Properties

Label 54.13.b.b
Level $54$
Weight $13$
Character orbit 54.b
Analytic conductor $49.356$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,13,Mod(53,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 13, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.53");
 
S:= CuspForms(chi, 13);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 54.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.3556661329\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 9235x^{2} + 9236x + 21362886 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 2048 q^{4} + (\beta_{3} + 139 \beta_1) q^{5} + ( - \beta_{2} + 67871) q^{7} + 2048 \beta_1 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} - 2048 q^{4} + (\beta_{3} + 139 \beta_1) q^{5} + ( - \beta_{2} + 67871) q^{7} + 2048 \beta_1 q^{8} + (32 \beta_{2} + 284928) q^{10} + ( - 59 \beta_{3} + 3727 \beta_1) q^{11} + (211 \beta_{2} + 174071) q^{13} + (64 \beta_{3} - 67879 \beta_1) q^{14} + 4194304 q^{16} + (653 \beta_{3} - 355945 \beta_1) q^{17} + (802 \beta_{2} - 21969241) q^{19} + ( - 2048 \beta_{3} - 284672 \beta_1) q^{20} + ( - 1888 \beta_{2} + 7617792) q^{22} + (5411 \beta_{3} + 321665 \beta_1) q^{23} + ( - 8904 \beta_{2} - 226624751) q^{25} + ( - 13504 \beta_{3} - 172383 \beta_1) q^{26} + (2048 \beta_{2} - 138999808) q^{28} + (9106 \beta_{3} + 14836630 \beta_1) q^{29} + ( - 4296 \beta_{2} - 595633534) q^{31} - 4194304 \beta_1 q^{32} + (20896 \beta_{2} - 728808192) q^{34} + (58967 \beta_{3} - 4037467 \beta_1) q^{35} + (144785 \beta_{2} - 143321785) q^{37} + ( - 51328 \beta_{3} + 21975657 \beta_1) q^{38} + ( - 65536 \beta_{2} - 583532544) q^{40} + ( - 177818 \beta_{3} + 44146834 \beta_1) q^{41} + ( - 275352 \beta_{2} - 3779183086) q^{43} + (120832 \beta_{3} - 7632896 \beta_1) q^{44} + (173152 \beta_{2} + 660155136) q^{46} + (120597 \beta_{3} + 140053719 \beta_1) q^{47} + ( - 135742 \beta_{2} - 8372565024) q^{49} + (569856 \beta_{3} + 226553519 \beta_1) q^{50} + ( - 432128 \beta_{2} - 356497408) q^{52} + ( - 967730 \beta_{3} + 114882106 \beta_1) q^{53} + (143640 \beta_{2} + 24376536000) q^{55} + ( - 131072 \beta_{3} + 139016192 \beta_1) q^{56} + (291392 \beta_{2} + 30387749376) q^{58} + ( - 71857 \beta_{3} + 1396558109 \beta_1) q^{59} + (1595109 \beta_{2} + 14590716599) q^{61} + (274944 \beta_{3} + 595599166 \beta_1) q^{62} - 8589934592 q^{64} + (2052815 \beta_{3} + 2866689965 \beta_1) q^{65} + (652332 \beta_{2} + 77243788775) q^{67} + ( - 1337344 \beta_{3} + 728975360 \beta_1) q^{68} + (1886944 \beta_{2} - 8253636864) q^{70} + (3676340 \beta_{3} + 2566182476 \beta_1) q^{71} + ( - 7089354 \beta_{2} - 44717675857) q^{73} + ( - 9266240 \beta_{3} + 144480065 \beta_1) q^{74} + ( - 1642496 \beta_{2} + 44993005568) q^{76} + ( - 4242445 \beta_{3} + 1047871265 \beta_1) q^{77} + ( - 1331243 \beta_{2} - 226274792209) q^{79} + (4194304 \beta_{3} + 583008256 \beta_1) q^{80} + ( - 5690176 \beta_{2} + 90367194624) q^{82} + (15823242 \beta_{3} + 5549991342 \beta_1) q^{83} + (8480472 \beta_{2} - 180129033792) q^{85} + (17622528 \beta_{3} + 3776980270 \beta_1) q^{86} + (3866624 \beta_{2} - 15601238016) q^{88} + ( - 28598335 \beta_{3} + 7210389107 \beta_1) q^{89} + (14146710 \beta_{2} - 170120279255) q^{91} + ( - 11081728 \beta_{3} - 658769920 \beta_1) q^{92} + (3859104 \beta_{2} + 286860889344) q^{94} + ( - 14828233 \beta_{3} + 7750447373 \beta_1) q^{95} + (547846 \beta_{2} - 1417820309089) q^{97} + (8687488 \beta_{3} + 8371479088 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8192 q^{4} + 271484 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8192 q^{4} + 271484 q^{7} + 1139712 q^{10} + 696284 q^{13} + 16777216 q^{16} - 87876964 q^{19} + 30471168 q^{22} - 906499004 q^{25} - 555999232 q^{28} - 2382534136 q^{31} - 2915232768 q^{34} - 573287140 q^{37} - 2334130176 q^{40} - 15116732344 q^{43} + 2640620544 q^{46} - 33490260096 q^{49} - 1425989632 q^{52} + 97506144000 q^{55} + 121550997504 q^{58} + 58362866396 q^{61} - 34359738368 q^{64} + 308975155100 q^{67} - 33014547456 q^{70} - 178870703428 q^{73} + 179972022272 q^{76} - 905099168836 q^{79} + 361468778496 q^{82} - 720516135168 q^{85} - 62404952064 q^{88} - 680481117020 q^{91} + 1147443557376 q^{94} - 5671281236356 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 9235x^{2} + 9236x + 21362886 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 64\nu^{3} - 96\nu^{2} - 295264\nu + 147648 ) / 18489 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -288\nu^{3} + 432\nu^{2} + 3991104\nu - 1995624 ) / 6163 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8\nu^{3} + 1996800\nu^{2} - 2033720\nu - 9221259360 ) / 18489 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{2} + 27\beta _1 + 432 ) / 864 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{3} + \beta_{2} + 13\beta _1 + 1995192 ) / 432 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 12\beta_{3} + 9230\beta_{2} + 374205\beta _1 + 5985360 ) / 864 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
−67.4724 + 1.41421i
68.4724 + 1.41421i
68.4724 1.41421i
−67.4724 1.41421i
45.2548i 0 −2048.00 14467.5i 0 97235.1 92681.9i 0 −654723.
53.2 45.2548i 0 −2048.00 27059.6i 0 38506.9 92681.9i 0 1.22458e6
53.3 45.2548i 0 −2048.00 27059.6i 0 38506.9 92681.9i 0 1.22458e6
53.4 45.2548i 0 −2048.00 14467.5i 0 97235.1 92681.9i 0 −654723.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 54.13.b.b 4
3.b odd 2 1 inner 54.13.b.b 4
9.c even 3 2 162.13.d.c 8
9.d odd 6 2 162.13.d.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.13.b.b 4 1.a even 1 1 trivial
54.13.b.b 4 3.b odd 2 1 inner
162.13.d.c 8 9.c even 3 2
162.13.d.c 8 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 941530752T_{5}^{2} + 153259847530905600 \) acting on \(S_{13}^{\mathrm{new}}(54, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2048)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 941530752 T^{2} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T^{2} - 135742 T + 3744223105)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 3058161293952 T^{2} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{2} - 348142 T - 38357910879215)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 886383248261760 T^{2} + \cdots + 57\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( (T^{2} + 43938482 T - 71954800437263)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 17\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( (T^{2} + 1191267068 T + 33\!\cdots\!80)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 286643570 T - 18\!\cdots\!75)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 93\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{2} + 7558366172 T - 51\!\cdots\!48)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 15\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( (T^{2} - 29181433198 T - 19\!\cdots\!15)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 154487577550 T + 55\!\cdots\!61)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 58\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( (T^{2} + 89435351714 T - 41\!\cdots\!27)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 452549584418 T + 49\!\cdots\!17)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 20\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 60\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( (T^{2} + 2835640618178 T + 20\!\cdots\!45)^{2} \) Copy content Toggle raw display
show more
show less