + 13.9424i 0.459417 + 0.795733i 0.998930 0.0462440i \(-0.0147252\pi\)
−0.539514 + 0.841977i \(0.681392\pi\)
\(308\) 1.74897 9.91890i 0.0996568 0.565182i
\(309\) 2.68479 3.19961i 0.152733 0.182020i
\(310\) −20.4538 7.44459i −1.16170 0.422824i
\(311\) −12.7699 4.64787i −0.724115 0.263556i −0.0464436 0.998921i \(-0.514789\pi\)
−0.677672 + 0.735364i \(0.737011\pi\)
\(312\) 1.29426 + 0.228213i 0.0732732 + 0.0129200i
\(313\) −3.73442 + 21.1790i −0.211082 + 1.19711i 0.676495 + 0.736447i \(0.263498\pi\)
−0.887577 + 0.460659i \(0.847613\pi\)
\(314\) −5.20574 9.01660i −0.293777 0.508836i
\(315\) 13.6591 + 11.4613i 0.769603 + 0.645774i
\(316\) 3.68732 6.38662i 0.207428 0.359276i
\(317\) −16.1578 13.5580i −0.907510 0.761491i 0.0641337 0.997941i \(-0.479572\pi\)
−0.971644 + 0.236450i \(0.924016\pi\)
\(318\) −0.860967 0.497079i −0.0482806 0.0278748i
\(319\) 2.31433 + 13.1252i 0.129578 + 0.734871i
\(320\) 1.93969 1.62760i 0.108432 0.0909853i
\(321\) 2.70099 + 3.21891i 0.150755 + 0.179662i
\(322\) 0.673648 0.245188i 0.0375409 0.0136638i
\(323\) −35.6742 −1.98496
\(324\) −8.45723 + 3.07818i −0.469846 + 0.171010i
\(325\) 1.07098 0.0594076
\(326\) −9.93629 + 3.61651i −0.550320 + 0.200300i
\(327\) 2.59152 + 3.08845i 0.143311 + 0.170792i
\(328\) −3.75490 + 3.15074i −0.207330 + 0.173970i
\(329\) 0.739885 + 4.19610i 0.0407912 + 0.231338i
\(330\) 16.2973 + 9.40923i 0.897134 + 0.517961i
\(331\) 12.5929 + 10.5667i 0.692166 + 0.580797i 0.919533 0.393013i \(-0.128567\pi\)
−0.227367 + 0.973809i \(0.573012\pi\)
\(332\) −3.41147 + 5.90885i −0.187229 + 0.324290i
\(333\) −21.3516 + 7.77136i −1.17006 + 0.425868i
\(334\) 0.751497 + 1.30163i 0.0411201 + 0.0712220i
\(335\) 0.0184183 0.104455i 0.00100630 0.00570701i
\(336\) 4.00387 + 0.705990i 0.218429 + 0.0385149i
\(337\) −9.91534 3.60889i −0.540123 0.196589i 0.0575296 0.998344i \(-0.481678\pi\)
−0.597653 + 0.801755i \(0.703900\pi\)
\(338\) −11.6750 4.24935i −0.635036 0.231134i
\(339\) −18.9907 + 22.6322i −1.03143 + 1.22921i
\(340\) 2.16385 12.2718i 0.117351 0.665531i
\(341\) −18.4427 31.9437i −0.998727 1.72985i
\(342\) 20.4354 + 7.43788i 1.10502 + 0.402195i
\(343\) −9.96451 + 17.2590i −0.538033 + 0.931900i
\(344\) 1.24897 + 1.04801i 0.0673400 + 0.0565049i
\(345\) 1.33943i 0.0721123i
\(346\) 1.93629 + 10.9812i 0.104096 + 0.590355i
\(347\) 21.7251 18.2295i 1.16626 0.978612i 0.166292 0.986077i \(-0.446821\pi\)
0.999972 + 0.00746500i \(0.00237621\pi\)
\(348\) −5.29813 + 0.934204i −0.284010 + 0.0500786i
\(349\) −14.7554 + 5.37051i −0.789837 + 0.287477i −0.705268 0.708941i \(-0.749173\pi\)
−0.0845685 + 0.996418i \(0.526951\pi\)
\(350\) 3.31315 0.177095
\(351\) −3.88279 + 0.684640i −0.207248 + 0.0365434i
\(352\) 4.29086 0.228704
\(353\) 1.93969 0.705990i 0.103239 0.0375761i −0.289884 0.957062i \(-0.593617\pi\)
0.393123 + 0.919486i \(0.371395\pi\)
\(354\) 3.24376 8.91215i 0.172404 0.473675i
\(355\) −8.15523 + 6.84305i −0.432835 + 0.363191i
\(356\) 1.37551 + 7.80093i 0.0729021 + 0.413449i
\(357\) 17.3275 10.0041i 0.917070 0.529471i
\(358\) −5.98158 5.01914i −0.316136 0.265270i
\(359\) 17.4820 30.2798i 0.922667 1.59811i 0.127397 0.991852i \(-0.459338\pi\)
0.795271 0.606255i \(-0.207329\pi\)
\(360\) −3.79813 + 6.57856i −0.200179 + 0.346721i
\(361\) −16.7738 29.0530i −0.882831 1.52911i
\(362\) −1.81908 + 10.3165i −0.0956086 + 0.542223i
\(363\) 4.39053 + 12.0629i 0.230443 + 0.633137i
\(364\) 1.67365 + 0.609158i 0.0877230 + 0.0319286i
\(365\) 26.3910 + 9.60554i 1.38137 + 0.502777i
\(366\) −6.54576 17.9843i −0.342152 0.940056i
\(367\) −0.0773815 + 0.438852i −0.00403928 + 0.0229079i −0.986761 0.162182i \(-0.948147\pi\)
0.982722 + 0.185090i \(0.0592578\pi\)
\(368\) 0.152704 + 0.264490i 0.00796023 + 0.0137875i
\(369\) 7.35251 12.7349i 0.382756 0.662954i
\(370\) −9.58899 + 16.6086i −0.498508 + 0.863441i
\(371\) −1.03209 0.866025i −0.0535834 0.0449618i
\(372\) 12.8944 7.44459i 0.668543 0.385984i
\(373\) −3.83110 21.7272i −0.198367 1.12499i −0.907542 0.419962i \(-0.862044\pi\)
0.709175 0.705032i \(-0.249068\pi\)
\(374\) 16.1762 13.5734i 0.836450 0.701865i
\(375\) 5.38279 14.7891i 0.277966 0.763705i
\(376\) −1.70574 + 0.620838i −0.0879667 + 0.0320173i
\(377\) −2.35679 −0.121381
\(378\) −12.0116 + 2.11797i −0.617811 + 0.108937i
\(379\) 13.1138 0.673611 0.336806 0.941574i \(-0.390654\pi\)
0.336806 + 0.941574i \(0.390654\pi\)
\(380\) 17.2481 6.27779i 0.884808 0.322044i
\(381\) 21.5706 3.80347i 1.10509 0.194858i
\(382\) 9.36824 7.86089i 0.479321 0.402198i
\(383\) 2.79767 + 15.8664i 0.142954 + 0.810733i 0.968987 + 0.247111i \(0.0794813\pi\)
−0.826033 + 0.563622i \(0.809408\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) 19.5364 + 16.3930i 0.995668 + 0.835465i
\(386\) −8.18392 + 14.1750i −0.416550 + 0.721486i
\(387\) −4.59627 1.67290i −0.233641 0.0850385i
\(388\) 1.64156 + 2.84326i 0.0833375 + 0.144345i
\(389\) 0.0984882 0.558554i 0.00499355 0.0283198i −0.982209 0.187790i \(-0.939868\pi\)
0.987203 + 0.159470i \(0.0509786\pi\)
\(390\) −2.13903 + 2.54920i −0.108314 + 0.129084i
\(391\) 1.41235 + 0.514054i 0.0714257 + 0.0259968i
\(392\) −1.40033 0.509678i −0.0707273 0.0257426i
\(393\) 8.85251 + 1.56094i 0.446550 + 0.0787388i
\(394\) −3.29860 + 18.7073i −0.166181 + 0.942460i
\(395\) 9.33662 + 16.1715i 0.469776 + 0.813676i
\(396\) −12.0963 + 4.40268i −0.607860 + 0.221243i
\(397\) −18.0107 + 31.1955i −0.903933 + 1.56566i −0.0815894 + 0.996666i \(0.526000\pi\)
−0.822343 + 0.568992i \(0.807334\pi\)
\(398\) −17.6518 14.8116i −0.884806 0.742440i
\(399\) 25.5232 + 14.7358i 1.27776 + 0.737715i
\(400\) 0.245100 + 1.39003i 0.0122550 + 0.0695015i
\(401\) 27.5724 23.1360i 1.37690 1.15536i 0.406556 0.913626i \(-0.366730\pi\)
0.970344 0.241730i \(-0.0777147\pi\)
\(402\) 0.0466368 + 0.0555796i 0.00232603 + 0.00277206i
\(403\) 6.12923 2.23086i 0.305319 0.111127i
\(404\) −11.9932 −0.596684
\(405\) 3.95723 22.4426i 0.196637 1.11518i
\(406\) −7.29086 −0.361839
\(407\) −30.5390 + 11.1153i −1.51376 + 0.550963i
\(408\) 5.47906 + 6.52968i 0.271254 + 0.323268i
\(409\) 9.71032 8.14793i 0.480145 0.402889i −0.370334 0.928899i \(-0.620757\pi\)
0.850479 + 0.526009i \(0.176312\pi\)
\(410\) −2.15523 12.2229i −0.106439 0.603647i
\(411\) −25.6707 14.8210i −1.26624 0.731066i
\(412\) 1.84730 + 1.55007i 0.0910098 + 0.0763663i
\(413\) 6.42649 11.1310i 0.316227 0.547721i
\(414\) −0.701867 0.588936i −0.0344949 0.0289446i
\(415\) −8.63816 14.9617i −0.424030 0.734442i
\(416\) −0.131759 + 0.747243i −0.00646002 + 0.0366366i
\(417\) −20.8059 3.66864i −1.01887 0.179654i
\(418\) 29.2285 + 10.6383i 1.42961 + 0.520336i
\(419\) −13.3991 4.87689i −0.654591 0.238252i −0.00669178 0.999978i \(-0.502130\pi\)
−0.647899 + 0.761726i \(0.724352\pi\)
\(420\) −6.61721 + 7.88609i −0.322887 + 0.384802i
\(421\) 0.546637 3.10013i 0.0266414 0.151091i −0.968585 0.248682i \(-0.920003\pi\)
0.995227 + 0.0975909i \(0.0311137\pi\)
\(422\) 8.74897 + 15.1537i 0.425893 + 0.737669i
\(423\) 4.17159 3.50038i 0.202830 0.170194i
\(424\) 0.286989 0.497079i 0.0139374 0.0241403i
\(425\) 5.32114 + 4.46496i 0.258113 + 0.216583i
\(426\) 7.28222i 0.352825i
\(427\) −4.50387 25.5427i −0.217958 1.23610i
\(428\) −1.85844 + 1.55942i −0.0898311 + 0.0753773i
\(429\) −5.55350 + 0.979232i −0.268126 + 0.0472778i
\(430\) −3.87939 + 1.41198i −0.187081 + 0.0680918i
\(431\) 15.4911 0.746182 0.373091 0.927795i \(-0.378298\pi\)
0.373091 + 0.927795i \(0.378298\pi\)
\(432\) −1.77719 4.88279i −0.0855050 0.234923i
\(433\) −2.22844 −0.107092 −0.0535459 0.998565i \(-0.517052\pi\)
−0.0535459 + 0.998565i \(0.517052\pi\)
\(434\) 18.9611 6.90128i 0.910162 0.331272i
\(435\) 4.65910 12.8008i 0.223387 0.613750i
\(436\) −1.78312 + 1.49621i −0.0853959 + 0.0716557i
\(437\) 0.384438 + 2.18025i 0.0183901 + 0.104296i
\(438\) −16.6373 + 9.60554i −0.794960 + 0.458970i
\(439\) 13.1570 + 11.0401i 0.627951 + 0.526914i 0.900292 0.435287i \(-0.143353\pi\)
−0.272340 + 0.962201i \(0.587798\pi\)
\(440\) −5.43242 + 9.40923i −0.258980 + 0.448567i
\(441\) 4.47060 0.212886
\(442\) 1.86706 + 3.23384i 0.0888069 + 0.153818i
\(443\) −4.10173 + 23.2621i −0.194879 + 1.10521i 0.717712 + 0.696340i \(0.245190\pi\)
−0.912591 + 0.408874i \(0.865922\pi\)
\(444\) −4.48680 12.3274i −0.212934 0.585031i
\(445\) −18.8478 6.86002i −0.893470 0.325196i
\(446\) −3.96451 1.44296i −0.187725 0.0683263i
\(447\) 4.56283 + 12.5363i 0.215815 + 0.592946i
\(448\) −0.407604 + 2.31164i −0.0192575 + 0.109215i
\(449\) 10.1295 + 17.5449i 0.478042 + 0.827994i 0.999683 0.0251715i \(-0.00801318\pi\)
−0.521641 + 0.853165i \(0.674680\pi\)
\(450\) −2.11721 3.66712i −0.0998063 0.172870i
\(451\) 10.5162 18.2146i 0.495188 0.857691i
\(452\) −13.0667 10.9643i −0.614606 0.515716i
\(453\) 1.17159 0.676417i 0.0550460 0.0317808i
\(454\) −2.77244 15.7233i −0.130117 0.737931i
\(455\) −3.45471 + 2.89884i −0.161959 + 0.135900i
\(456\) −4.29426 + 11.7984i −0.201097 + 0.552510i
\(457\) 38.1143 13.8725i 1.78291 0.648926i 0.783282 0.621666i \(-0.213544\pi\)
0.999628 0.0272600i \(-0.00867822\pi\)
\(458\) 17.8476 0.833964
\(459\) −22.1457 12.7858i −1.03367 0.596792i
\(460\) −0.773318 −0.0360562
\(461\) −12.8824 + 4.68880i −0.599992 + 0.218379i −0.624119 0.781330i \(-0.714542\pi\)
0.0241264 + 0.999709i \(0.492320\pi\)
\(462\) −17.1800 + 3.02931i −0.799288 + 0.140936i
\(463\) 4.14022 3.47405i 0.192412 0.161453i −0.541492 0.840706i \(-0.682140\pi\)
0.733904 + 0.679253i \(0.237696\pi\)
\(464\) −0.539363 3.05888i −0.0250393 0.142005i
\(465\) 37.7007i 1.74833i
\(466\) 0.564178 + 0.473401i 0.0261350 + 0.0219299i
\(467\) −15.7451 + 27.2713i −0.728596 + 1.26197i 0.228880 + 0.973455i \(0.426494\pi\)
−0.957477 + 0.288511i \(0.906840\pi\)
\(468\) −0.395277 2.24173i −0.0182717 0.103624i
\(469\) 0.0491630 + 0.0851529i 0.00227014 + 0.00393199i
\(470\) 0.798133 4.52644i 0.0368151 0.208789i
\(471\) −11.5915 + 13.8142i −0.534109 + 0.636526i
\(472\) 5.14543 + 1.87278i 0.236838 + 0.0862018i
\(473\) −6.57398 2.39273i −0.302272 0.110018i
\(474\) −12.5792 2.21805i −0.577781 0.101878i
\(475\) −1.77672 + 10.0763i −0.0815216 + 0.462332i
\(476\) 5.77584 + 10.0041i 0.264735 + 0.458535i
\(477\) −0.299011 + 1.69577i −0.0136908 + 0.0776441i
\(478\) −1.43717 + 2.48925i −0.0657345 + 0.113855i
\(479\) −16.0667 13.4816i −0.734106 0.615988i 0.197141 0.980375i \(-0.436834\pi\)
−0.931248 + 0.364387i \(0.881279\pi\)
\(480\) −3.79813 2.19285i −0.173360 0.100090i
\(481\) −0.997941 5.65960i −0.0455022 0.258056i
\(482\) −1.67159 + 1.40263i −0.0761388 + 0.0638880i
\(483\) −0.798133 0.951178i −0.0363163 0.0432801i
\(484\) −6.96451 + 2.53487i −0.316569 + 0.115222i
\(485\) −8.31315 −0.377481
\(486\) 10.0201 + 11.9415i 0.454519 + 0.541675i
\(487\) −15.4492 −0.700072 −0.350036 0.936736i \(-0.613831\pi\)
−0.350036 + 0.936736i \(0.613831\pi\)
\(488\) 10.3833 3.77920i 0.470028 0.171076i
\(489\) 11.7724 + 14.0298i 0.532368 + 0.634452i
\(490\) 2.89053 2.42544i 0.130581 0.109570i
\(491\) 2.75443 + 15.6212i 0.124306 + 0.704973i 0.981718 + 0.190343i \(0.0609599\pi\)
−0.857412 + 0.514631i \(0.827929\pi\)
\(492\) 7.35251 + 4.24497i 0.331477 + 0.191378i
\(493\) −11.7096 9.82553i −0.527374 0.442519i
\(494\) −2.75015 + 4.76340i −0.123735 + 0.214316i
\(495\) 5.65998 32.0993i 0.254397 1.44276i
\(496\) 4.29813 + 7.44459i 0.192992 + 0.334272i
\(497\) 1.71373 9.71902i 0.0768711 0.435958i
\(498\) 11.6382 + 2.05212i 0.521518 + 0.0919577i
\(499\) 7.03596 + 2.56088i 0.314973 + 0.114641i 0.494669 0.869081i \(-0.335289\pi\)
−0.179696 + 0.983722i \(0.557511\pi\)
\(500\) 8.53849 + 3.10775i 0.381853 + 0.138983i
\(501\) 1.67334 1.99421i 0.0747595 0.0890949i
\(502\) 4.52141 25.6422i 0.201800 1.14447i
\(503\) 10.0667 + 17.4360i 0.448852 + 0.777435i 0.998312 0.0580857i \(-0.0184997\pi\)
−0.549459 + 0.835520i \(0.685166\pi\)
\(504\) −1.22281 6.93491i −0.0544683 0.308905i
\(505\) 15.1839 26.2993i 0.675675 1.17030i
\(506\) −1.00387 0.842347i −0.0446275 0.0374469i
\(507\) 21.5195i 0.955713i
\(508\) 2.19594 + 12.4538i 0.0974289 + 0.552547i
\(509\) −28.7900 + 24.1577i −1.27609 + 1.07077i −0.282324 + 0.959319i \(0.591105\pi\)
−0.993770 + 0.111450i \(0.964450\pi\)
\(510\) −21.2554 + 3.74789i −0.941203 + 0.165960i
\(511\) −24.4650 + 8.90452i −1.08227 + 0.393913i
\(512\) −1.00000 −0.0441942
\(513\) 37.6668i 1.66303i
\(514\) −9.99226 −0.440740
\(515\) −5.73783 + 2.08840i −0.252839 + 0.0920258i
\(516\) 0.965852 2.65366i 0.0425193 0.116821i
\(517\) 5.96657 5.00654i 0.262409 0.220188i
\(518\) −3.08718 17.5083i −0.135643 0.769270i
\(519\) 16.7260 9.65674i 0.734188 0.423884i
\(520\) −1.47178 1.23497i −0.0645419 0.0541571i
\(521\) −13.9645 + 24.1872i −0.611796 + 1.05966i 0.379141 + 0.925339i \(0.376219\pi\)
−0.990938 + 0.134323i \(0.957114\pi\)
\(522\) 4.65910 + 8.06980i 0.203923 + 0.353205i
\(523\) −3.64677 6.31640i −0.159462 0.276197i 0.775213 0.631700i \(-0.217643\pi\)
−0.934675 + 0.355504i \(0.884309\pi\)
\(524\) −0.901207 + 5.11100i −0.0393694 + 0.223275i
\(525\) −1.96270 5.39246i −0.0856591 0.235346i
\(526\) 14.3045 + 5.20642i 0.623707 + 0.227011i
\(527\) 39.7533 + 14.4690i 1.73168 + 0.630280i
\(528\) −2.54189 6.98378i −0.110622 0.303930i
\(529\) −3.97771 + 22.5587i −0.172944 + 0.980814i
\(530\) 0.726682 + 1.25865i 0.0315650 + 0.0546722i
\(531\) −16.4270 −0.712869
\(532\) −8.50774 + 14.7358i −0.368857 + 0.638880i
\(533\) 2.84911 + 2.39068i 0.123409 + 0.103552i
\(534\) 11.8819 6.86002i 0.514181 0.296862i
\(535\) −1.06670 6.04958i −0.0461176 0.261546i
\(536\) −0.0320889 + 0.0269258i −0.00138603 + 0.00116302i
\(537\) −4.62567 + 12.7089i −0.199612 + 0.548430i
\(538\) 28.7053 10.4479i 1.23757 0.450440i
\(539\) 6.39424 0.275419
\(540\) 12.9572 + 2.28471i 0.557591 + 0.0983183i
\(541\) −2.88444 −0.124012 −0.0620058 0.998076i \(-0.519750\pi\)
−0.0620058 + 0.998076i \(0.519750\pi\)
\(542\) 24.2729 8.83462i 1.04261 0.379479i
\(543\) 17.8687 3.15074i 0.766820 0.135211i
\(544\) −3.76991 + 3.16333i −0.161634 + 0.135627i
\(545\) −1.02347 5.80439i −0.0438407 0.248633i
\(546\) 3.08489i 0.132021i
\(547\) −8.57263 7.19329i −0.366539 0.307563i 0.440851 0.897580i \(-0.354677\pi\)
−0.807391 + 0.590017i \(0.799121\pi\)
\(548\) 8.55690 14.8210i 0.365533 0.633121i
\(549\) −25.3935 + 21.3077i −1.08377 + 0.909390i
\(550\) −3.02822 5.24503i −0.129124 0.223649i
\(551\) 3.90983 22.1737i 0.166564 0.944632i
\(552\) 0.340022 0.405223i 0.0144723 0.0172474i
\(553\) −16.2665 5.92053i −0.691722 0.251766i
\(554\) −21.0817 7.67312i −0.895676 0.326000i
\(555\) 32.7126 + 5.76811i 1.38857 + 0.244843i
\(556\) 2.11809 12.0123i 0.0898270 0.509434i
\(557\) −16.6741 28.8804i −0.706505 1.22370i −0.966146 0.257997i \(-0.916937\pi\)
0.259641 0.965705i \(-0.416396\pi\)
\(558\) −19.7554 16.5767i −0.836311 0.701749i
\(559\) 0.618555 1.07137i 0.0261621 0.0453141i
\(560\) −4.55303 3.82045i −0.192401 0.161443i
\(561\) −31.6747 18.2874i −1.33731 0.772096i
\(562\) −1.01485 5.75552i −0.0428090 0.242782i
\(563\) 14.1668 11.8874i 0.597061 0.500994i −0.293438 0.955978i \(-0.594800\pi\)
0.890500 + 0.454984i \(0.150355\pi\)
\(564\) 2.02094 + 2.40847i 0.0850971 + 0.101415i
\(565\) 40.5861 14.7721i 1.70747 0.621468i
\(566\) 7.41147 0.311527
\(567\) 10.5628 + 18.2954i 0.443597 + 0.768333i
\(568\) 4.20439 0.176412
\(569\) −27.5638 + 10.0324i −1.15553 + 0.420580i −0.847500 0.530796i \(-0.821893\pi\)
−0.308033 + 0.951376i \(0.599671\pi\)
\(570\) −20.4354 24.3540i −0.855945 1.02008i
\(571\) 1.50387 1.26190i 0.0629350 0.0528087i −0.610778 0.791802i \(-0.709143\pi\)
0.673713 + 0.738993i \(0.264699\pi\)
\(572\) −0.565360 3.20631i −0.0236389 0.134063i
\(573\) −18.3441 10.5909i −0.766334 0.442443i
\(574\) 8.81386 + 7.39571i 0.367884 + 0.308691i
\(575\) 0.215537 0.373321i 0.00898852 0.0155686i
\(576\) 2.81908 1.02606i 0.117462 0.0427525i
\(577\) 5.52956 + 9.57748i 0.230199 + 0.398716i 0.957866 0.287214i \(-0.0927291\pi\)
−0.727668 + 0.685930i \(0.759396\pi\)
\(578\) −1.25356 + 7.10927i −0.0521411 + 0.295707i
\(579\) 27.9192 + 4.92291i 1.16028 + 0.204589i
\(580\) 7.39053 + 2.68993i 0.306875 + 0.111693i
\(581\) 15.0496 + 5.47762i 0.624364 + 0.227250i
\(582\) 3.65523 4.35613i 0.151514 0.180568i
\(583\) −0.427671 + 2.42544i −0.0177123 + 0.100452i
\(584\) −5.54576 9.60554i −0.229485 0.397480i
\(585\) 5.41622 + 1.97134i 0.223933 + 0.0815050i
\(586\) −4.43835 + 7.68745i −0.183346 + 0.317565i
\(587\) 25.3917 + 21.3062i 1.04803 + 0.879400i 0.992885 0.119078i \(-0.0379940\pi\)
0.0551433 + 0.998478i \(0.482438\pi\)
\(588\) 2.58110i 0.106443i
\(589\) 10.8207 + 61.3674i 0.445860 + 2.52860i
\(590\) −10.6211 + 8.91215i −0.437263 + 0.366907i
\(591\) 32.4020 5.71334i 1.33284 0.235016i
\(592\) 7.11721 2.59045i 0.292516 0.106467i
\(593\) 14.8283 0.608926 0.304463 0.952524i \(-0.401523\pi\)
0.304463 + 0.952524i \(0.401523\pi\)
\(594\) 14.3316 + 17.0797i 0.588031 + 0.700788i
\(595\) −29.2499 −1.19913
\(596\) −7.23783 + 2.63435i −0.296473 + 0.107907i
\(597\) −13.6505 + 37.5044i −0.558677 + 1.53495i
\(598\) 0.177519 0.148956i 0.00725927 0.00609125i
\(599\) −8.20930 46.5573i −0.335423 1.90228i −0.423016 0.906122i \(-0.639029\pi\)
0.0875932 0.996156i \(-0.472082\pi\)
\(600\) 2.11721 1.22237i 0.0864348 0.0499031i
\(601\) 28.1996 + 23.6623i 1.15029 + 0.965206i 0.999726 0.0233949i \(-0.00744749\pi\)
0.150561 + 0.988601i \(0.451892\pi\)
\(602\) 1.91353 3.31434i 0.0779898 0.135082i
\(603\) 0.0628336 0.108831i 0.00255878 0.00443194i
\(604\) 0.390530 + 0.676417i 0.0158904 + 0.0275230i
\(605\) 3.25877 18.4814i 0.132488 0.751376i
\(606\) 7.10472 + 19.5201i 0.288610 + 0.792948i
\(607\) −38.8764 14.1499i −1.57795 0.574326i −0.603190 0.797597i \(-0.706104\pi\)
−0.974756 + 0.223272i \(0.928326\pi\)
\(608\) −6.81180 2.47929i −0.276255 0.100549i
\(609\) 4.31908 + 11.8666i 0.175018 + 0.480858i
\(610\) −4.85844 + 27.5536i −0.196713 + 1.11561i
\(611\) 0.688663 + 1.19280i 0.0278603 + 0.0482555i
\(612\) 7.38191 12.7858i 0.298396 0.516837i
\(613\) 20.6755 35.8109i 0.835074 1.44639i −0.0588963 0.998264i \(-0.518758\pi\)
0.893970 0.448126i \(-0.147909\pi\)
\(614\) 12.3327 + 10.3484i 0.497709 + 0.417628i
\(615\) −18.6172 + 10.7487i −0.750718 + 0.433427i
\(616\) −1.74897 9.91890i −0.0704680 0.399644i
\(617\) 18.7867 15.7639i 0.756326 0.634633i −0.180842 0.983512i \(-0.557882\pi\)
0.937168 + 0.348880i \(0.113438\pi\)
\(618\) 1.42855 3.92490i 0.0574646 0.157883i
\(619\) −37.2768 + 13.5676i −1.49828 + 0.545329i −0.955615 0.294619i \(-0.904807\pi\)
−0.542666 + 0.839949i \(0.682585\pi\)
\(620\) −21.7665 −0.874164
\(621\) −0.542766 + 1.49124i −0.0217805 + 0.0598413i
\(622\) −13.5895 −0.544888
\(623\) 17.4722 6.35938i 0.700011 0.254783i
\(624\) 1.29426 0.228213i 0.0518120 0.00913585i
\(625\) −23.0312 + 19.3255i −0.921248 + 0.773019i
\(626\) 3.73442 + 21.1790i 0.149258 + 0.846482i
\(627\) 53.8742i 2.15153i
\(628\) −7.97565 6.69237i −0.318263 0.267054i
\(629\) 18.6368 32.2799i 0.743098 1.28708i
\(630\) 16.7554 + 6.09845i 0.667550 + 0.242968i
\(631\) 16.6596 + 28.8552i 0.663207 + 1.14871i 0.979768 + 0.200136i \(0.0641384\pi\)
−0.316561 + 0.948572i \(0.602528\pi\)
\(632\) 1.28059 7.26260i 0.0509392 0.288891i
\(633\) 19.4812 23.2168i 0.774307 0.922783i
\(634\) −19.8204 7.21404i −0.787170 0.286506i
\(635\) −30.0895 10.9517i −1.19406 0.434604i
\(636\) −0.979055 0.172634i −0.0388221 0.00684538i
\(637\) −0.196347 + 1.11354i −0.00777957 + 0.0441201i
\(638\) 6.66385 + 11.5421i 0.263824 + 0.456957i
\(639\) −11.8525 + 4.31396i −0.468878 + 0.170658i
\(640\) 1.26604 2.19285i 0.0500448 0.0866801i
\(641\) 5.55690 + 4.66280i 0.219485 + 0.184169i 0.745900 0.666058i \(-0.232020\pi\)
−0.526415 + 0.850228i \(0.676464\pi\)
\(642\) 3.63903 + 2.10100i 0.143621 + 0.0829197i
\(643\) −1.34120 7.60635i −0.0528919 0.299965i 0.946874 0.321605i \(-0.104222\pi\)
−0.999766 + 0.0216400i \(0.993111\pi\)
\(644\) 0.549163 0.460802i 0.0216401 0.0181582i
\(645\) 4.59627 + 5.47762i 0.180978 + 0.215681i
\(646\) −33.5228 + 12.2013i −1.31894 + 0.480053i
\(647\) −40.9469 −1.60979 −0.804894 0.593419i \(-0.797778\pi\)
−0.804894 + 0.593419i \(0.797778\pi\)
\(648\) −6.89440 + 5.78509i −0.270838 + 0.227260i
\(649\) −23.4953 −0.922269
\(650\) 1.00640 0.366298i 0.0394741 0.0143674i
\(651\) −22.4650 26.7727i −0.880472 1.04931i
\(652\) −8.10014 + 6.79682i −0.317226 + 0.266184i
\(653\) 3.45171 + 19.5756i 0.135076 + 0.766054i 0.974807 + 0.223051i \(0.0716017\pi\)
−0.839731 + 0.543003i \(0.817287\pi\)
\(654\) 3.49154 + 2.01584i 0.136530 + 0.0788257i
\(655\) −10.0667 8.44697i −0.393339 0.330050i
\(656\) −2.45084 + 4.24497i −0.0956891 + 0.165738i
\(657\) 25.4898 + 21.3885i 0.994451 + 0.834444i
\(658\) 2.13041 + 3.68999i 0.0830522 + 0.143851i
\(659\) 2.98499 16.9287i 0.116279 0.659448i −0.869831 0.493350i \(-0.835772\pi\)
0.986109 0.166098i \(-0.0531168\pi\)
\(660\) 18.5326 + 3.26779i 0.721379 + 0.127199i
\(661\) 32.3276 + 11.7663i 1.25740 + 0.457655i 0.882895 0.469571i \(-0.155591\pi\)
0.374503 + 0.927226i \(0.377813\pi\)
\(662\) 15.4474 + 5.62241i 0.600382 + 0.218521i
\(663\) 4.15735 4.95453i 0.161458 0.192418i
\(664\) −1.18479 + 6.71929i −0.0459789 + 0.260759i
\(665\) −21.5424 37.3125i −0.835377 1.44691i
\(666\) −17.4060 + 14.6054i −0.674469 + 0.565947i
\(667\) −0.474308 + 0.821525i −0.0183653 + 0.0318096i
\(668\) 1.15136 + 0.966105i 0.0445474 + 0.0373797i
\(669\) 7.30742i 0.282521i
\(670\) −0.0184183 0.104455i −0.000711562 0.00403547i
\(671\) −36.3200 + 30.4761i −1.40212 + 1.17652i
\(672\) 4.00387 0.705990i 0.154453 0.0272342i
\(673\) −22.4513 + 8.17161i −0.865434 + 0.314992i −0.736317 0.676637i \(-0.763437\pi\)
−0.129117 + 0.991629i \(0.541214\pi\)
\(674\) −10.5517 −0.406436
\(675\) −4.71436 + 5.61835i −0.181456 + 0.216250i
\(676\) −12.4243 −0.477856
\(677\) −32.6238 + 11.8741i −1.25383 + 0.456358i −0.881695 0.471819i \(-0.843597\pi\)
−0.372138 + 0.928177i \(0.621375\pi\)
\(678\) −10.1047 + 27.7625i −0.388070 + 1.06621i
\(679\) 5.90348 4.95361i 0.226555 0.190102i
\(680\) −2.16385 12.2718i −0.0829798 0.470602i
\(681\) −23.9488 + 13.8268i −0.917719 + 0.529845i
\(682\) −28.2558 23.7095i −1.08197 0.907882i
\(683\) 19.5030 33.7802i 0.746261 1.29256i −0.203342 0.979108i \(-0.565180\pi\)
0.949603 0.313455i \(-0.101486\pi\)
\(684\) 21.7469 0.831514
\(685\) 21.6668 + 37.5281i 0.827847 + 1.43387i
\(686\) −3.46064 + 19.6262i −0.132128 + 0.749334i
\(687\) −10.5729 29.0487i −0.403379 1.10828i
\(688\) 1.53209 + 0.557635i 0.0584103 + 0.0212596i
\(689\) −0.409253 0.148956i −0.0155913 0.00567476i
\(690\) 0.458111 + 1.25865i 0.0174400 + 0.0479160i
\(691\) 4.39780 24.9412i 0.167300 0.948807i −0.779361 0.626576i \(-0.784456\pi\)
0.946661 0.322232i \(-0.104433\pi\)
\(692\) 5.57532 + 9.65674i 0.211942 + 0.367094i
\(693\) 15.1079 + 26.1676i 0.573901 + 0.994025i
\(694\) 14.1800 24.5606i 0.538267 0.932306i
\(695\) 23.6596 + 19.8527i 0.897459 + 0.753057i
\(696\) −4.65910 + 2.68993i −0.176603 + 0.101962i
\(697\) 4.18883 + 23.7560i 0.158663 + 0.899823i
\(698\) −12.0287 + 10.0933i −0.455292 + 0.382036i
\(699\) 0.436289 1.19869i 0.0165020 0.0453388i
\(700\) 3.11334 1.13316i 0.117673 0.0428295i
\(701\) 42.3054 1.59785 0.798927 0.601429i \(-0.205402\pi\)
0.798927 + 0.601429i \(0.205402\pi\)
\(702\) −3.41447 + 1.97134i −0.128871 + 0.0744036i
\(703\) 54.9035 2.07073
\(704\) 4.03209 1.46756i 0.151965 0.0553108i
\(705\) −7.84002 + 1.38241i −0.295272 + 0.0520645i
\(706\) 1.58125 1.32683i 0.0595112 0.0499358i
\(707\) 4.88847 + 27.7239i 0.183850 + 1.04266i
\(708\) 9.48411i 0.356435i
\(709\) −36.7098 30.8032i −1.37867 1.15684i −0.969703 0.244288i \(-0.921446\pi\)
−0.408964 0.912551i \(-0.634110\pi\)
\(710\) −5.32295 + 9.21962i −0.199767 + 0.346006i
\(711\) 3.84178 + 21.7878i 0.144078 + 0.817106i
\(712\) 3.96064 + 6.86002i 0.148431 + 0.257090i
\(713\) 0.455889 2.58548i 0.0170732 0.0968269i
\(714\) 12.8610 15.3271i 0.481310 0.573602i
\(715\) 7.74675 + 2.81959i 0.289712 + 0.105447i
\(716\) −7.33750 2.67063i −0.274215 0.0998061i
\(717\) 4.90286 + 0.864506i 0.183101 + 0.0322856i
\(718\) 6.07145 34.4329i 0.226585 1.28502i
\(719\) −6.15451 10.6599i −0.229525 0.397548i 0.728143 0.685426i \(-0.240384\pi\)
−0.957667 + 0.287877i \(0.907050\pi\)
\(720\) −1.31908 + 7.48086i −0.0491591 + 0.278795i
\(721\) 2.83022 4.90209i 0.105403 0.182563i
\(722\) −25.6989 21.5640i −0.956415 0.802528i
\(723\) 3.27316 + 1.88976i 0.121730 + 0.0702808i
\(724\) 1.81908 + 10.3165i 0.0676055 + 0.383410i
\(725\) −3.35844 + 2.81807i −0.124729 + 0.104660i
\(726\) 8.25150 + 9.83375i 0.306242 + 0.364965i
\(727\) 16.3542 5.95243i 0.606542 0.220763i −0.0204474 0.999791i \(-0.506509\pi\)
0.626990 + 0.779028i \(0.284287\pi\)
\(728\) 1.78106 0.0660104
\(729\) 13.5000 23.3827i 0.500000 0.866025i
\(730\) 28.0847 1.03946
\(731\) 7.53983 2.74427i 0.278871 0.101501i
\(732\) −12.3020 14.6610i −0.454695 0.541885i
\(733\) 11.0266 9.25244i 0.407278 0.341747i −0.416021 0.909355i \(-0.636576\pi\)
0.823299 + 0.567608i \(0.192131\pi\)
\(734\) 0.0773815 + 0.438852i 0.00285620 + 0.0161983i
\(735\) −5.65998 3.26779i −0.208771 0.120534i
\(736\) 0.233956 + 0.196312i 0.00862372 + 0.00723616i
\(737\) 0.0898700 0.155659i 0.00331041 0.00573379i
\(738\) 2.55350 14.4816i 0.0939956 0.533076i
\(739\) 6.82383 + 11.8192i 0.251018 + 0.434777i 0.963806 0.266603i \(-0.0859012\pi\)
−0.712788 + 0.701380i \(0.752568\pi\)
\(740\) −3.33022 + 18.8866i −0.122421 + 0.694286i
\(741\) 9.38207 + 1.65431i 0.344659 + 0.0607727i
\(742\) −1.26604 0.460802i −0.0464780 0.0169166i
\(743\) 17.2459 + 6.27698i 0.632690 + 0.230280i 0.638402 0.769703i \(-0.279596\pi\)
−0.00571190 + 0.999984i \(0.501818\pi\)
\(744\) 9.57057 11.4058i 0.350874 0.418156i
\(745\) 3.38666 19.2067i 0.124078 0.703679i
\(746\) −11.0312 19.1066i −0.403881 0.699543i
\(747\) −3.55438 20.1579i −0.130048 0.737538i
\(748\) 10.5582 18.2874i 0.386048 0.668654i
\(749\) 4.36231 + 3.66041i 0.159395 + 0.133749i
\(750\) 15.7382i 0.574679i
\(751\) −7.01460 39.7818i −0.255967 1.45166i −0.793579 0.608467i \(-0.791785\pi\)
0.537613 0.843192i \(-0.319326\pi\)
\(752\) −1.39053 + 1.16679i −0.0507074 + 0.0425486i
\(753\) −44.4136 + 7.83131i −1.61852 + 0.285389i
\(754\) −2.21466 + 0.806070i −0.0806532 + 0.0293553i
\(755\) −1.97771 −0.0719763
\(756\) −10.5628 + 6.09845i −0.384167 + 0.221799i
\(757\) 3.71595 0.135058 0.0675292 0.997717i \(-0.478488\pi\)
0.0675292 + 0.997717i \(0.478488\pi\)
\(758\) 12.3229 4.48519i 0.447590 0.162909i
\(759\) −0.776311 + 2.13290i −0.0281783 + 0.0774193i
\(760\) 14.0608 11.7984i 0.510038 0.427973i
\(761\) −6.41147 36.3613i −0.232416 1.31810i −0.847988 0.530015i \(-0.822186\pi\)
0.615573 0.788080i \(-0.288925\pi\)
\(762\) 18.9688 10.9517i 0.687169 0.396737i
\(763\) 4.18551 + 3.51206i 0.151526 + 0.127145i
\(764\) 6.11468 10.5909i 0.221222 0.383167i
\(765\) 18.6917 + 32.3749i 0.675798 + 1.17052i