Properties

Label 5390.2.a.q
Level $5390$
Weight $2$
Character orbit 5390.a
Self dual yes
Analytic conductor $43.039$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5390 = 2 \cdot 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5390.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(43.0393666895\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 770)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + 2q^{3} + q^{4} - q^{5} - 2q^{6} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + 2q^{3} + q^{4} - q^{5} - 2q^{6} - q^{8} + q^{9} + q^{10} + q^{11} + 2q^{12} - 2q^{15} + q^{16} - q^{18} - q^{20} - q^{22} - 4q^{23} - 2q^{24} + q^{25} - 4q^{27} + 2q^{29} + 2q^{30} + 2q^{31} - q^{32} + 2q^{33} + q^{36} - 6q^{37} + q^{40} - 8q^{41} - 12q^{43} + q^{44} - q^{45} + 4q^{46} + 6q^{47} + 2q^{48} - q^{50} - 6q^{53} + 4q^{54} - q^{55} - 2q^{58} + 10q^{59} - 2q^{60} + 4q^{61} - 2q^{62} + q^{64} - 2q^{66} - 8q^{67} - 8q^{69} - 4q^{71} - q^{72} + 4q^{73} + 6q^{74} + 2q^{75} - 16q^{79} - q^{80} - 11q^{81} + 8q^{82} + 12q^{86} + 4q^{87} - q^{88} + 6q^{89} + q^{90} - 4q^{92} + 4q^{93} - 6q^{94} - 2q^{96} - 14q^{97} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 2.00000 1.00000 −1.00000 −2.00000 0 −1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5390.2.a.q 1
7.b odd 2 1 770.2.a.b 1
21.c even 2 1 6930.2.a.s 1
28.d even 2 1 6160.2.a.p 1
35.c odd 2 1 3850.2.a.bb 1
35.f even 4 2 3850.2.c.p 2
77.b even 2 1 8470.2.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.a.b 1 7.b odd 2 1
3850.2.a.bb 1 35.c odd 2 1
3850.2.c.p 2 35.f even 4 2
5390.2.a.q 1 1.a even 1 1 trivial
6160.2.a.p 1 28.d even 2 1
6930.2.a.s 1 21.c even 2 1
8470.2.a.v 1 77.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5390))\):

\( T_{3} - 2 \)
\( T_{13} \)
\( T_{17} \)
\( T_{19} \)
\( T_{31} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( -2 + T \)
$5$ \( 1 + T \)
$7$ \( T \)
$11$ \( -1 + T \)
$13$ \( T \)
$17$ \( T \)
$19$ \( T \)
$23$ \( 4 + T \)
$29$ \( -2 + T \)
$31$ \( -2 + T \)
$37$ \( 6 + T \)
$41$ \( 8 + T \)
$43$ \( 12 + T \)
$47$ \( -6 + T \)
$53$ \( 6 + T \)
$59$ \( -10 + T \)
$61$ \( -4 + T \)
$67$ \( 8 + T \)
$71$ \( 4 + T \)
$73$ \( -4 + T \)
$79$ \( 16 + T \)
$83$ \( T \)
$89$ \( -6 + T \)
$97$ \( 14 + T \)
show more
show less