Properties

Label 54.2.c.a.19.1
Level $54$
Weight $2$
Character 54.19
Analytic conductor $0.431$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,2,Mod(19,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 54.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.431192170915\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 19.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 54.19
Dual form 54.2.c.a.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.00000 + 1.73205i) q^{7} -1.00000 q^{8} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.00000 + 1.73205i) q^{7} -1.00000 q^{8} +(-1.50000 + 2.59808i) q^{11} +(-1.00000 - 1.73205i) q^{13} +(1.00000 + 1.73205i) q^{14} +(-0.500000 + 0.866025i) q^{16} +3.00000 q^{17} -1.00000 q^{19} +(1.50000 + 2.59808i) q^{22} +(-3.00000 - 5.19615i) q^{23} +(2.50000 - 4.33013i) q^{25} -2.00000 q^{26} +2.00000 q^{28} +(3.00000 - 5.19615i) q^{29} +(2.00000 + 3.46410i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.50000 - 2.59808i) q^{34} -4.00000 q^{37} +(-0.500000 + 0.866025i) q^{38} +(4.50000 + 7.79423i) q^{41} +(0.500000 - 0.866025i) q^{43} +3.00000 q^{44} -6.00000 q^{46} +(-3.00000 + 5.19615i) q^{47} +(1.50000 + 2.59808i) q^{49} +(-2.50000 - 4.33013i) q^{50} +(-1.00000 + 1.73205i) q^{52} -12.0000 q^{53} +(1.00000 - 1.73205i) q^{56} +(-3.00000 - 5.19615i) q^{58} +(1.50000 + 2.59808i) q^{59} +(-4.00000 + 6.92820i) q^{61} +4.00000 q^{62} +1.00000 q^{64} +(-2.50000 - 4.33013i) q^{67} +(-1.50000 - 2.59808i) q^{68} +12.0000 q^{71} +11.0000 q^{73} +(-2.00000 + 3.46410i) q^{74} +(0.500000 + 0.866025i) q^{76} +(-3.00000 - 5.19615i) q^{77} +(2.00000 - 3.46410i) q^{79} +9.00000 q^{82} +(6.00000 - 10.3923i) q^{83} +(-0.500000 - 0.866025i) q^{86} +(1.50000 - 2.59808i) q^{88} -6.00000 q^{89} +4.00000 q^{91} +(-3.00000 + 5.19615i) q^{92} +(3.00000 + 5.19615i) q^{94} +(-2.50000 + 4.33013i) q^{97} +3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 2 q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - q^{4} - 2 q^{7} - 2 q^{8} - 3 q^{11} - 2 q^{13} + 2 q^{14} - q^{16} + 6 q^{17} - 2 q^{19} + 3 q^{22} - 6 q^{23} + 5 q^{25} - 4 q^{26} + 4 q^{28} + 6 q^{29} + 4 q^{31} + q^{32} + 3 q^{34} - 8 q^{37} - q^{38} + 9 q^{41} + q^{43} + 6 q^{44} - 12 q^{46} - 6 q^{47} + 3 q^{49} - 5 q^{50} - 2 q^{52} - 24 q^{53} + 2 q^{56} - 6 q^{58} + 3 q^{59} - 8 q^{61} + 8 q^{62} + 2 q^{64} - 5 q^{67} - 3 q^{68} + 24 q^{71} + 22 q^{73} - 4 q^{74} + q^{76} - 6 q^{77} + 4 q^{79} + 18 q^{82} + 12 q^{83} - q^{86} + 3 q^{88} - 12 q^{89} + 8 q^{91} - 6 q^{92} + 6 q^{94} - 5 q^{97} + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) −1.00000 + 1.73205i −0.377964 + 0.654654i −0.990766 0.135583i \(-0.956709\pi\)
0.612801 + 0.790237i \(0.290043\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 0 0
\(13\) −1.00000 1.73205i −0.277350 0.480384i 0.693375 0.720577i \(-0.256123\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 1.00000 + 1.73205i 0.267261 + 0.462910i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.50000 + 2.59808i 0.319801 + 0.553912i
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) 3.00000 5.19615i 0.557086 0.964901i −0.440652 0.897678i \(-0.645253\pi\)
0.997738 0.0672232i \(-0.0214140\pi\)
\(30\) 0 0
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.50000 2.59808i 0.257248 0.445566i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) −0.500000 + 0.866025i −0.0811107 + 0.140488i
\(39\) 0 0
\(40\) 0 0
\(41\) 4.50000 + 7.79423i 0.702782 + 1.21725i 0.967486 + 0.252924i \(0.0813924\pi\)
−0.264704 + 0.964330i \(0.585274\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) −2.50000 4.33013i −0.353553 0.612372i
\(51\) 0 0
\(52\) −1.00000 + 1.73205i −0.138675 + 0.240192i
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000 1.73205i 0.133631 0.231455i
\(57\) 0 0
\(58\) −3.00000 5.19615i −0.393919 0.682288i
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −2.50000 4.33013i −0.305424 0.529009i 0.671932 0.740613i \(-0.265465\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) −1.50000 2.59808i −0.181902 0.315063i
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) −2.00000 + 3.46410i −0.232495 + 0.402694i
\(75\) 0 0
\(76\) 0.500000 + 0.866025i 0.0573539 + 0.0993399i
\(77\) −3.00000 5.19615i −0.341882 0.592157i
\(78\) 0 0
\(79\) 2.00000 3.46410i 0.225018 0.389742i −0.731307 0.682048i \(-0.761089\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.00000 0.993884
\(83\) 6.00000 10.3923i 0.658586 1.14070i −0.322396 0.946605i \(-0.604488\pi\)
0.980982 0.194099i \(-0.0621783\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.500000 0.866025i −0.0539164 0.0933859i
\(87\) 0 0
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) −3.00000 + 5.19615i −0.312772 + 0.541736i
\(93\) 0 0
\(94\) 3.00000 + 5.19615i 0.309426 + 0.535942i
\(95\) 0 0
\(96\) 0 0
\(97\) −2.50000 + 4.33013i −0.253837 + 0.439658i −0.964579 0.263795i \(-0.915026\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) −7.00000 12.1244i −0.689730 1.19465i −0.971925 0.235291i \(-0.924396\pi\)
0.282194 0.959357i \(-0.408938\pi\)
\(104\) 1.00000 + 1.73205i 0.0980581 + 0.169842i
\(105\) 0 0
\(106\) −6.00000 + 10.3923i −0.582772 + 1.00939i
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.00000 1.73205i −0.0944911 0.163663i
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) 3.00000 0.276172
\(119\) −3.00000 + 5.19615i −0.275010 + 0.476331i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 4.00000 + 6.92820i 0.362143 + 0.627250i
\(123\) 0 0
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 1.00000 1.73205i 0.0867110 0.150188i
\(134\) −5.00000 −0.431934
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) −1.50000 + 2.59808i −0.128154 + 0.221969i −0.922961 0.384893i \(-0.874238\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(138\) 0 0
\(139\) 9.50000 + 16.4545i 0.805779 + 1.39565i 0.915764 + 0.401718i \(0.131587\pi\)
−0.109984 + 0.993933i \(0.535080\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.00000 10.3923i 0.503509 0.872103i
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 0 0
\(146\) 5.50000 9.52628i 0.455183 0.788400i
\(147\) 0 0
\(148\) 2.00000 + 3.46410i 0.164399 + 0.284747i
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) 1.00000 0.0811107
\(153\) 0 0
\(154\) −6.00000 −0.483494
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 + 3.46410i 0.159617 + 0.276465i 0.934731 0.355357i \(-0.115641\pi\)
−0.775113 + 0.631822i \(0.782307\pi\)
\(158\) −2.00000 3.46410i −0.159111 0.275589i
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 4.50000 7.79423i 0.351391 0.608627i
\(165\) 0 0
\(166\) −6.00000 10.3923i −0.465690 0.806599i
\(167\) −6.00000 10.3923i −0.464294 0.804181i 0.534875 0.844931i \(-0.320359\pi\)
−0.999169 + 0.0407502i \(0.987025\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.00000 −0.0762493
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) 5.00000 + 8.66025i 0.377964 + 0.654654i
\(176\) −1.50000 2.59808i −0.113067 0.195837i
\(177\) 0 0
\(178\) −3.00000 + 5.19615i −0.224860 + 0.389468i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 2.00000 3.46410i 0.148250 0.256776i
\(183\) 0 0
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) 0 0
\(186\) 0 0
\(187\) −4.50000 + 7.79423i −0.329073 + 0.569970i
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 0 0
\(191\) −9.00000 + 15.5885i −0.651217 + 1.12794i 0.331611 + 0.943416i \(0.392408\pi\)
−0.982828 + 0.184525i \(0.940925\pi\)
\(192\) 0 0
\(193\) −2.50000 4.33013i −0.179954 0.311689i 0.761911 0.647682i \(-0.224262\pi\)
−0.941865 + 0.335993i \(0.890928\pi\)
\(194\) 2.50000 + 4.33013i 0.179490 + 0.310885i
\(195\) 0 0
\(196\) 1.50000 2.59808i 0.107143 0.185577i
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) −2.50000 + 4.33013i −0.176777 + 0.306186i
\(201\) 0 0
\(202\) 0 0
\(203\) 6.00000 + 10.3923i 0.421117 + 0.729397i
\(204\) 0 0
\(205\) 0 0
\(206\) −14.0000 −0.975426
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 1.50000 2.59808i 0.103757 0.179713i
\(210\) 0 0
\(211\) −10.0000 17.3205i −0.688428 1.19239i −0.972346 0.233544i \(-0.924968\pi\)
0.283918 0.958849i \(-0.408366\pi\)
\(212\) 6.00000 + 10.3923i 0.412082 + 0.713746i
\(213\) 0 0
\(214\) −1.50000 + 2.59808i −0.102538 + 0.177601i
\(215\) 0 0
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) −8.00000 + 13.8564i −0.541828 + 0.938474i
\(219\) 0 0
\(220\) 0 0
\(221\) −3.00000 5.19615i −0.201802 0.349531i
\(222\) 0 0
\(223\) −13.0000 + 22.5167i −0.870544 + 1.50783i −0.00910984 + 0.999959i \(0.502900\pi\)
−0.861435 + 0.507869i \(0.830434\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) 10.5000 18.1865i 0.696909 1.20708i −0.272623 0.962121i \(-0.587891\pi\)
0.969533 0.244962i \(-0.0787754\pi\)
\(228\) 0 0
\(229\) −7.00000 12.1244i −0.462573 0.801200i 0.536515 0.843891i \(-0.319740\pi\)
−0.999088 + 0.0426906i \(0.986407\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.00000 + 5.19615i −0.196960 + 0.341144i
\(233\) −3.00000 −0.196537 −0.0982683 0.995160i \(-0.531330\pi\)
−0.0982683 + 0.995160i \(0.531330\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.50000 2.59808i 0.0976417 0.169120i
\(237\) 0 0
\(238\) 3.00000 + 5.19615i 0.194461 + 0.336817i
\(239\) 3.00000 + 5.19615i 0.194054 + 0.336111i 0.946590 0.322440i \(-0.104503\pi\)
−0.752536 + 0.658551i \(0.771170\pi\)
\(240\) 0 0
\(241\) 3.50000 6.06218i 0.225455 0.390499i −0.731001 0.682376i \(-0.760947\pi\)
0.956456 + 0.291877i \(0.0942799\pi\)
\(242\) 2.00000 0.128565
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 1.00000 + 1.73205i 0.0636285 + 0.110208i
\(248\) −2.00000 3.46410i −0.127000 0.219971i
\(249\) 0 0
\(250\) 0 0
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 1.00000 1.73205i 0.0627456 0.108679i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −10.5000 18.1865i −0.654972 1.13444i −0.981901 0.189396i \(-0.939347\pi\)
0.326929 0.945049i \(-0.393986\pi\)
\(258\) 0 0
\(259\) 4.00000 6.92820i 0.248548 0.430498i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.00000 15.5885i 0.554964 0.961225i −0.442943 0.896550i \(-0.646065\pi\)
0.997906 0.0646755i \(-0.0206012\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.00000 1.73205i −0.0613139 0.106199i
\(267\) 0 0
\(268\) −2.50000 + 4.33013i −0.152712 + 0.264505i
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) −1.50000 + 2.59808i −0.0909509 + 0.157532i
\(273\) 0 0
\(274\) 1.50000 + 2.59808i 0.0906183 + 0.156956i
\(275\) 7.50000 + 12.9904i 0.452267 + 0.783349i
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 19.0000 1.13954
\(279\) 0 0
\(280\) 0 0
\(281\) 3.00000 5.19615i 0.178965 0.309976i −0.762561 0.646916i \(-0.776058\pi\)
0.941526 + 0.336939i \(0.109392\pi\)
\(282\) 0 0
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 0 0
\(286\) 3.00000 5.19615i 0.177394 0.307255i
\(287\) −18.0000 −1.06251
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) −5.50000 9.52628i −0.321863 0.557483i
\(293\) 15.0000 + 25.9808i 0.876309 + 1.51781i 0.855361 + 0.518032i \(0.173335\pi\)
0.0209480 + 0.999781i \(0.493332\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) −6.00000 + 10.3923i −0.346989 + 0.601003i
\(300\) 0 0
\(301\) 1.00000 + 1.73205i 0.0576390 + 0.0998337i
\(302\) −5.00000 8.66025i −0.287718 0.498342i
\(303\) 0 0
\(304\) 0.500000 0.866025i 0.0286770 0.0496700i
\(305\) 0 0
\(306\) 0 0
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) −3.00000 + 5.19615i −0.170941 + 0.296078i
\(309\) 0 0
\(310\) 0 0
\(311\) −9.00000 15.5885i −0.510343 0.883940i −0.999928 0.0119847i \(-0.996185\pi\)
0.489585 0.871956i \(-0.337148\pi\)
\(312\) 0 0
\(313\) −14.5000 + 25.1147i −0.819588 + 1.41957i 0.0863973 + 0.996261i \(0.472465\pi\)
−0.905986 + 0.423308i \(0.860869\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) 6.00000 10.3923i 0.334367 0.579141i
\(323\) −3.00000 −0.166924
\(324\) 0 0
\(325\) −10.0000 −0.554700
\(326\) −2.00000 + 3.46410i −0.110770 + 0.191859i
\(327\) 0 0
\(328\) −4.50000 7.79423i −0.248471 0.430364i
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 0 0
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) −12.0000 −0.656611
\(335\) 0 0
\(336\) 0 0
\(337\) 0.500000 + 0.866025i 0.0272367 + 0.0471754i 0.879322 0.476227i \(-0.157996\pi\)
−0.852086 + 0.523402i \(0.824663\pi\)
\(338\) −4.50000 7.79423i −0.244768 0.423950i
\(339\) 0 0
\(340\) 0 0
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) −0.500000 + 0.866025i −0.0269582 + 0.0466930i
\(345\) 0 0
\(346\) 3.00000 + 5.19615i 0.161281 + 0.279347i
\(347\) 16.5000 + 28.5788i 0.885766 + 1.53419i 0.844833 + 0.535031i \(0.179700\pi\)
0.0409337 + 0.999162i \(0.486967\pi\)
\(348\) 0 0
\(349\) 8.00000 13.8564i 0.428230 0.741716i −0.568486 0.822693i \(-0.692471\pi\)
0.996716 + 0.0809766i \(0.0258039\pi\)
\(350\) 10.0000 0.534522
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) −10.5000 + 18.1865i −0.558859 + 0.967972i 0.438733 + 0.898617i \(0.355427\pi\)
−0.997592 + 0.0693543i \(0.977906\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3.00000 + 5.19615i 0.159000 + 0.275396i
\(357\) 0 0
\(358\) −6.00000 + 10.3923i −0.317110 + 0.549250i
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 7.00000 12.1244i 0.367912 0.637242i
\(363\) 0 0
\(364\) −2.00000 3.46410i −0.104828 0.181568i
\(365\) 0 0
\(366\) 0 0
\(367\) 14.0000 24.2487i 0.730794 1.26577i −0.225750 0.974185i \(-0.572483\pi\)
0.956544 0.291587i \(-0.0941834\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000 20.7846i 0.623009 1.07908i
\(372\) 0 0
\(373\) 17.0000 + 29.4449i 0.880227 + 1.52460i 0.851089 + 0.525022i \(0.175943\pi\)
0.0291379 + 0.999575i \(0.490724\pi\)
\(374\) 4.50000 + 7.79423i 0.232689 + 0.403030i
\(375\) 0 0
\(376\) 3.00000 5.19615i 0.154713 0.267971i
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 23.0000 1.18143 0.590715 0.806880i \(-0.298846\pi\)
0.590715 + 0.806880i \(0.298846\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 9.00000 + 15.5885i 0.460480 + 0.797575i
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.00000 −0.254493
\(387\) 0 0
\(388\) 5.00000 0.253837
\(389\) 9.00000 15.5885i 0.456318 0.790366i −0.542445 0.840091i \(-0.682501\pi\)
0.998763 + 0.0497253i \(0.0158346\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) −1.50000 2.59808i −0.0757614 0.131223i
\(393\) 0 0
\(394\) 6.00000 10.3923i 0.302276 0.523557i
\(395\) 0 0
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) −5.00000 + 8.66025i −0.250627 + 0.434099i
\(399\) 0 0
\(400\) 2.50000 + 4.33013i 0.125000 + 0.216506i
\(401\) −13.5000 23.3827i −0.674158 1.16768i −0.976714 0.214544i \(-0.931173\pi\)
0.302556 0.953131i \(-0.402160\pi\)
\(402\) 0 0
\(403\) 4.00000 6.92820i 0.199254 0.345118i
\(404\) 0 0
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 6.00000 10.3923i 0.297409 0.515127i
\(408\) 0 0
\(409\) −8.50000 14.7224i −0.420298 0.727977i 0.575670 0.817682i \(-0.304741\pi\)
−0.995968 + 0.0897044i \(0.971408\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −7.00000 + 12.1244i −0.344865 + 0.597324i
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 0 0
\(416\) 1.00000 1.73205i 0.0490290 0.0849208i
\(417\) 0 0
\(418\) −1.50000 2.59808i −0.0733674 0.127076i
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) −10.0000 + 17.3205i −0.487370 + 0.844150i −0.999895 0.0145228i \(-0.995377\pi\)
0.512524 + 0.858673i \(0.328710\pi\)
\(422\) −20.0000 −0.973585
\(423\) 0 0
\(424\) 12.0000 0.582772
\(425\) 7.50000 12.9904i 0.363803 0.630126i
\(426\) 0 0
\(427\) −8.00000 13.8564i −0.387147 0.670559i
\(428\) 1.50000 + 2.59808i 0.0725052 + 0.125583i
\(429\) 0 0
\(430\) 0 0
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) −4.00000 + 6.92820i −0.192006 + 0.332564i
\(435\) 0 0
\(436\) 8.00000 + 13.8564i 0.383131 + 0.663602i
\(437\) 3.00000 + 5.19615i 0.143509 + 0.248566i
\(438\) 0 0
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 1.50000 2.59808i 0.0712672 0.123438i −0.828190 0.560448i \(-0.810629\pi\)
0.899457 + 0.437009i \(0.143962\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 13.0000 + 22.5167i 0.615568 + 1.06619i
\(447\) 0 0
\(448\) −1.00000 + 1.73205i −0.0472456 + 0.0818317i
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) −27.0000 −1.27138
\(452\) 3.00000 5.19615i 0.141108 0.244406i
\(453\) 0 0
\(454\) −10.5000 18.1865i −0.492789 0.853536i
\(455\) 0 0
\(456\) 0 0
\(457\) −8.50000 + 14.7224i −0.397613 + 0.688686i −0.993431 0.114433i \(-0.963495\pi\)
0.595818 + 0.803120i \(0.296828\pi\)
\(458\) −14.0000 −0.654177
\(459\) 0 0
\(460\) 0 0
\(461\) −15.0000 + 25.9808i −0.698620 + 1.21004i 0.270326 + 0.962769i \(0.412869\pi\)
−0.968945 + 0.247276i \(0.920465\pi\)
\(462\) 0 0
\(463\) −10.0000 17.3205i −0.464739 0.804952i 0.534450 0.845200i \(-0.320519\pi\)
−0.999190 + 0.0402476i \(0.987185\pi\)
\(464\) 3.00000 + 5.19615i 0.139272 + 0.241225i
\(465\) 0 0
\(466\) −1.50000 + 2.59808i −0.0694862 + 0.120354i
\(467\) 15.0000 0.694117 0.347059 0.937843i \(-0.387180\pi\)
0.347059 + 0.937843i \(0.387180\pi\)
\(468\) 0 0
\(469\) 10.0000 0.461757
\(470\) 0 0
\(471\) 0 0
\(472\) −1.50000 2.59808i −0.0690431 0.119586i
\(473\) 1.50000 + 2.59808i 0.0689701 + 0.119460i
\(474\) 0 0
\(475\) −2.50000 + 4.33013i −0.114708 + 0.198680i
\(476\) 6.00000 0.275010
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) −21.0000 + 36.3731i −0.959514 + 1.66193i −0.235833 + 0.971794i \(0.575782\pi\)
−0.723681 + 0.690134i \(0.757551\pi\)
\(480\) 0 0
\(481\) 4.00000 + 6.92820i 0.182384 + 0.315899i
\(482\) −3.50000 6.06218i −0.159421 0.276125i
\(483\) 0 0
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) 0 0
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) 4.00000 6.92820i 0.181071 0.313625i
\(489\) 0 0
\(490\) 0 0
\(491\) −7.50000 12.9904i −0.338470 0.586248i 0.645675 0.763612i \(-0.276576\pi\)
−0.984145 + 0.177365i \(0.943243\pi\)
\(492\) 0 0
\(493\) 9.00000 15.5885i 0.405340 0.702069i
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −12.0000 + 20.7846i −0.538274 + 0.932317i
\(498\) 0 0
\(499\) 6.50000 + 11.2583i 0.290980 + 0.503992i 0.974042 0.226369i \(-0.0726854\pi\)
−0.683062 + 0.730361i \(0.739352\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −10.5000 + 18.1865i −0.468638 + 0.811705i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.00000 15.5885i 0.400099 0.692991i
\(507\) 0 0
\(508\) −1.00000 1.73205i −0.0443678 0.0768473i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) −11.0000 + 19.0526i −0.486611 + 0.842836i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −21.0000 −0.926270
\(515\) 0 0
\(516\) 0 0
\(517\) −9.00000 15.5885i −0.395820 0.685580i
\(518\) −4.00000 6.92820i −0.175750 0.304408i
\(519\) 0 0
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −9.00000 15.5885i −0.392419 0.679689i
\(527\) 6.00000 + 10.3923i 0.261364 + 0.452696i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) 9.00000 15.5885i 0.389833 0.675211i
\(534\) 0 0
\(535\) 0 0
\(536\) 2.50000 + 4.33013i 0.107984 + 0.187033i
\(537\) 0 0
\(538\) 12.0000 20.7846i 0.517357 0.896088i
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) −4.00000 −0.171973 −0.0859867 0.996296i \(-0.527404\pi\)
−0.0859867 + 0.996296i \(0.527404\pi\)
\(542\) 10.0000 17.3205i 0.429537 0.743980i
\(543\) 0 0
\(544\) 1.50000 + 2.59808i 0.0643120 + 0.111392i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.500000 0.866025i 0.0213785 0.0370286i −0.855138 0.518400i \(-0.826528\pi\)
0.876517 + 0.481371i \(0.159861\pi\)
\(548\) 3.00000 0.128154
\(549\) 0 0
\(550\) 15.0000 0.639602
\(551\) −3.00000 + 5.19615i −0.127804 + 0.221364i
\(552\) 0 0
\(553\) 4.00000 + 6.92820i 0.170097 + 0.294617i
\(554\) −5.00000 8.66025i −0.212430 0.367939i
\(555\) 0 0
\(556\) 9.50000 16.4545i 0.402890 0.697826i
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) −2.00000 −0.0845910
\(560\) 0 0
\(561\) 0 0
\(562\) −3.00000 5.19615i −0.126547 0.219186i
\(563\) −19.5000 33.7750i −0.821827 1.42345i −0.904320 0.426855i \(-0.859622\pi\)
0.0824933 0.996592i \(-0.473712\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) 22.5000 38.9711i 0.943249 1.63376i 0.184030 0.982921i \(-0.441086\pi\)
0.759220 0.650835i \(-0.225581\pi\)
\(570\) 0 0
\(571\) 18.5000 + 32.0429i 0.774201 + 1.34096i 0.935243 + 0.354008i \(0.115181\pi\)
−0.161042 + 0.986948i \(0.551485\pi\)
\(572\) −3.00000 5.19615i −0.125436 0.217262i
\(573\) 0 0
\(574\) −9.00000 + 15.5885i −0.375653 + 0.650650i
\(575\) −30.0000 −1.25109
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 0 0
\(580\) 0 0
\(581\) 12.0000 + 20.7846i 0.497844 + 0.862291i
\(582\) 0 0
\(583\) 18.0000 31.1769i 0.745484 1.29122i
\(584\) −11.0000 −0.455183
\(585\) 0 0
\(586\) 30.0000 1.23929
\(587\) −4.50000 + 7.79423i −0.185735 + 0.321702i −0.943824 0.330449i \(-0.892800\pi\)
0.758089 + 0.652151i \(0.226133\pi\)
\(588\) 0 0
\(589\) −2.00000 3.46410i −0.0824086 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) 2.00000 3.46410i 0.0821995 0.142374i
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 + 5.19615i −0.122885 + 0.212843i
\(597\) 0 0
\(598\) 6.00000 + 10.3923i 0.245358 + 0.424973i
\(599\) 6.00000 + 10.3923i 0.245153 + 0.424618i 0.962175 0.272433i \(-0.0878284\pi\)
−0.717021 + 0.697051i \(0.754495\pi\)
\(600\) 0 0
\(601\) 18.5000 32.0429i 0.754631 1.30706i −0.190927 0.981604i \(-0.561149\pi\)
0.945558 0.325455i \(-0.105517\pi\)
\(602\) 2.00000 0.0815139
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) 14.0000 + 24.2487i 0.568242 + 0.984225i 0.996740 + 0.0806818i \(0.0257098\pi\)
−0.428497 + 0.903543i \(0.640957\pi\)
\(608\) −0.500000 0.866025i −0.0202777 0.0351220i
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) −3.50000 + 6.06218i −0.141249 + 0.244650i
\(615\) 0 0
\(616\) 3.00000 + 5.19615i 0.120873 + 0.209359i
\(617\) 13.5000 + 23.3827i 0.543490 + 0.941351i 0.998700 + 0.0509678i \(0.0162306\pi\)
−0.455211 + 0.890384i \(0.650436\pi\)
\(618\) 0 0
\(619\) −17.5000 + 30.3109i −0.703384 + 1.21830i 0.263887 + 0.964554i \(0.414995\pi\)
−0.967271 + 0.253744i \(0.918338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −18.0000 −0.721734
\(623\) 6.00000 10.3923i 0.240385 0.416359i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 14.5000 + 25.1147i 0.579537 + 1.00379i
\(627\) 0 0
\(628\) 2.00000 3.46410i 0.0798087 0.138233i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) −2.00000 + 3.46410i −0.0795557 + 0.137795i
\(633\) 0 0
\(634\) 9.00000 + 15.5885i 0.357436 + 0.619097i
\(635\) 0 0
\(636\) 0 0
\(637\) 3.00000 5.19615i 0.118864 0.205879i
\(638\) 18.0000 0.712627
\(639\) 0 0
\(640\) 0 0
\(641\) −1.50000 + 2.59808i −0.0592464 + 0.102618i −0.894127 0.447813i \(-0.852203\pi\)
0.834881 + 0.550431i \(0.185536\pi\)
\(642\) 0 0
\(643\) −11.5000 19.9186i −0.453516 0.785512i 0.545086 0.838380i \(-0.316497\pi\)
−0.998602 + 0.0528680i \(0.983164\pi\)
\(644\) −6.00000 10.3923i −0.236433 0.409514i
\(645\) 0 0
\(646\) −1.50000 + 2.59808i −0.0590167 + 0.102220i
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) −5.00000 + 8.66025i −0.196116 + 0.339683i
\(651\) 0 0
\(652\) 2.00000 + 3.46410i 0.0783260 + 0.135665i
\(653\) −3.00000 5.19615i −0.117399 0.203341i 0.801337 0.598213i \(-0.204122\pi\)
−0.918736 + 0.394872i \(0.870789\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −9.00000 −0.351391
\(657\) 0 0
\(658\) −12.0000 −0.467809
\(659\) −18.0000 + 31.1769i −0.701180 + 1.21448i 0.266872 + 0.963732i \(0.414010\pi\)
−0.968052 + 0.250748i \(0.919323\pi\)
\(660\) 0 0
\(661\) 2.00000 + 3.46410i 0.0777910 + 0.134738i 0.902297 0.431116i \(-0.141880\pi\)
−0.824506 + 0.565854i \(0.808547\pi\)
\(662\) −2.00000 3.46410i −0.0777322 0.134636i
\(663\) 0 0
\(664\) −6.00000 + 10.3923i −0.232845 + 0.403300i
\(665\) 0 0
\(666\) 0 0
\(667\) −36.0000 −1.39393
\(668\) −6.00000 + 10.3923i −0.232147 + 0.402090i
\(669\) 0 0
\(670\) 0 0
\(671\) −12.0000 20.7846i −0.463255 0.802381i
\(672\) 0 0
\(673\) 11.0000 19.0526i 0.424019 0.734422i −0.572309 0.820038i \(-0.693952\pi\)
0.996328 + 0.0856156i \(0.0272857\pi\)
\(674\) 1.00000 0.0385186
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 18.0000 31.1769i 0.691796 1.19823i −0.279453 0.960159i \(-0.590153\pi\)
0.971249 0.238067i \(-0.0765137\pi\)
\(678\) 0 0
\(679\) −5.00000 8.66025i −0.191882 0.332350i
\(680\) 0 0
\(681\) 0 0
\(682\) −6.00000 + 10.3923i −0.229752 + 0.397942i
\(683\) 9.00000 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −10.0000 + 17.3205i −0.381802 + 0.661300i
\(687\) 0 0
\(688\) 0.500000 + 0.866025i 0.0190623 + 0.0330169i
\(689\) 12.0000 + 20.7846i 0.457164 + 0.791831i
\(690\) 0 0
\(691\) −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i \(-0.881959\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 33.0000 1.25266
\(695\) 0 0
\(696\) 0 0
\(697\) 13.5000 + 23.3827i 0.511349 + 0.885682i
\(698\) −8.00000 13.8564i −0.302804 0.524473i
\(699\) 0 0
\(700\) 5.00000 8.66025i 0.188982 0.327327i
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) −1.50000 + 2.59808i −0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) 10.5000 + 18.1865i 0.395173 + 0.684459i
\(707\) 0 0
\(708\) 0 0
\(709\) 2.00000 3.46410i 0.0751116 0.130097i −0.826023 0.563636i \(-0.809402\pi\)
0.901135 + 0.433539i \(0.142735\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 12.0000 20.7846i 0.449404 0.778390i
\(714\) 0 0
\(715\) 0 0
\(716\) 6.00000 + 10.3923i 0.224231 + 0.388379i
\(717\) 0 0
\(718\) 9.00000 15.5885i 0.335877 0.581756i
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) 28.0000 1.04277
\(722\) −9.00000 + 15.5885i −0.334945 + 0.580142i
\(723\) 0 0
\(724\) −7.00000 12.1244i −0.260153 0.450598i
\(725\) −15.0000 25.9808i −0.557086 0.964901i
\(726\) 0 0
\(727\) −13.0000 + 22.5167i −0.482143 + 0.835097i −0.999790 0.0204978i \(-0.993475\pi\)
0.517647 + 0.855595i \(0.326808\pi\)
\(728\) −4.00000 −0.148250
\(729\) 0 0
\(730\) 0 0
\(731\) 1.50000 2.59808i 0.0554795 0.0960933i
\(732\) 0 0
\(733\) −7.00000 12.1244i −0.258551 0.447823i 0.707303 0.706910i \(-0.249912\pi\)
−0.965854 + 0.259087i \(0.916578\pi\)
\(734\) −14.0000 24.2487i −0.516749 0.895036i
\(735\) 0 0
\(736\) 3.00000 5.19615i 0.110581 0.191533i
\(737\) 15.0000 0.552532
\(738\) 0 0
\(739\) 47.0000 1.72892 0.864461 0.502699i \(-0.167660\pi\)
0.864461 + 0.502699i \(0.167660\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12.0000 20.7846i −0.440534 0.763027i
\(743\) 3.00000 + 5.19615i 0.110059 + 0.190628i 0.915794 0.401648i \(-0.131563\pi\)
−0.805735 + 0.592277i \(0.798229\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 34.0000 1.24483
\(747\) 0 0
\(748\) 9.00000 0.329073
\(749\) 3.00000 5.19615i 0.109618 0.189863i
\(750\) 0 0
\(751\) −4.00000 6.92820i −0.145962 0.252814i 0.783769 0.621052i \(-0.213294\pi\)
−0.929731 + 0.368238i \(0.879961\pi\)
\(752\) −3.00000 5.19615i −0.109399 0.189484i
\(753\) 0 0
\(754\) −6.00000 + 10.3923i −0.218507 + 0.378465i
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 11.5000 19.9186i 0.417699 0.723476i
\(759\) 0 0
\(760\) 0 0
\(761\) 21.0000 + 36.3731i 0.761249 + 1.31852i 0.942207 + 0.335032i \(0.108747\pi\)
−0.180957 + 0.983491i \(0.557920\pi\)
\(762\) 0 0
\(763\) 16.0000 27.7128i 0.579239 1.00327i
\(764\) 18.0000 0.651217
\(765\) 0 0
\(766\) 0 0
\(767\) 3.00000 5.19615i 0.108324 0.187622i
\(768\) 0 0
\(769\) −1.00000 1.73205i −0.0360609 0.0624593i 0.847432 0.530904i \(-0.178148\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.50000 + 4.33013i −0.0899770 + 0.155845i
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 20.0000 0.718421
\(776\) 2.50000 4.33013i 0.0897448 0.155443i
\(777\) 0 0
\(778\) −9.00000 15.5885i −0.322666 0.558873i
\(779\) −4.50000 7.79423i −0.161229 0.279257i
\(780\) 0 0
\(781\) −18.0000 + 31.1769i −0.644091 + 1.11560i
\(782\) −18.0000 −0.643679
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) 2.00000 + 3.46410i 0.0712923 + 0.123482i 0.899468 0.436987i \(-0.143954\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(788\) −6.00000 10.3923i −0.213741 0.370211i
\(789\)