Properties

Label 54.2.e.a.49.1
Level $54$
Weight $2$
Character 54.49
Analytic conductor $0.431$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,2,Mod(7,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 54.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.431192170915\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 49.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 54.49
Dual form 54.2.e.a.43.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.766044 + 0.642788i) q^{2} +(1.70574 + 0.300767i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-1.26604 + 0.460802i) q^{5} +(-1.50000 + 0.866025i) q^{6} +(-0.0209445 - 0.118782i) q^{7} +(0.500000 + 0.866025i) q^{8} +(2.81908 + 1.02606i) q^{9} +O(q^{10})\) \(q+(-0.766044 + 0.642788i) q^{2} +(1.70574 + 0.300767i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-1.26604 + 0.460802i) q^{5} +(-1.50000 + 0.866025i) q^{6} +(-0.0209445 - 0.118782i) q^{7} +(0.500000 + 0.866025i) q^{8} +(2.81908 + 1.02606i) q^{9} +(0.673648 - 1.16679i) q^{10} +(-3.49273 - 1.27125i) q^{11} +(0.592396 - 1.62760i) q^{12} +(-4.64543 - 3.89798i) q^{13} +(0.0923963 + 0.0775297i) q^{14} +(-2.29813 + 0.405223i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(2.58512 - 4.47756i) q^{17} +(-2.81908 + 1.02606i) q^{18} +(2.96064 + 5.12797i) q^{19} +(0.233956 + 1.32683i) q^{20} -0.208911i q^{21} +(3.49273 - 1.27125i) q^{22} +(-0.826352 + 4.68647i) q^{23} +(0.592396 + 1.62760i) q^{24} +(-2.43969 + 2.04715i) q^{25} +6.06418 q^{26} +(4.50000 + 2.59808i) q^{27} -0.120615 q^{28} +(4.55303 - 3.82045i) q^{29} +(1.50000 - 1.78763i) q^{30} +(-0.875515 + 4.96529i) q^{31} +(0.939693 - 0.342020i) q^{32} +(-5.57532 - 3.21891i) q^{33} +(0.897804 + 5.09170i) q^{34} +(0.0812519 + 0.140732i) q^{35} +(1.50000 - 2.59808i) q^{36} +(-0.145430 + 0.251892i) q^{37} +(-5.56418 - 2.02520i) q^{38} +(-6.75150 - 8.04612i) q^{39} +(-1.03209 - 0.866025i) q^{40} +(4.44356 + 3.72859i) q^{41} +(0.134285 + 0.160035i) q^{42} +(-0.426022 - 0.155059i) q^{43} +(-1.85844 + 3.21891i) q^{44} -4.04189 q^{45} +(-2.37939 - 4.12122i) q^{46} +(-0.134285 - 0.761570i) q^{47} +(-1.50000 - 0.866025i) q^{48} +(6.56418 - 2.38917i) q^{49} +(0.553033 - 3.13641i) q^{50} +(5.75624 - 6.86002i) q^{51} +(-4.64543 + 3.89798i) q^{52} -7.29086 q^{53} +(-5.11721 + 0.902302i) q^{54} +5.00774 q^{55} +(0.0923963 - 0.0775297i) q^{56} +(3.50774 + 9.63744i) q^{57} +(-1.03209 + 5.85327i) q^{58} +(1.40033 - 0.509678i) q^{59} +2.33359i q^{60} +(-0.656574 - 3.72362i) q^{61} +(-2.52094 - 4.36640i) q^{62} +(0.0628336 - 0.356347i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(7.67752 + 2.79439i) q^{65} +(6.34002 - 1.11792i) q^{66} +(-5.08512 - 4.26692i) q^{67} +(-3.96064 - 3.32337i) q^{68} +(-2.81908 + 7.74535i) q^{69} +(-0.152704 - 0.0555796i) q^{70} +(-2.87211 + 4.97464i) q^{71} +(0.520945 + 2.95442i) q^{72} +(-5.20961 - 9.02330i) q^{73} +(-0.0505072 - 0.286441i) q^{74} +(-4.77719 + 2.75811i) q^{75} +(5.56418 - 2.02520i) q^{76} +(-0.0778483 + 0.441500i) q^{77} +(10.3439 + 1.82391i) q^{78} +(10.7194 - 8.99465i) q^{79} +1.34730 q^{80} +(6.89440 + 5.78509i) q^{81} -5.80066 q^{82} +(-1.81521 + 1.52314i) q^{83} +(-0.205737 - 0.0362770i) q^{84} +(-1.20961 + 6.86002i) q^{85} +(0.426022 - 0.155059i) q^{86} +(8.91534 - 5.14728i) q^{87} +(-0.645430 - 3.66041i) q^{88} +(1.08512 + 1.87949i) q^{89} +(3.09627 - 2.59808i) q^{90} +(-0.365715 + 0.633436i) q^{91} +(4.47178 + 1.62760i) q^{92} +(-2.98680 + 8.20616i) q^{93} +(0.592396 + 0.497079i) q^{94} +(-6.11128 - 5.12797i) q^{95} +(1.70574 - 0.300767i) q^{96} +(3.21941 + 1.17177i) q^{97} +(-3.49273 + 6.04958i) q^{98} +(-8.54189 - 7.16750i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} - 9 q^{6} + 3 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{5} - 9 q^{6} + 3 q^{7} + 3 q^{8} + 3 q^{10} - 3 q^{11} - 12 q^{13} - 3 q^{14} - 6 q^{17} + 9 q^{19} + 6 q^{20} + 3 q^{22} - 6 q^{23} - 9 q^{25} + 18 q^{26} + 27 q^{27} - 12 q^{28} + 15 q^{29} + 9 q^{30} - 18 q^{31} - 9 q^{33} + 6 q^{34} + 3 q^{35} + 9 q^{36} + 15 q^{37} - 15 q^{38} + 3 q^{40} - 3 q^{41} - 9 q^{42} - 18 q^{43} - 3 q^{44} - 18 q^{45} - 3 q^{46} + 9 q^{47} - 9 q^{48} + 21 q^{49} - 9 q^{50} + 27 q^{51} - 12 q^{52} - 12 q^{53} - 18 q^{55} - 3 q^{56} - 27 q^{57} + 3 q^{58} - 6 q^{59} + 18 q^{61} - 12 q^{62} - 9 q^{63} - 3 q^{64} + 21 q^{65} + 18 q^{66} - 9 q^{67} - 15 q^{68} - 3 q^{70} + 12 q^{71} + 3 q^{73} - 3 q^{74} - 18 q^{75} + 15 q^{76} + 39 q^{77} + 18 q^{78} + 33 q^{79} + 6 q^{80} - 6 q^{82} - 18 q^{83} + 9 q^{84} + 27 q^{85} + 18 q^{86} + 9 q^{87} + 12 q^{88} - 15 q^{89} - 9 q^{90} - 12 q^{91} + 12 q^{92} + 27 q^{93} + 21 q^{95} - 12 q^{97} - 3 q^{98} - 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.766044 + 0.642788i −0.541675 + 0.454519i
\(3\) 1.70574 + 0.300767i 0.984808 + 0.173648i
\(4\) 0.173648 0.984808i 0.0868241 0.492404i
\(5\) −1.26604 + 0.460802i −0.566192 + 0.206077i −0.609226 0.792996i \(-0.708520\pi\)
0.0430339 + 0.999074i \(0.486298\pi\)
\(6\) −1.50000 + 0.866025i −0.612372 + 0.353553i
\(7\) −0.0209445 0.118782i −0.00791629 0.0448955i 0.980594 0.196051i \(-0.0628118\pi\)
−0.988510 + 0.151155i \(0.951701\pi\)
\(8\) 0.500000 + 0.866025i 0.176777 + 0.306186i
\(9\) 2.81908 + 1.02606i 0.939693 + 0.342020i
\(10\) 0.673648 1.16679i 0.213026 0.368972i
\(11\) −3.49273 1.27125i −1.05310 0.383296i −0.243266 0.969960i \(-0.578219\pi\)
−0.809831 + 0.586664i \(0.800441\pi\)
\(12\) 0.592396 1.62760i 0.171010 0.469846i
\(13\) −4.64543 3.89798i −1.28841 1.08110i −0.992026 0.126036i \(-0.959775\pi\)
−0.296385 0.955069i \(-0.595781\pi\)
\(14\) 0.0923963 + 0.0775297i 0.0246939 + 0.0207207i
\(15\) −2.29813 + 0.405223i −0.593375 + 0.104628i
\(16\) −0.939693 0.342020i −0.234923 0.0855050i
\(17\) 2.58512 4.47756i 0.626984 1.08597i −0.361169 0.932500i \(-0.617622\pi\)
0.988154 0.153468i \(-0.0490443\pi\)
\(18\) −2.81908 + 1.02606i −0.664463 + 0.241845i
\(19\) 2.96064 + 5.12797i 0.679217 + 1.17644i 0.975217 + 0.221250i \(0.0710137\pi\)
−0.296000 + 0.955188i \(0.595653\pi\)
\(20\) 0.233956 + 1.32683i 0.0523141 + 0.296688i
\(21\) 0.208911i 0.0455881i
\(22\) 3.49273 1.27125i 0.744652 0.271031i
\(23\) −0.826352 + 4.68647i −0.172306 + 0.977197i 0.768901 + 0.639368i \(0.220804\pi\)
−0.941207 + 0.337830i \(0.890307\pi\)
\(24\) 0.592396 + 1.62760i 0.120922 + 0.332232i
\(25\) −2.43969 + 2.04715i −0.487939 + 0.409429i
\(26\) 6.06418 1.18928
\(27\) 4.50000 + 2.59808i 0.866025 + 0.500000i
\(28\) −0.120615 −0.0227940
\(29\) 4.55303 3.82045i 0.845477 0.709440i −0.113312 0.993559i \(-0.536146\pi\)
0.958789 + 0.284120i \(0.0917014\pi\)
\(30\) 1.50000 1.78763i 0.273861 0.326375i
\(31\) −0.875515 + 4.96529i −0.157247 + 0.891793i 0.799455 + 0.600725i \(0.205121\pi\)
−0.956703 + 0.291067i \(0.905990\pi\)
\(32\) 0.939693 0.342020i 0.166116 0.0604612i
\(33\) −5.57532 3.21891i −0.970539 0.560341i
\(34\) 0.897804 + 5.09170i 0.153972 + 0.873219i
\(35\) 0.0812519 + 0.140732i 0.0137341 + 0.0237881i
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) −0.145430 + 0.251892i −0.0239085 + 0.0414107i −0.877732 0.479152i \(-0.840944\pi\)
0.853824 + 0.520562i \(0.174278\pi\)
\(38\) −5.56418 2.02520i −0.902629 0.328530i
\(39\) −6.75150 8.04612i −1.08110 1.28841i
\(40\) −1.03209 0.866025i −0.163188 0.136931i
\(41\) 4.44356 + 3.72859i 0.693968 + 0.582308i 0.920050 0.391800i \(-0.128147\pi\)
−0.226082 + 0.974108i \(0.572592\pi\)
\(42\) 0.134285 + 0.160035i 0.0207207 + 0.0246939i
\(43\) −0.426022 0.155059i −0.0649678 0.0236463i 0.309332 0.950954i \(-0.399895\pi\)
−0.374300 + 0.927308i \(0.622117\pi\)
\(44\) −1.85844 + 3.21891i −0.280170 + 0.485270i
\(45\) −4.04189 −0.602529
\(46\) −2.37939 4.12122i −0.350821 0.607640i
\(47\) −0.134285 0.761570i −0.0195875 0.111086i 0.973446 0.228915i \(-0.0735178\pi\)
−0.993034 + 0.117829i \(0.962407\pi\)
\(48\) −1.50000 0.866025i −0.216506 0.125000i
\(49\) 6.56418 2.38917i 0.937740 0.341309i
\(50\) 0.553033 3.13641i 0.0782107 0.443555i
\(51\) 5.75624 6.86002i 0.806035 0.960596i
\(52\) −4.64543 + 3.89798i −0.644205 + 0.540552i
\(53\) −7.29086 −1.00148 −0.500738 0.865599i \(-0.666938\pi\)
−0.500738 + 0.865599i \(0.666938\pi\)
\(54\) −5.11721 + 0.902302i −0.696364 + 0.122788i
\(55\) 5.00774 0.675244
\(56\) 0.0923963 0.0775297i 0.0123470 0.0103603i
\(57\) 3.50774 + 9.63744i 0.464612 + 1.27651i
\(58\) −1.03209 + 5.85327i −0.135520 + 0.768572i
\(59\) 1.40033 0.509678i 0.182307 0.0663545i −0.249253 0.968438i \(-0.580185\pi\)
0.431561 + 0.902084i \(0.357963\pi\)
\(60\) 2.33359i 0.301265i
\(61\) −0.656574 3.72362i −0.0840657 0.476760i −0.997554 0.0698959i \(-0.977733\pi\)
0.913489 0.406864i \(-0.133378\pi\)
\(62\) −2.52094 4.36640i −0.320160 0.554534i
\(63\) 0.0628336 0.356347i 0.00791629 0.0448955i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) 7.67752 + 2.79439i 0.952279 + 0.346601i
\(66\) 6.34002 1.11792i 0.780403 0.137606i
\(67\) −5.08512 4.26692i −0.621247 0.521288i 0.276949 0.960885i \(-0.410677\pi\)
−0.898195 + 0.439597i \(0.855121\pi\)
\(68\) −3.96064 3.32337i −0.480298 0.403018i
\(69\) −2.81908 + 7.74535i −0.339377 + 0.932431i
\(70\) −0.152704 0.0555796i −0.0182516 0.00664303i
\(71\) −2.87211 + 4.97464i −0.340857 + 0.590381i −0.984592 0.174867i \(-0.944050\pi\)
0.643735 + 0.765248i \(0.277384\pi\)
\(72\) 0.520945 + 2.95442i 0.0613939 + 0.348182i
\(73\) −5.20961 9.02330i −0.609738 1.05610i −0.991283 0.131748i \(-0.957941\pi\)
0.381545 0.924350i \(-0.375392\pi\)
\(74\) −0.0505072 0.286441i −0.00587134 0.0332980i
\(75\) −4.77719 + 2.75811i −0.551622 + 0.318479i
\(76\) 5.56418 2.02520i 0.638255 0.232306i
\(77\) −0.0778483 + 0.441500i −0.00887164 + 0.0503136i
\(78\) 10.3439 + 1.82391i 1.17122 + 0.206517i
\(79\) 10.7194 8.99465i 1.20603 1.01198i 0.206591 0.978427i \(-0.433763\pi\)
0.999437 0.0335498i \(-0.0106812\pi\)
\(80\) 1.34730 0.150632
\(81\) 6.89440 + 5.78509i 0.766044 + 0.642788i
\(82\) −5.80066 −0.640576
\(83\) −1.81521 + 1.52314i −0.199245 + 0.167186i −0.736951 0.675946i \(-0.763735\pi\)
0.537706 + 0.843132i \(0.319291\pi\)
\(84\) −0.205737 0.0362770i −0.0224478 0.00395814i
\(85\) −1.20961 + 6.86002i −0.131200 + 0.744074i
\(86\) 0.426022 0.155059i 0.0459391 0.0167205i
\(87\) 8.91534 5.14728i 0.955825 0.551846i
\(88\) −0.645430 3.66041i −0.0688030 0.390201i
\(89\) 1.08512 + 1.87949i 0.115023 + 0.199225i 0.917789 0.397069i \(-0.129973\pi\)
−0.802766 + 0.596294i \(0.796639\pi\)
\(90\) 3.09627 2.59808i 0.326375 0.273861i
\(91\) −0.365715 + 0.633436i −0.0383373 + 0.0664022i
\(92\) 4.47178 + 1.62760i 0.466215 + 0.169689i
\(93\) −2.98680 + 8.20616i −0.309716 + 0.850939i
\(94\) 0.592396 + 0.497079i 0.0611010 + 0.0512698i
\(95\) −6.11128 5.12797i −0.627004 0.526119i
\(96\) 1.70574 0.300767i 0.174091 0.0306970i
\(97\) 3.21941 + 1.17177i 0.326881 + 0.118975i 0.500248 0.865882i \(-0.333242\pi\)
−0.173366 + 0.984857i \(0.555464\pi\)
\(98\) −3.49273 + 6.04958i −0.352819 + 0.611100i
\(99\) −8.54189 7.16750i −0.858492 0.720360i
\(100\) 1.59240 + 2.75811i 0.159240 + 0.275811i
\(101\) 1.49660 + 8.48762i 0.148917 + 0.844550i 0.964138 + 0.265400i \(0.0855041\pi\)
−0.815221 + 0.579149i \(0.803385\pi\)
\(102\) 8.95513i 0.886690i
\(103\) 2.05303 0.747243i 0.202291 0.0736280i −0.238887 0.971047i \(-0.576783\pi\)
0.441179 + 0.897419i \(0.354560\pi\)
\(104\) 1.05303 5.97205i 0.103258 0.585608i
\(105\) 0.0962667 + 0.264490i 0.00939466 + 0.0258116i
\(106\) 5.58512 4.68647i 0.542475 0.455191i
\(107\) −10.2909 −0.994855 −0.497427 0.867506i \(-0.665722\pi\)
−0.497427 + 0.867506i \(0.665722\pi\)
\(108\) 3.34002 3.98048i 0.321394 0.383022i
\(109\) −11.0915 −1.06237 −0.531187 0.847254i \(-0.678254\pi\)
−0.531187 + 0.847254i \(0.678254\pi\)
\(110\) −3.83615 + 3.21891i −0.365763 + 0.306911i
\(111\) −0.323826 + 0.385920i −0.0307362 + 0.0366299i
\(112\) −0.0209445 + 0.118782i −0.00197907 + 0.0112239i
\(113\) −5.56670 + 2.02611i −0.523671 + 0.190601i −0.590310 0.807176i \(-0.700995\pi\)
0.0666389 + 0.997777i \(0.478772\pi\)
\(114\) −8.88191 5.12797i −0.831867 0.480279i
\(115\) −1.11334 6.31407i −0.103820 0.588790i
\(116\) −2.97178 5.14728i −0.275923 0.477913i
\(117\) −9.09627 15.7552i −0.840950 1.45657i
\(118\) −0.745100 + 1.29055i −0.0685920 + 0.118805i
\(119\) −0.586000 0.213286i −0.0537185 0.0195519i
\(120\) −1.50000 1.78763i −0.136931 0.163188i
\(121\) 2.15657 + 1.80958i 0.196052 + 0.164507i
\(122\) 2.89646 + 2.43042i 0.262233 + 0.220040i
\(123\) 6.45811 + 7.69648i 0.582308 + 0.693968i
\(124\) 4.73783 + 1.72443i 0.425469 + 0.154858i
\(125\) 5.51367 9.54996i 0.493158 0.854174i
\(126\) 0.180922 + 0.313366i 0.0161178 + 0.0279169i
\(127\) 2.86959 + 4.97027i 0.254634 + 0.441040i 0.964796 0.262999i \(-0.0847115\pi\)
−0.710162 + 0.704039i \(0.751378\pi\)
\(128\) −0.173648 0.984808i −0.0153485 0.0870455i
\(129\) −0.680045 0.392624i −0.0598746 0.0345686i
\(130\) −7.67752 + 2.79439i −0.673363 + 0.245084i
\(131\) 2.99020 16.9583i 0.261255 1.48165i −0.518236 0.855237i \(-0.673411\pi\)
0.779491 0.626413i \(-0.215478\pi\)
\(132\) −4.13816 + 4.93166i −0.360180 + 0.429246i
\(133\) 0.547104 0.459074i 0.0474399 0.0398068i
\(134\) 6.63816 0.573449
\(135\) −6.89440 1.21567i −0.593375 0.104628i
\(136\) 5.17024 0.443345
\(137\) 0.0662372 0.0555796i 0.00565902 0.00474848i −0.639954 0.768413i \(-0.721046\pi\)
0.645613 + 0.763665i \(0.276602\pi\)
\(138\) −2.81908 7.74535i −0.239976 0.659328i
\(139\) −3.18866 + 18.0838i −0.270459 + 1.53385i 0.482568 + 0.875859i \(0.339704\pi\)
−0.753027 + 0.657990i \(0.771407\pi\)
\(140\) 0.152704 0.0555796i 0.0129058 0.00469733i
\(141\) 1.33943i 0.112800i
\(142\) −0.997474 5.65695i −0.0837061 0.474721i
\(143\) 11.2699 + 19.5201i 0.942438 + 1.63235i
\(144\) −2.29813 1.92836i −0.191511 0.160697i
\(145\) −4.00387 + 6.93491i −0.332503 + 0.575913i
\(146\) 9.79086 + 3.56358i 0.810297 + 0.294924i
\(147\) 11.9153 2.10100i 0.982761 0.173287i
\(148\) 0.222811 + 0.186961i 0.0183150 + 0.0153681i
\(149\) −3.75490 3.15074i −0.307613 0.258118i 0.475891 0.879504i \(-0.342126\pi\)
−0.783505 + 0.621386i \(0.786570\pi\)
\(150\) 1.88666 5.18355i 0.154045 0.423235i
\(151\) −1.62701 0.592184i −0.132404 0.0481912i 0.274968 0.961453i \(-0.411333\pi\)
−0.407372 + 0.913262i \(0.633555\pi\)
\(152\) −2.96064 + 5.12797i −0.240139 + 0.415934i
\(153\) 11.8819 9.97011i 0.960596 0.806035i
\(154\) −0.224155 0.388249i −0.0180630 0.0312860i
\(155\) −1.17958 6.68972i −0.0947460 0.537331i
\(156\) −9.09627 + 5.25173i −0.728284 + 0.420475i
\(157\) 5.46451 1.98892i 0.436115 0.158733i −0.114627 0.993409i \(-0.536567\pi\)
0.550742 + 0.834676i \(0.314345\pi\)
\(158\) −2.42989 + 13.7806i −0.193312 + 1.09633i
\(159\) −12.4363 2.19285i −0.986262 0.173905i
\(160\) −1.03209 + 0.866025i −0.0815938 + 0.0684653i
\(161\) 0.573978 0.0452358
\(162\) −9.00000 −0.707107
\(163\) −2.70914 −0.212196 −0.106098 0.994356i \(-0.533836\pi\)
−0.106098 + 0.994356i \(0.533836\pi\)
\(164\) 4.44356 3.72859i 0.346984 0.291154i
\(165\) 8.54189 + 1.50617i 0.664985 + 0.117255i
\(166\) 0.411474 2.33359i 0.0319366 0.181121i
\(167\) 23.1202 8.41507i 1.78910 0.651177i 0.789811 0.613351i \(-0.210179\pi\)
0.999284 0.0378268i \(-0.0120435\pi\)
\(168\) 0.180922 0.104455i 0.0139584 0.00805891i
\(169\) 4.12836 + 23.4131i 0.317566 + 1.80101i
\(170\) −3.48293 6.03260i −0.267128 0.462680i
\(171\) 3.08466 + 17.4940i 0.235890 + 1.33780i
\(172\) −0.226682 + 0.392624i −0.0172843 + 0.0299373i
\(173\) 10.0753 + 3.66712i 0.766013 + 0.278806i 0.695328 0.718693i \(-0.255259\pi\)
0.0706849 + 0.997499i \(0.477482\pi\)
\(174\) −3.52094 + 9.67372i −0.266922 + 0.733362i
\(175\) 0.294263 + 0.246916i 0.0222442 + 0.0186651i
\(176\) 2.84730 + 2.38917i 0.214623 + 0.180090i
\(177\) 2.54189 0.448204i 0.191060 0.0336890i
\(178\) −2.03936 0.742267i −0.152857 0.0556353i
\(179\) 6.92262 11.9903i 0.517421 0.896199i −0.482374 0.875965i \(-0.660226\pi\)
0.999795 0.0202340i \(-0.00644112\pi\)
\(180\) −0.701867 + 3.98048i −0.0523141 + 0.296688i
\(181\) −1.75490 3.03958i −0.130441 0.225930i 0.793406 0.608693i \(-0.208306\pi\)
−0.923847 + 0.382763i \(0.874973\pi\)
\(182\) −0.127011 0.720317i −0.00941471 0.0533935i
\(183\) 6.54899i 0.484115i
\(184\) −4.47178 + 1.62760i −0.329664 + 0.119988i
\(185\) 0.0680482 0.385920i 0.00500300 0.0283734i
\(186\) −2.98680 8.20616i −0.219003 0.601704i
\(187\) −14.7212 + 12.3526i −1.07652 + 0.903309i
\(188\) −0.773318 −0.0564000
\(189\) 0.214355 0.588936i 0.0155920 0.0428388i
\(190\) 7.97771 0.578764
\(191\) −16.7704 + 14.0720i −1.21346 + 1.01822i −0.214322 + 0.976763i \(0.568754\pi\)
−0.999140 + 0.0414526i \(0.986801\pi\)
\(192\) −1.11334 + 1.32683i −0.0803485 + 0.0957556i
\(193\) 4.44743 25.2226i 0.320133 1.81557i −0.221740 0.975106i \(-0.571174\pi\)
0.541873 0.840460i \(-0.317715\pi\)
\(194\) −3.21941 + 1.17177i −0.231140 + 0.0841281i
\(195\) 12.2554 + 7.07564i 0.877625 + 0.506697i
\(196\) −1.21301 6.87933i −0.0866436 0.491381i
\(197\) −6.84255 11.8516i −0.487511 0.844395i 0.512385 0.858756i \(-0.328762\pi\)
−0.999897 + 0.0143611i \(0.995429\pi\)
\(198\) 11.1506 0.792442
\(199\) 6.19981 10.7384i 0.439493 0.761224i −0.558158 0.829735i \(-0.688492\pi\)
0.997650 + 0.0685113i \(0.0218249\pi\)
\(200\) −2.99273 1.08926i −0.211618 0.0770225i
\(201\) −7.39053 8.80769i −0.521288 0.621247i
\(202\) −6.60220 5.53990i −0.464529 0.389786i
\(203\) −0.549163 0.460802i −0.0385437 0.0323420i
\(204\) −5.75624 6.86002i −0.403018 0.480298i
\(205\) −7.34389 2.67296i −0.512920 0.186688i
\(206\) −1.09240 + 1.89209i −0.0761109 + 0.131828i
\(207\) −7.13816 + 12.3636i −0.496136 + 0.859333i
\(208\) 3.03209 + 5.25173i 0.210238 + 0.364142i
\(209\) −3.82177 21.6743i −0.264357 1.49924i
\(210\) −0.243756 0.140732i −0.0168207 0.00971146i
\(211\) −13.9474 + 5.07645i −0.960181 + 0.349477i −0.774104 0.633058i \(-0.781799\pi\)
−0.186077 + 0.982535i \(0.559577\pi\)
\(212\) −1.26604 + 7.18009i −0.0869523 + 0.493131i
\(213\) −6.39528 + 7.62159i −0.438197 + 0.522223i
\(214\) 7.88326 6.61484i 0.538888 0.452181i
\(215\) 0.610815 0.0416572
\(216\) 5.19615i 0.353553i
\(217\) 0.608126 0.0412823
\(218\) 8.49660 7.12949i 0.575462 0.482870i
\(219\) −6.17230 16.9583i −0.417086 1.14593i
\(220\) 0.869585 4.93166i 0.0586274 0.332493i
\(221\) −29.4624 + 10.7235i −1.98186 + 0.721338i
\(222\) 0.503783i 0.0338117i
\(223\) −1.16890 6.62916i −0.0782754 0.443922i −0.998606 0.0527806i \(-0.983192\pi\)
0.920331 0.391141i \(-0.127920\pi\)
\(224\) −0.0603074 0.104455i −0.00402946 0.00697922i
\(225\) −8.97818 + 3.26779i −0.598545 + 0.217853i
\(226\) 2.96198 5.13030i 0.197028 0.341263i
\(227\) −13.6211 4.95767i −0.904063 0.329052i −0.152183 0.988352i \(-0.548630\pi\)
−0.751880 + 0.659300i \(0.770853\pi\)
\(228\) 10.1001 1.78093i 0.668898 0.117945i
\(229\) 19.7540 + 16.5756i 1.30538 + 1.09535i 0.989188 + 0.146652i \(0.0468496\pi\)
0.316194 + 0.948694i \(0.397595\pi\)
\(230\) 4.91147 + 4.12122i 0.323853 + 0.271745i
\(231\) −0.265578 + 0.729669i −0.0174737 + 0.0480087i
\(232\) 5.58512 + 2.03282i 0.366681 + 0.133461i
\(233\) −5.19846 + 9.00400i −0.340563 + 0.589872i −0.984537 0.175175i \(-0.943951\pi\)
0.643975 + 0.765047i \(0.277284\pi\)
\(234\) 17.0954 + 6.22221i 1.11756 + 0.406759i
\(235\) 0.520945 + 0.902302i 0.0339827 + 0.0588597i
\(236\) −0.258770 1.46756i −0.0168445 0.0955300i
\(237\) 20.9898 12.1185i 1.36343 0.787179i
\(238\) 0.586000 0.213286i 0.0379847 0.0138253i
\(239\) −3.97906 + 22.5663i −0.257384 + 1.45970i 0.532495 + 0.846433i \(0.321254\pi\)
−0.789879 + 0.613263i \(0.789857\pi\)
\(240\) 2.29813 + 0.405223i 0.148344 + 0.0261570i
\(241\) −9.25150 + 7.76293i −0.595941 + 0.500054i −0.890138 0.455691i \(-0.849392\pi\)
0.294197 + 0.955745i \(0.404948\pi\)
\(242\) −2.81521 −0.180968
\(243\) 10.0201 + 11.9415i 0.642788 + 0.766044i
\(244\) −3.78106 −0.242058
\(245\) −7.20961 + 6.04958i −0.460605 + 0.386493i
\(246\) −9.89440 1.74465i −0.630844 0.111235i
\(247\) 6.23530 35.3621i 0.396743 2.25004i
\(248\) −4.73783 + 1.72443i −0.300852 + 0.109501i
\(249\) −3.55438 + 2.05212i −0.225250 + 0.130048i
\(250\) 1.91488 + 10.8598i 0.121107 + 0.686835i
\(251\) 7.02347 + 12.1650i 0.443318 + 0.767849i 0.997933 0.0642581i \(-0.0204681\pi\)
−0.554616 + 0.832107i \(0.687135\pi\)
\(252\) −0.340022 0.123758i −0.0214194 0.00779602i
\(253\) 8.84389 15.3181i 0.556011 0.963039i
\(254\) −5.39306 1.96291i −0.338390 0.123164i
\(255\) −4.12654 + 11.3376i −0.258414 + 0.709987i
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) 13.8983 + 11.6620i 0.866950 + 0.727458i 0.963454 0.267875i \(-0.0863214\pi\)
−0.0965034 + 0.995333i \(0.530766\pi\)
\(258\) 0.773318 0.136357i 0.0481447 0.00848921i
\(259\) 0.0329662 + 0.0119987i 0.00204842 + 0.000745565i
\(260\) 4.08512 7.07564i 0.253349 0.438813i
\(261\) 16.7554 6.09845i 1.03713 0.377485i
\(262\) 8.60994 + 14.9128i 0.531924 + 0.921319i
\(263\) 0.742107 + 4.20870i 0.0457603 + 0.259519i 0.999102 0.0423745i \(-0.0134923\pi\)
−0.953342 + 0.301894i \(0.902381\pi\)
\(264\) 6.43783i 0.396221i
\(265\) 9.23055 3.35965i 0.567028 0.206381i
\(266\) −0.124018 + 0.703343i −0.00760405 + 0.0431247i
\(267\) 1.28564 + 3.53228i 0.0786802 + 0.216172i
\(268\) −5.08512 + 4.26692i −0.310623 + 0.260644i
\(269\) 13.0615 0.796373 0.398187 0.917304i \(-0.369640\pi\)
0.398187 + 0.917304i \(0.369640\pi\)
\(270\) 6.06283 3.50038i 0.368972 0.213026i
\(271\) 8.48751 0.515580 0.257790 0.966201i \(-0.417006\pi\)
0.257790 + 0.966201i \(0.417006\pi\)
\(272\) −3.96064 + 3.32337i −0.240149 + 0.201509i
\(273\) −0.814330 + 0.970481i −0.0492855 + 0.0587362i
\(274\) −0.0150147 + 0.0851529i −0.000907074 + 0.00514427i
\(275\) 11.1236 4.04866i 0.670779 0.244144i
\(276\) 7.13816 + 4.12122i 0.429666 + 0.248068i
\(277\) 1.14842 + 6.51303i 0.0690020 + 0.391330i 0.999675 + 0.0254787i \(0.00811100\pi\)
−0.930673 + 0.365851i \(0.880778\pi\)
\(278\) −9.18139 15.9026i −0.550663 0.953776i
\(279\) −7.56283 + 13.0992i −0.452775 + 0.784229i
\(280\) −0.0812519 + 0.140732i −0.00485573 + 0.00841037i
\(281\) −27.9320 10.1664i −1.66628 0.606478i −0.674952 0.737861i \(-0.735836\pi\)
−0.991332 + 0.131384i \(0.958058\pi\)
\(282\) 0.860967 + 1.02606i 0.0512698 + 0.0611010i
\(283\) −2.15657 1.80958i −0.128195 0.107568i 0.576436 0.817142i \(-0.304443\pi\)
−0.704631 + 0.709574i \(0.748887\pi\)
\(284\) 4.40033 + 3.69232i 0.261112 + 0.219099i
\(285\) −8.88191 10.5850i −0.526119 0.627004i
\(286\) −21.1805 7.70908i −1.25243 0.455847i
\(287\) 0.349823 0.605910i 0.0206494 0.0357658i
\(288\) 3.00000 0.176777
\(289\) −4.86571 8.42767i −0.286219 0.495745i
\(290\) −1.39053 7.88609i −0.0816547 0.463087i
\(291\) 5.13903 + 2.96702i 0.301255 + 0.173930i
\(292\) −9.79086 + 3.56358i −0.572967 + 0.208543i
\(293\) 1.70796 9.68631i 0.0997800 0.565881i −0.893397 0.449267i \(-0.851685\pi\)
0.993177 0.116613i \(-0.0372038\pi\)
\(294\) −7.77719 + 9.26849i −0.453575 + 0.540549i
\(295\) −1.53802 + 1.29055i −0.0895469 + 0.0751388i
\(296\) −0.290859 −0.0169059
\(297\) −12.4145 14.7950i −0.720360 0.858492i
\(298\) 4.90167 0.283946
\(299\) 22.1065 18.5496i 1.27845 1.07275i
\(300\) 1.88666 + 5.18355i 0.108926 + 0.299273i
\(301\) −0.00949548 + 0.0538515i −0.000547310 + 0.00310395i
\(302\) 1.62701 0.592184i 0.0936240 0.0340763i
\(303\) 14.9278i 0.857578i
\(304\) −1.02822 5.83132i −0.0589724 0.334449i
\(305\) 2.54710 + 4.41171i 0.145847 + 0.252614i
\(306\) −2.69341 + 15.2751i −0.153972 + 0.873219i
\(307\) −6.78106 + 11.7451i −0.387015 + 0.670330i −0.992047 0.125871i \(-0.959827\pi\)
0.605031 + 0.796202i \(0.293161\pi\)
\(308\) 0.421274 + 0.153331i 0.0240043 + 0.00873686i
\(309\) 3.72668 0.657115i 0.212004 0.0373819i
\(310\) 5.20368 + 4.36640i 0.295549 + 0.247995i
\(311\) −8.10220 6.79855i −0.459433 0.385510i 0.383489 0.923545i \(-0.374722\pi\)
−0.842922 + 0.538035i \(0.819167\pi\)
\(312\) 3.59240 9.87003i 0.203379 0.558780i
\(313\) 10.0544 + 3.65949i 0.568307 + 0.206847i 0.610162 0.792277i \(-0.291104\pi\)
−0.0418547 + 0.999124i \(0.513327\pi\)
\(314\) −2.90760 + 5.03612i −0.164086 + 0.284205i
\(315\) 0.0846555 + 0.480105i 0.00476980 + 0.0270509i
\(316\) −6.99660 12.1185i −0.393589 0.681717i
\(317\) 5.06717 + 28.7374i 0.284601 + 1.61405i 0.706708 + 0.707505i \(0.250179\pi\)
−0.422108 + 0.906546i \(0.638710\pi\)
\(318\) 10.9363 6.31407i 0.613277 0.354075i
\(319\) −20.7592 + 7.55574i −1.16229 + 0.423040i
\(320\) 0.233956 1.32683i 0.0130785 0.0741719i
\(321\) −17.5535 3.09516i −0.979741 0.172755i
\(322\) −0.439693 + 0.368946i −0.0245031 + 0.0205606i
\(323\) 30.6144 1.70343
\(324\) 6.89440 5.78509i 0.383022 0.321394i
\(325\) 19.3131 1.07130
\(326\) 2.07532 1.74140i 0.114941 0.0964473i
\(327\) −18.9192 3.33597i −1.04623 0.184479i
\(328\) −1.00727 + 5.71253i −0.0556174 + 0.315422i
\(329\) −0.0876485 + 0.0319015i −0.00483222 + 0.00175878i
\(330\) −7.51161 + 4.33683i −0.413501 + 0.238735i
\(331\) −1.26739 7.18772i −0.0696620 0.395073i −0.999624 0.0274173i \(-0.991272\pi\)
0.929962 0.367655i \(-0.119839\pi\)
\(332\) 1.18479 + 2.05212i 0.0650239 + 0.112625i
\(333\) −0.668434 + 0.560882i −0.0366299 + 0.0307362i
\(334\) −12.3020 + 21.3077i −0.673136 + 1.16591i
\(335\) 8.40420 + 3.05888i 0.459171 + 0.167124i
\(336\) −0.0714517 + 0.196312i −0.00389801 + 0.0107097i
\(337\) −1.24376 1.04363i −0.0677517 0.0568504i 0.608283 0.793720i \(-0.291859\pi\)
−0.676035 + 0.736870i \(0.736303\pi\)
\(338\) −18.2121 15.2818i −0.990609 0.831220i
\(339\) −10.1047 + 1.78174i −0.548813 + 0.0967706i
\(340\) 6.54576 + 2.38246i 0.354994 + 0.129207i
\(341\) 9.37005 16.2294i 0.507417 0.878872i
\(342\) −13.6079 11.4184i −0.735830 0.617434i
\(343\) −0.843426 1.46086i −0.0455407 0.0788788i
\(344\) −0.0787257 0.446476i −0.00424460 0.0240724i
\(345\) 11.1050i 0.597873i
\(346\) −10.0753 + 3.66712i −0.541653 + 0.197145i
\(347\) −0.949655 + 5.38576i −0.0509801 + 0.289123i −0.999630 0.0272057i \(-0.991339\pi\)
0.948650 + 0.316329i \(0.102450\pi\)
\(348\) −3.52094 9.67372i −0.188742 0.518566i
\(349\) 2.37346 1.99157i 0.127048 0.106606i −0.577050 0.816709i \(-0.695796\pi\)
0.704098 + 0.710103i \(0.251352\pi\)
\(350\) −0.384133 −0.0205328
\(351\) −10.7772 29.6101i −0.575244 1.58047i
\(352\) −3.71688 −0.198110
\(353\) 0.233956 0.196312i 0.0124522 0.0104486i −0.636540 0.771243i \(-0.719635\pi\)
0.648992 + 0.760795i \(0.275191\pi\)
\(354\) −1.65910 + 1.97724i −0.0881802 + 0.105089i
\(355\) 1.34389 7.62159i 0.0713264 0.404512i
\(356\) 2.03936 0.742267i 0.108086 0.0393401i
\(357\) −0.935412 0.540060i −0.0495072 0.0285830i
\(358\) 2.40420 + 13.6349i 0.127066 + 0.720627i
\(359\) −5.28493 9.15377i −0.278928 0.483117i 0.692191 0.721715i \(-0.256646\pi\)
−0.971119 + 0.238597i \(0.923312\pi\)
\(360\) −2.02094 3.50038i −0.106513 0.184486i
\(361\) −8.03074 + 13.9097i −0.422671 + 0.732087i
\(362\) 3.29813 + 1.20042i 0.173346 + 0.0630928i
\(363\) 3.13429 + 3.73530i 0.164507 + 0.196052i
\(364\) 0.560307 + 0.470154i 0.0293681 + 0.0246428i
\(365\) 10.7536 + 9.02330i 0.562867 + 0.472301i
\(366\) 4.20961 + 5.01681i 0.220040 + 0.262233i
\(367\) −2.51842 0.916629i −0.131460 0.0478477i 0.275452 0.961315i \(-0.411172\pi\)
−0.406913 + 0.913467i \(0.633395\pi\)
\(368\) 2.37939 4.12122i 0.124034 0.214833i
\(369\) 8.70099 + 15.0706i 0.452955 + 0.784542i
\(370\) 0.195937 + 0.339373i 0.0101863 + 0.0176431i
\(371\) 0.152704 + 0.866025i 0.00792798 + 0.0449618i
\(372\) 7.56283 + 4.36640i 0.392115 + 0.226388i
\(373\) −22.9008 + 8.33521i −1.18576 + 0.431581i −0.858232 0.513261i \(-0.828437\pi\)
−0.327526 + 0.944842i \(0.606215\pi\)
\(374\) 3.33703 18.9252i 0.172554 0.978601i
\(375\) 12.2772 14.6314i 0.633991 0.755561i
\(376\) 0.592396 0.497079i 0.0305505 0.0256349i
\(377\) −36.0428 −1.85630
\(378\) 0.214355 + 0.588936i 0.0110252 + 0.0302916i
\(379\) −4.08647 −0.209908 −0.104954 0.994477i \(-0.533469\pi\)
−0.104954 + 0.994477i \(0.533469\pi\)
\(380\) −6.11128 + 5.12797i −0.313502 + 0.263060i
\(381\) 3.39986 + 9.34105i 0.174180 + 0.478556i
\(382\) 3.80154 21.5596i 0.194504 1.10308i
\(383\) 15.4017 5.60575i 0.786989 0.286440i 0.0829050 0.996557i \(-0.473580\pi\)
0.704084 + 0.710117i \(0.251358\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) −0.104885 0.594831i −0.00534542 0.0303154i
\(386\) 12.8059 + 22.1804i 0.651802 + 1.12895i
\(387\) −1.04189 0.874249i −0.0529622 0.0444406i
\(388\) 1.71301 2.96702i 0.0869650 0.150628i
\(389\) 26.2263 + 9.54558i 1.32972 + 0.483980i 0.906562 0.422073i \(-0.138698\pi\)
0.423163 + 0.906054i \(0.360920\pi\)
\(390\) −13.9363 + 2.45734i −0.705691 + 0.124432i
\(391\) 18.8478 + 15.8152i 0.953172 + 0.799807i
\(392\) 5.35117 + 4.49016i 0.270275 + 0.226787i
\(393\) 10.2010 28.0270i 0.514572 1.41377i
\(394\) 12.8598 + 4.68058i 0.647867 + 0.235804i
\(395\) −9.42649 + 16.3272i −0.474298 + 0.821508i
\(396\) −8.54189 + 7.16750i −0.429246 + 0.360180i
\(397\) 16.2469 + 28.1405i 0.815409 + 1.41233i 0.909034 + 0.416722i \(0.136821\pi\)
−0.0936247 + 0.995608i \(0.529845\pi\)
\(398\) 2.15317 + 12.2112i 0.107929 + 0.612094i
\(399\) 1.07129 0.618509i 0.0536316 0.0309642i
\(400\) 2.99273 1.08926i 0.149636 0.0544632i
\(401\) 2.67096 15.1478i 0.133381 0.756443i −0.842592 0.538553i \(-0.818971\pi\)
0.975973 0.217891i \(-0.0699176\pi\)
\(402\) 11.3229 + 1.99654i 0.564737 + 0.0995784i
\(403\) 23.4217 19.6532i 1.16672 0.978994i
\(404\) 8.61856 0.428789
\(405\) −11.3944 4.14722i −0.566192 0.206077i
\(406\) 0.716881 0.0355782
\(407\) 0.828163 0.694911i 0.0410505 0.0344455i
\(408\) 8.81908 + 1.55504i 0.436609 + 0.0769860i
\(409\) −1.65822 + 9.40425i −0.0819938 + 0.465010i 0.915971 + 0.401244i \(0.131422\pi\)
−0.997965 + 0.0637658i \(0.979689\pi\)
\(410\) 7.34389 2.67296i 0.362689 0.132008i
\(411\) 0.129700 0.0748822i 0.00639762 0.00369366i
\(412\) −0.379385 2.15160i −0.0186910 0.106002i
\(413\) −0.0898700 0.155659i −0.00442222 0.00765950i
\(414\) −2.47906 14.0594i −0.121839 0.690983i
\(415\) 1.59627 2.76481i 0.0783576 0.135719i
\(416\) −5.69846 2.07407i −0.279390 0.101690i
\(417\) −10.8780 + 29.8872i −0.532700 + 1.46358i
\(418\) 16.8596 + 14.1469i 0.824631 + 0.691948i
\(419\) −26.0239 21.8367i −1.27135 1.06679i −0.994375 0.105915i \(-0.966223\pi\)
−0.276977 0.960876i \(-0.589333\pi\)
\(420\) 0.277189 0.0488759i 0.0135254 0.00238490i
\(421\) 11.8229 + 4.30320i 0.576215 + 0.209725i 0.613656 0.789574i \(-0.289698\pi\)
−0.0374406 + 0.999299i \(0.511920\pi\)
\(422\) 7.42127 12.8540i 0.361262 0.625724i
\(423\) 0.402856 2.28471i 0.0195875 0.111086i
\(424\) −3.64543 6.31407i −0.177038 0.306638i
\(425\) 2.85932 + 16.2160i 0.138697 + 0.786591i
\(426\) 9.94929i 0.482044i
\(427\) −0.428548 + 0.155979i −0.0207389 + 0.00754834i
\(428\) −1.78699 + 10.1345i −0.0863774 + 0.489870i
\(429\) 13.3525 + 36.6857i 0.644665 + 1.77120i
\(430\) −0.467911 + 0.392624i −0.0225647 + 0.0189340i
\(431\) −7.77601 −0.374557 −0.187279 0.982307i \(-0.559967\pi\)
−0.187279 + 0.982307i \(0.559967\pi\)
\(432\) −3.34002 3.98048i −0.160697 0.191511i
\(433\) −40.6536 −1.95369 −0.976845 0.213950i \(-0.931367\pi\)
−0.976845 + 0.213950i \(0.931367\pi\)
\(434\) −0.465852 + 0.390896i −0.0223616 + 0.0187636i
\(435\) −8.91534 + 10.6249i −0.427458 + 0.509425i
\(436\) −1.92602 + 10.9230i −0.0922397 + 0.523117i
\(437\) −26.4786 + 9.63744i −1.26665 + 0.461021i
\(438\) 15.6288 + 9.02330i 0.746774 + 0.431150i
\(439\) −3.07280 17.4267i −0.146657 0.831731i −0.966022 0.258459i \(-0.916785\pi\)
0.819366 0.573271i \(-0.194326\pi\)
\(440\) 2.50387 + 4.33683i 0.119367 + 0.206750i
\(441\) 20.9564 0.997922
\(442\) 15.6766 27.1527i 0.745662 1.29152i
\(443\) −13.5086 4.91673i −0.641814 0.233601i 0.000551343 1.00000i \(-0.499825\pi\)
−0.642365 + 0.766399i \(0.722047\pi\)
\(444\) 0.323826 + 0.385920i 0.0153681 + 0.0183150i
\(445\) −2.23989 1.87949i −0.106181 0.0890962i
\(446\) 5.15657 + 4.32688i 0.244171 + 0.204884i
\(447\) −5.45723 6.50368i −0.258118 0.307613i
\(448\) 0.113341 + 0.0412527i 0.00535485 + 0.00194901i
\(449\) −13.9859 + 24.2243i −0.660036 + 1.14322i 0.320569 + 0.947225i \(0.396126\pi\)
−0.980606 + 0.195991i \(0.937208\pi\)
\(450\) 4.77719 8.27433i 0.225199 0.390056i
\(451\) −10.7802 18.6718i −0.507619 0.879222i
\(452\) 1.02869 + 5.83396i 0.0483853 + 0.274407i
\(453\) −2.59714 1.49946i −0.122024 0.0704509i
\(454\) 13.6211 4.95767i 0.639269 0.232675i
\(455\) 0.171122 0.970481i 0.00802232 0.0454968i
\(456\) −6.59240 + 7.85651i −0.308717 + 0.367915i
\(457\) 6.53280 5.48167i 0.305592 0.256422i −0.477075 0.878862i \(-0.658303\pi\)
0.782667 + 0.622440i \(0.213859\pi\)
\(458\) −25.7870 −1.20495
\(459\) 23.2661 13.4327i 1.08597 0.626984i
\(460\) −6.41147 −0.298937
\(461\) 16.6361 13.9593i 0.774820 0.650151i −0.167118 0.985937i \(-0.553446\pi\)
0.941938 + 0.335785i \(0.109002\pi\)
\(462\) −0.265578 0.729669i −0.0123558 0.0339473i
\(463\) −3.43882 + 19.5025i −0.159815 + 0.906358i 0.794435 + 0.607349i \(0.207767\pi\)
−0.954250 + 0.299009i \(0.903344\pi\)
\(464\) −5.58512 + 2.03282i −0.259283 + 0.0943712i
\(465\) 11.7657i 0.545620i
\(466\) −1.80541 10.2390i −0.0836339 0.474311i
\(467\) −18.4927 32.0303i −0.855741 1.48219i −0.875956 0.482392i \(-0.839768\pi\)
0.0202143 0.999796i \(-0.493565\pi\)
\(468\) −17.0954 + 6.22221i −0.790235 + 0.287622i
\(469\) −0.400330 + 0.693392i −0.0184855 + 0.0320178i
\(470\) −0.979055 0.356347i −0.0451605 0.0164371i
\(471\) 9.91921 1.74903i 0.457053 0.0805908i
\(472\) 1.14156 + 0.957882i 0.0525445 + 0.0440901i
\(473\) 1.29086 + 1.08316i 0.0593538 + 0.0498037i
\(474\) −8.28952 + 22.7753i −0.380750 + 1.04610i
\(475\) −17.7208 6.44983i −0.813084 0.295938i
\(476\) −0.311804 + 0.540060i −0.0142915 + 0.0247536i
\(477\) −20.5535 7.48086i −0.941080 0.342525i
\(478\) −11.4572 19.8445i −0.524042 0.907667i
\(479\) −1.97131 11.1799i −0.0900717 0.510822i −0.996147 0.0877044i \(-0.972047\pi\)
0.906075 0.423117i \(-0.139064\pi\)
\(480\) −2.02094 + 1.16679i −0.0922431 + 0.0532566i
\(481\) 1.65745 0.603263i 0.0755733 0.0275064i
\(482\) 2.09714 11.8935i 0.0955223 0.541734i
\(483\) 0.979055 + 0.172634i 0.0445486 + 0.00785511i
\(484\) 2.15657 1.80958i 0.0980261 0.0822537i
\(485\) −4.61587 −0.209596
\(486\) −15.3516 2.70691i −0.696364 0.122788i
\(487\) 1.13785 0.0515610 0.0257805 0.999668i \(-0.491793\pi\)
0.0257805 + 0.999668i \(0.491793\pi\)
\(488\) 2.89646 2.43042i 0.131117 0.110020i
\(489\) −4.62108 0.814821i −0.208973 0.0368475i
\(490\) 1.63429 9.26849i 0.0738295 0.418708i
\(491\) 14.3880 5.23680i 0.649322 0.236334i 0.00370223 0.999993i \(-0.498822\pi\)
0.645619 + 0.763659i \(0.276599\pi\)
\(492\) 8.70099 5.02352i 0.392271 0.226478i
\(493\) −5.33615 30.2628i −0.240328 1.36297i
\(494\) 17.9538 + 31.0969i 0.807781 + 1.39912i
\(495\) 14.1172 + 5.13824i 0.634521 + 0.230947i
\(496\) 2.52094 4.36640i 0.113194 0.196057i
\(497\) 0.651055 + 0.236965i 0.0292038 + 0.0106293i
\(498\) 1.40373 3.85673i 0.0629028 0.172824i
\(499\) 1.77584 + 1.49011i 0.0794977 + 0.0667065i 0.681671 0.731659i \(-0.261254\pi\)
−0.602173 + 0.798366i \(0.705698\pi\)
\(500\) −8.44743 7.08824i −0.377781 0.316996i
\(501\) 41.9680 7.40008i 1.87499 0.330611i
\(502\) −13.1998 4.80434i −0.589136 0.214428i
\(503\) −4.02869 + 6.97789i −0.179630 + 0.311129i −0.941754 0.336303i \(-0.890823\pi\)
0.762124 + 0.647431i \(0.224157\pi\)
\(504\) 0.340022 0.123758i 0.0151458 0.00551262i
\(505\) −5.80587 10.0561i −0.258358 0.447489i
\(506\) 3.07145 + 17.4191i 0.136543 + 0.774372i
\(507\) 41.1782i 1.82879i
\(508\) 5.39306 1.96291i 0.239278 0.0870901i
\(509\) 1.24944 7.08591i 0.0553803 0.314077i −0.944516 0.328465i \(-0.893469\pi\)
0.999896 + 0.0143875i \(0.00457984\pi\)
\(510\) −4.12654 11.3376i −0.182726 0.502037i
\(511\) −0.962697 + 0.807798i −0.0425872 + 0.0357349i
\(512\) −1.00000 −0.0441942
\(513\) 30.7678i 1.35843i
\(514\) −18.1429 −0.800249
\(515\) −2.25490 + 1.89209i −0.0993628 + 0.0833753i
\(516\) −0.504748 + 0.601535i −0.0222203 + 0.0264811i
\(517\) −0.499123 + 2.83067i −0.0219514 + 0.124493i
\(518\) −0.0329662 + 0.0119987i −0.00144845 + 0.000527194i
\(519\) 16.0829 + 9.28547i 0.705961 + 0.407587i
\(520\) 1.41875 + 8.04612i 0.0622162 + 0.352846i
\(521\) −4.84343 8.38906i −0.212194 0.367531i 0.740207 0.672379i \(-0.234728\pi\)
−0.952401 + 0.304848i \(0.901394\pi\)
\(522\) −8.91534 + 15.4418i −0.390214 + 0.675871i
\(523\) −7.29339 + 12.6325i −0.318917 + 0.552381i −0.980262 0.197701i \(-0.936653\pi\)
0.661345 + 0.750082i \(0.269986\pi\)
\(524\) −16.1814 5.88954i −0.706887 0.257286i
\(525\) 0.427671 + 0.509678i 0.0186651 + 0.0222442i
\(526\) −3.27379 2.74703i −0.142744 0.119776i
\(527\) 19.9691 + 16.7561i 0.869867 + 0.729905i
\(528\) 4.13816 + 4.93166i 0.180090 + 0.214623i
\(529\) 0.332748 + 0.121111i 0.0144673 + 0.00526568i
\(530\) −4.91147 + 8.50692i −0.213341 + 0.369517i
\(531\) 4.47060 0.194007
\(532\) −0.357097 0.618509i −0.0154821 0.0268158i
\(533\) −6.10829 34.6418i −0.264579 1.50050i
\(534\) −3.25537 1.87949i −0.140874 0.0813334i
\(535\) 13.0287 4.74205i 0.563279 0.205017i
\(536\) 1.15270 6.53731i 0.0497892 0.282369i
\(537\) 15.4145 18.3702i 0.665183 0.792735i
\(538\) −10.0057 + 8.39576i −0.431376 + 0.361967i
\(539\) −25.9641 −1.11835
\(540\) −2.39440 + 6.57856i −0.103039 + 0.283096i
\(541\) 23.9786 1.03092 0.515461 0.856913i \(-0.327621\pi\)
0.515461 + 0.856913i \(0.327621\pi\)
\(542\) −6.50181 + 5.45567i −0.279277 + 0.234341i
\(543\) −2.07919 5.71253i −0.0892267 0.245148i
\(544\) 0.897804 5.09170i 0.0384930 0.218305i
\(545\) 14.0424 5.11100i 0.601508 0.218931i
\(546\) 1.26687i 0.0542171i
\(547\) 6.94269 + 39.3739i 0.296848 + 1.68351i 0.659596 + 0.751620i \(0.270727\pi\)
−0.362748 + 0.931887i \(0.618161\pi\)
\(548\) −0.0432332 0.0748822i −0.00184683 0.00319881i
\(549\) 1.96972 11.1708i 0.0840657 0.476760i
\(550\) −5.91875 + 10.2516i −0.252376 + 0.437129i
\(551\) 33.0710 + 12.0369i 1.40887 + 0.512788i
\(552\) −8.11721 + 1.43128i −0.345491 + 0.0609195i
\(553\) −1.29292 1.08489i −0.0549805 0.0461341i
\(554\) −5.06624 4.25108i −0.215244 0.180611i
\(555\) 0.232145 0.637812i 0.00985399 0.0270736i
\(556\) 17.2554 + 6.28044i 0.731791 + 0.266350i
\(557\) −1.17958 + 2.04309i −0.0499803 + 0.0865685i −0.889933 0.456091i \(-0.849249\pi\)
0.839953 + 0.542659i \(0.182583\pi\)
\(558\) −2.62654 14.8959i −0.111190 0.630593i
\(559\) 1.37464 + 2.38094i 0.0581410 + 0.100703i
\(560\) −0.0282185 0.160035i −0.00119245 0.00676271i
\(561\) −28.8258 + 16.6426i −1.21703 + 0.702650i
\(562\) 27.9320 10.1664i 1.17824 0.428845i
\(563\) −7.55825 + 42.8650i −0.318542 + 1.80654i 0.233090 + 0.972455i \(0.425116\pi\)
−0.551632 + 0.834087i \(0.685995\pi\)
\(564\) −1.31908 0.232589i −0.0555432 0.00979376i
\(565\) 6.11406 5.13030i 0.257220 0.215833i
\(566\) 2.81521 0.118332
\(567\) 0.542766 0.940099i 0.0227940 0.0394804i
\(568\) −5.74422 −0.241022
\(569\) 11.2187 9.41360i 0.470312 0.394639i −0.376596 0.926377i \(-0.622906\pi\)
0.846908 + 0.531739i \(0.178461\pi\)
\(570\) 13.6079 + 2.39944i 0.569971 + 0.100501i
\(571\) −2.57145 + 14.5834i −0.107612 + 0.610297i 0.882533 + 0.470251i \(0.155836\pi\)
−0.990145 + 0.140047i \(0.955275\pi\)
\(572\) 21.1805 7.70908i 0.885602 0.322333i
\(573\) −32.8383 + 18.9592i −1.37184 + 0.792031i
\(574\) 0.121492 + 0.689016i 0.00507098 + 0.0287590i
\(575\) −7.57785 13.1252i −0.316018 0.547359i
\(576\) −2.29813 + 1.92836i −0.0957556 + 0.0803485i
\(577\) 16.0706 27.8351i 0.669027 1.15879i −0.309150 0.951013i \(-0.600044\pi\)
0.978177 0.207775i \(-0.0666222\pi\)
\(578\) 9.14455 + 3.32834i 0.380363 + 0.138441i
\(579\) 15.1723 41.6856i 0.630539 1.73239i
\(580\) 6.13429 + 5.14728i 0.254712 + 0.213729i
\(581\) 0.218941 + 0.183713i 0.00908320 + 0.00762171i
\(582\) −5.84389 + 1.03044i −0.242237 + 0.0427129i
\(583\) 25.4650 + 9.26849i 1.05465 + 0.383862i
\(584\) 5.20961 9.02330i 0.215575 0.373387i
\(585\) 18.7763 + 15.7552i 0.776305 + 0.651397i
\(586\) 4.91787 + 8.51800i 0.203155 + 0.351875i
\(587\) 4.75918 + 26.9907i 0.196432 + 1.11402i 0.910364 + 0.413808i \(0.135802\pi\)
−0.713932 + 0.700215i \(0.753087\pi\)
\(588\) 12.0992i 0.498961i
\(589\) −28.0540 + 10.2108i −1.15594 + 0.420729i
\(590\) 0.348641 1.97724i 0.0143533 0.0814016i
\(591\) −8.10700 22.2738i −0.333477 0.916222i
\(592\) 0.222811 0.186961i 0.00915748 0.00768404i
\(593\) 36.2377 1.48810 0.744052 0.668121i \(-0.232901\pi\)
0.744052 + 0.668121i \(0.232901\pi\)
\(594\) 19.0201 + 3.35375i 0.780403 + 0.137606i
\(595\) 0.840185 0.0344442
\(596\) −3.75490 + 3.15074i −0.153807 + 0.129059i
\(597\) 13.8050 16.4522i 0.565001 0.673342i
\(598\) −5.01114 + 28.4196i −0.204921 + 1.16216i
\(599\) −43.2438 + 15.7395i −1.76689 + 0.643097i −0.766895 + 0.641772i \(0.778199\pi\)
−0.999999 + 0.00132449i \(0.999578\pi\)
\(600\) −4.77719 2.75811i −0.195028 0.112599i
\(601\) 0.294673 + 1.67118i 0.0120200 + 0.0681687i 0.990228 0.139460i \(-0.0445366\pi\)
−0.978208 + 0.207628i \(0.933425\pi\)
\(602\) −0.0273411 0.0473563i −0.00111434 0.00193010i
\(603\) −9.95723 17.2464i −0.405490 0.702329i
\(604\) −0.865715 + 1.49946i −0.0352254 + 0.0610122i
\(605\) −3.56418 1.29725i −0.144904 0.0527409i
\(606\) −9.59539 11.4353i −0.389786 0.464529i
\(607\) −10.7779 9.04374i −0.437462 0.367074i 0.397297 0.917690i \(-0.369948\pi\)
−0.834758 + 0.550616i \(0.814393\pi\)
\(608\) 4.53596 + 3.80612i 0.183957 + 0.154359i
\(609\) −0.798133 0.951178i −0.0323420 0.0385437i
\(610\) −4.78699 1.74232i −0.193820 0.0705445i
\(611\) −2.34477 + 4.06126i −0.0948592 + 0.164301i
\(612\) −7.75537 13.4327i −0.313492 0.542984i
\(613\) 12.8314 + 22.2246i 0.518256 + 0.897645i 0.999775 + 0.0212096i \(0.00675172\pi\)
−0.481520 + 0.876435i \(0.659915\pi\)
\(614\) −2.35504 13.3561i −0.0950416 0.539007i
\(615\) −11.7228 6.76817i −0.472709 0.272919i
\(616\) −0.421274 + 0.153331i −0.0169736 + 0.00617789i
\(617\) 5.46822 31.0118i 0.220142 1.24849i −0.651615 0.758550i \(-0.725908\pi\)
0.871757 0.489938i \(-0.162981\pi\)
\(618\) −2.43242 + 2.89884i −0.0978462 + 0.116609i
\(619\) −2.42674 + 2.03627i −0.0975388 + 0.0818448i −0.690253 0.723568i \(-0.742501\pi\)
0.592714 + 0.805413i \(0.298056\pi\)
\(620\) −6.79292 −0.272810
\(621\) −15.8944 + 18.9422i −0.637820 + 0.760125i
\(622\) 10.5767 0.424086
\(623\) 0.200522 0.168258i 0.00803376 0.00674113i
\(624\) 3.59240 + 9.87003i 0.143811 + 0.395117i
\(625\) 0.185259 1.05066i 0.00741037 0.0420263i
\(626\) −10.0544 + 3.65949i −0.401854 + 0.146263i
\(627\) 38.1201i 1.52237i
\(628\) −1.00980 5.72686i −0.0402954 0.228527i
\(629\) 0.751907 + 1.30234i 0.0299805 + 0.0519277i
\(630\) −0.373455 0.313366i −0.0148788 0.0124848i
\(631\) −11.2961 + 19.5654i −0.449690 + 0.778885i −0.998366 0.0571498i \(-0.981799\pi\)
0.548676 + 0.836035i \(0.315132\pi\)
\(632\) 13.1493 + 4.78595i 0.523051 + 0.190375i
\(633\) −25.3175 + 4.46416i −1.00628 + 0.177434i
\(634\) −22.3537 18.7570i −0.887779 0.744935i
\(635\) −5.92333 4.97027i −0.235060 0.197239i
\(636\) −4.31908 + 11.8666i −0.171263 + 0.470540i
\(637\) −39.8063 14.4883i −1.57718 0.574048i
\(638\) 11.0458 19.1318i 0.437306 0.757436i
\(639\) −13.2010 + 11.0769i −0.522223 + 0.438197i
\(640\) 0.673648 + 1.16679i 0.0266283 + 0.0461215i
\(641\) −3.04323 17.2590i −0.120200 0.681691i −0.984043 0.177929i \(-0.943060\pi\)
0.863843 0.503761i \(-0.168051\pi\)
\(642\) 15.4363 8.91215i 0.609222 0.351734i
\(643\) 26.4923 9.64241i 1.04475 0.380260i 0.238074 0.971247i \(-0.423484\pi\)
0.806681 + 0.590987i \(0.201262\pi\)
\(644\) 0.0996702 0.565258i 0.00392756 0.0222743i
\(645\) 1.04189 + 0.183713i 0.0410243 + 0.00723370i
\(646\) −23.4520 + 19.6786i −0.922707 + 0.774243i
\(647\) 32.3492 1.27178 0.635888 0.771781i \(-0.280634\pi\)
0.635888 + 0.771781i \(0.280634\pi\)
\(648\) −1.56283 + 8.86327i −0.0613939 + 0.348182i
\(649\) −5.53890 −0.217421
\(650\) −14.7947 + 12.4143i −0.580297 + 0.486927i
\(651\) 1.03730 + 0.182905i 0.0406551 + 0.00716860i
\(652\) −0.470437 + 2.66798i −0.0184237 + 0.104486i
\(653\) 25.9329 9.43880i 1.01483 0.369369i 0.219546 0.975602i \(-0.429543\pi\)
0.795287 + 0.606234i \(0.207320\pi\)
\(654\) 16.6373 9.60554i 0.650569 0.375606i
\(655\) 4.02869 + 22.8478i 0.157414 + 0.892738i
\(656\) −2.90033 5.02352i −0.113239 0.196135i
\(657\) −5.42783 30.7828i −0.211760 1.20095i
\(658\) 0.0466368 0.0807773i 0.00181809 0.00314903i
\(659\) 4.90508 + 1.78530i 0.191075 + 0.0695455i 0.435785 0.900051i \(-0.356471\pi\)
−0.244711 + 0.969596i \(0.578693\pi\)
\(660\) 2.96657 8.15058i 0.115473 0.317261i
\(661\) −36.7294 30.8196i −1.42861 1.19875i −0.946529 0.322618i \(-0.895437\pi\)
−0.482080 0.876127i \(-0.660119\pi\)
\(662\) 5.59105 + 4.69145i 0.217302 + 0.182338i
\(663\) −53.4805 + 9.43005i −2.07701 + 0.366233i
\(664\) −2.22668 0.810446i −0.0864120 0.0314514i
\(665\) −0.481115 + 0.833315i −0.0186568 + 0.0323146i
\(666\) 0.151522 0.859322i 0.00587134 0.0332980i
\(667\) 14.1420 + 24.4947i 0.547581 + 0.948439i
\(668\) −4.27244 24.2302i −0.165306 0.937495i
\(669\) 11.6592i 0.450770i
\(670\) −8.40420 + 3.05888i −0.324683 + 0.118175i
\(671\) −2.44041 + 13.8402i −0.0942109 + 0.534297i
\(672\) −0.0714517 0.196312i −0.00275631 0.00757290i
\(673\) −8.51960 + 7.14879i −0.328406 + 0.275566i −0.792050 0.610456i \(-0.790986\pi\)
0.463644 + 0.886022i \(0.346542\pi\)
\(674\) 1.62361 0.0625390
\(675\) −16.2973 + 2.87365i −0.627282 + 0.110607i
\(676\) 23.7743 0.914394
\(677\) −36.9550 + 31.0089i −1.42030 + 1.19177i −0.469115 + 0.883137i \(0.655427\pi\)
−0.951181 + 0.308633i \(0.900128\pi\)
\(678\) 6.59539 7.86008i 0.253294 0.301865i
\(679\) 0.0717564 0.406951i 0.00275376 0.0156173i
\(680\) −6.54576 + 2.38246i −0.251018 + 0.0913632i
\(681\) −21.7429 12.5533i −0.833189 0.481042i
\(682\) 3.25418 + 18.4554i 0.124609 + 0.706694i
\(683\) −6.60401 11.4385i −0.252695 0.437681i 0.711572 0.702614i \(-0.247984\pi\)
−0.964267 + 0.264932i \(0.914650\pi\)
\(684\) 17.7638 0.679217
\(685\) −0.0582480 + 0.100888i −0.00222554 + 0.00385475i
\(686\) 1.58512 + 0.576937i 0.0605203 + 0.0220276i
\(687\) 28.7098 + 34.2150i 1.09535 + 1.30538i
\(688\) 0.347296 + 0.291416i 0.0132405 + 0.0111101i
\(689\) 33.8692 + 28.4196i 1.29031 + 1.08270i
\(690\) 7.13816 + 8.50692i 0.271745 + 0.323853i
\(691\) 9.37211 + 3.41117i 0.356532 + 0.129767i 0.514075 0.857745i \(-0.328135\pi\)
−0.157543 + 0.987512i \(0.550357\pi\)
\(692\) 5.36097 9.28547i 0.203793 0.352980i
\(693\) −0.672466 + 1.16475i −0.0255449 + 0.0442450i
\(694\) −2.73442 4.73616i −0.103797 0.179782i
\(695\) −4.29607 24.3642i −0.162959 0.924189i
\(696\) 8.91534 + 5.14728i 0.337935 + 0.195107i
\(697\) 28.1822 10.2575i 1.06748 0.388529i
\(698\) −0.538019 + 3.05126i −0.0203643 + 0.115492i
\(699\) −11.5753 + 13.7949i −0.437819 + 0.521772i
\(700\) 0.294263 0.246916i 0.0111221 0.00933254i
\(701\) 46.7588 1.76605 0.883027 0.469322i \(-0.155502\pi\)
0.883027 + 0.469322i \(0.155502\pi\)
\(702\) 27.2888 + 15.7552i 1.02995 + 0.594642i
\(703\) −1.72226 −0.0649562
\(704\) 2.84730 2.38917i 0.107312 0.0900451i
\(705\) 0.617211 + 1.69577i 0.0232455 + 0.0638665i
\(706\) −0.0530334 + 0.300767i −0.00199594 + 0.0113195i
\(707\) 0.976834 0.355538i 0.0367376 0.0133714i
\(708\) 2.58110i 0.0970037i
\(709\) −6.56907 37.2550i −0.246707 1.39914i −0.816496 0.577351i \(-0.804086\pi\)
0.569789 0.821791i \(-0.307025\pi\)
\(710\) 3.86959 + 6.70232i 0.145223 + 0.251534i
\(711\) 39.4479 14.3579i 1.47941 0.538462i
\(712\) −1.08512 + 1.87949i −0.0406667 + 0.0704368i
\(713\) −22.5462 8.20616i −0.844363 0.307323i
\(714\) 1.06371 0.187561i 0.0398084 0.00701929i
\(715\) −23.2631 19.5201i −0.869991 0.730009i
\(716\) −10.6061 8.89955i −0.396367 0.332592i
\(717\) −13.5744 + 37.2955i −0.506947 + 1.39283i
\(718\) 9.93242 + 3.61510i 0.370675 + 0.134915i
\(719\) −1.65048 + 2.85872i −0.0615526 + 0.106612i −0.895160 0.445746i \(-0.852939\pi\)
0.833607 + 0.552358i \(0.186272\pi\)
\(720\) 3.79813 + 1.38241i 0.141548 + 0.0515193i
\(721\) −0.131759 0.228213i −0.00490697 0.00849911i
\(722\) −2.78905 15.8175i −0.103798 0.588666i
\(723\) −18.1155 + 10.4590i −0.673721 + 0.388973i
\(724\) −3.29813 + 1.20042i −0.122574 + 0.0446133i
\(725\) −3.28699 + 18.6414i −0.122076 + 0.692326i
\(726\) −4.80200 0.846723i −0.178219 0.0314248i
\(727\) −16.0548 + 13.4716i −0.595441 + 0.499635i −0.889977 0.456006i \(-0.849280\pi\)
0.294535 + 0.955641i \(0.404835\pi\)
\(728\) −0.731429 −0.0271086
\(729\) 13.5000 + 23.3827i 0.500000 + 0.866025i
\(730\) −14.0378 −0.519561
\(731\) −1.79561 + 1.50669i −0.0664129 + 0.0557271i
\(732\) −6.44949 1.13722i −0.238380 0.0420328i
\(733\) −3.11943 + 17.6912i −0.115219 + 0.653439i 0.871423 + 0.490533i \(0.163198\pi\)
−0.986642 + 0.162906i \(0.947913\pi\)
\(734\) 2.51842 0.916629i 0.0929565 0.0338334i
\(735\) −14.1172 + 8.15058i −0.520721 + 0.300639i
\(736\) 0.826352 + 4.68647i 0.0304597 + 0.172746i
\(737\) 12.3366 + 21.3677i 0.454425 + 0.787088i
\(738\) −16.3525 5.95183i −0.601944 0.219090i
\(739\) 19.6630 34.0573i 0.723314 1.25282i −0.236350 0.971668i \(-0.575951\pi\)
0.959664 0.281149i \(-0.0907154\pi\)
\(740\) −0.368241 0.134029i −0.0135368 0.00492699i
\(741\) 21.2716 58.4431i 0.781430 2.14696i
\(742\) −0.673648 0.565258i −0.0247304 0.0207513i
\(743\) −35.7957 30.0361i −1.31322 1.10192i −0.987696 0.156383i \(-0.950017\pi\)
−0.325519 0.945535i \(-0.605539\pi\)
\(744\) −8.60014 + 1.51644i −0.315296 + 0.0555952i
\(745\) 6.20574 + 2.25870i 0.227361 + 0.0827525i
\(746\) 12.1853 21.1055i 0.446134 0.772727i
\(747\) −6.68004 + 2.43134i −0.244410 + 0.0889580i
\(748\) 9.60859 + 16.6426i 0.351325 + 0.608513i
\(749\) 0.215537 + 1.22237i 0.00787556 + 0.0446645i
\(750\) 19.0999i 0.697430i
\(751\) 31.3184 11.3990i 1.14282 0.415954i 0.299891 0.953973i \(-0.403050\pi\)
0.842932 + 0.538020i \(0.180827\pi\)
\(752\) −0.134285 + 0.761570i −0.00489688 + 0.0277716i
\(753\) 8.32136 + 22.8627i 0.303247 + 0.833164i
\(754\) 27.6104 23.1679i 1.00551 0.843724i
\(755\) 2.33275 0.0848974
\(756\) −0.542766 0.313366i −0.0197402 0.0113970i
\(757\) 32.3354 1.17525 0.587626 0.809133i \(-0.300063\pi\)
0.587626 + 0.809133i \(0.300063\pi\)
\(758\) 3.13041 2.62673i 0.113702 0.0954071i
\(759\) 19.6925 23.4686i 0.714794 0.851858i
\(760\) 1.38532 7.85651i 0.0502507 0.284986i
\(761\) −1.81521 + 0.660681i −0.0658012 + 0.0239497i −0.374711 0.927142i \(-0.622258\pi\)
0.308910 + 0.951091i \(0.400036\pi\)
\(762\) −8.60876 4.97027i −0.311862 0.180054i
\(763\) 0.232307 + 1.31748i 0.00841007 + 0.0476959i
\(764\) 10.9461 + 18.9592i 0.396016 + 0.685919i