Properties

Label 5390.2.a.bp.1.2
Level $5390$
Weight $2$
Character 5390.1
Self dual yes
Analytic conductor $43.039$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5390,2,Mod(1,5390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5390, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5390.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5390 = 2 \cdot 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5390.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.0393666895\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 5390.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +3.37228 q^{3} +1.00000 q^{4} -1.00000 q^{5} -3.37228 q^{6} -1.00000 q^{8} +8.37228 q^{9} +1.00000 q^{10} -1.00000 q^{11} +3.37228 q^{12} -2.00000 q^{13} -3.37228 q^{15} +1.00000 q^{16} -1.37228 q^{17} -8.37228 q^{18} -0.627719 q^{19} -1.00000 q^{20} +1.00000 q^{22} +2.74456 q^{23} -3.37228 q^{24} +1.00000 q^{25} +2.00000 q^{26} +18.1168 q^{27} +1.37228 q^{29} +3.37228 q^{30} -3.37228 q^{31} -1.00000 q^{32} -3.37228 q^{33} +1.37228 q^{34} +8.37228 q^{36} +9.37228 q^{37} +0.627719 q^{38} -6.74456 q^{39} +1.00000 q^{40} +11.4891 q^{41} -4.00000 q^{43} -1.00000 q^{44} -8.37228 q^{45} -2.74456 q^{46} -2.74456 q^{47} +3.37228 q^{48} -1.00000 q^{50} -4.62772 q^{51} -2.00000 q^{52} -4.11684 q^{53} -18.1168 q^{54} +1.00000 q^{55} -2.11684 q^{57} -1.37228 q^{58} +2.74456 q^{59} -3.37228 q^{60} +5.37228 q^{61} +3.37228 q^{62} +1.00000 q^{64} +2.00000 q^{65} +3.37228 q^{66} +8.00000 q^{67} -1.37228 q^{68} +9.25544 q^{69} +10.1168 q^{71} -8.37228 q^{72} +15.4891 q^{73} -9.37228 q^{74} +3.37228 q^{75} -0.627719 q^{76} +6.74456 q^{78} -1.25544 q^{79} -1.00000 q^{80} +35.9783 q^{81} -11.4891 q^{82} +2.74456 q^{83} +1.37228 q^{85} +4.00000 q^{86} +4.62772 q^{87} +1.00000 q^{88} +1.37228 q^{89} +8.37228 q^{90} +2.74456 q^{92} -11.3723 q^{93} +2.74456 q^{94} +0.627719 q^{95} -3.37228 q^{96} +12.7446 q^{97} -8.37228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{5} - q^{6} - 2 q^{8} + 11 q^{9} + 2 q^{10} - 2 q^{11} + q^{12} - 4 q^{13} - q^{15} + 2 q^{16} + 3 q^{17} - 11 q^{18} - 7 q^{19} - 2 q^{20} + 2 q^{22} - 6 q^{23}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 3.37228 1.94699 0.973494 0.228714i \(-0.0734519\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) −3.37228 −1.37673
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 8.37228 2.79076
\(10\) 1.00000 0.316228
\(11\) −1.00000 −0.301511
\(12\) 3.37228 0.973494
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −3.37228 −0.870719
\(16\) 1.00000 0.250000
\(17\) −1.37228 −0.332827 −0.166414 0.986056i \(-0.553219\pi\)
−0.166414 + 0.986056i \(0.553219\pi\)
\(18\) −8.37228 −1.97337
\(19\) −0.627719 −0.144009 −0.0720043 0.997404i \(-0.522940\pi\)
−0.0720043 + 0.997404i \(0.522940\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 2.74456 0.572281 0.286140 0.958188i \(-0.407628\pi\)
0.286140 + 0.958188i \(0.407628\pi\)
\(24\) −3.37228 −0.688364
\(25\) 1.00000 0.200000
\(26\) 2.00000 0.392232
\(27\) 18.1168 3.48659
\(28\) 0 0
\(29\) 1.37228 0.254826 0.127413 0.991850i \(-0.459333\pi\)
0.127413 + 0.991850i \(0.459333\pi\)
\(30\) 3.37228 0.615692
\(31\) −3.37228 −0.605680 −0.302840 0.953041i \(-0.597935\pi\)
−0.302840 + 0.953041i \(0.597935\pi\)
\(32\) −1.00000 −0.176777
\(33\) −3.37228 −0.587039
\(34\) 1.37228 0.235344
\(35\) 0 0
\(36\) 8.37228 1.39538
\(37\) 9.37228 1.54079 0.770397 0.637565i \(-0.220058\pi\)
0.770397 + 0.637565i \(0.220058\pi\)
\(38\) 0.627719 0.101829
\(39\) −6.74456 −1.07999
\(40\) 1.00000 0.158114
\(41\) 11.4891 1.79430 0.897150 0.441726i \(-0.145634\pi\)
0.897150 + 0.441726i \(0.145634\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −1.00000 −0.150756
\(45\) −8.37228 −1.24807
\(46\) −2.74456 −0.404664
\(47\) −2.74456 −0.400336 −0.200168 0.979762i \(-0.564149\pi\)
−0.200168 + 0.979762i \(0.564149\pi\)
\(48\) 3.37228 0.486747
\(49\) 0 0
\(50\) −1.00000 −0.141421
\(51\) −4.62772 −0.648010
\(52\) −2.00000 −0.277350
\(53\) −4.11684 −0.565492 −0.282746 0.959195i \(-0.591245\pi\)
−0.282746 + 0.959195i \(0.591245\pi\)
\(54\) −18.1168 −2.46539
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) −2.11684 −0.280383
\(58\) −1.37228 −0.180189
\(59\) 2.74456 0.357312 0.178656 0.983912i \(-0.442825\pi\)
0.178656 + 0.983912i \(0.442825\pi\)
\(60\) −3.37228 −0.435360
\(61\) 5.37228 0.687850 0.343925 0.938997i \(-0.388243\pi\)
0.343925 + 0.938997i \(0.388243\pi\)
\(62\) 3.37228 0.428280
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 3.37228 0.415099
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −1.37228 −0.166414
\(69\) 9.25544 1.11422
\(70\) 0 0
\(71\) 10.1168 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(72\) −8.37228 −0.986683
\(73\) 15.4891 1.81286 0.906432 0.422351i \(-0.138795\pi\)
0.906432 + 0.422351i \(0.138795\pi\)
\(74\) −9.37228 −1.08951
\(75\) 3.37228 0.389398
\(76\) −0.627719 −0.0720043
\(77\) 0 0
\(78\) 6.74456 0.763671
\(79\) −1.25544 −0.141248 −0.0706239 0.997503i \(-0.522499\pi\)
−0.0706239 + 0.997503i \(0.522499\pi\)
\(80\) −1.00000 −0.111803
\(81\) 35.9783 3.99758
\(82\) −11.4891 −1.26876
\(83\) 2.74456 0.301255 0.150627 0.988591i \(-0.451871\pi\)
0.150627 + 0.988591i \(0.451871\pi\)
\(84\) 0 0
\(85\) 1.37228 0.148845
\(86\) 4.00000 0.431331
\(87\) 4.62772 0.496144
\(88\) 1.00000 0.106600
\(89\) 1.37228 0.145462 0.0727308 0.997352i \(-0.476829\pi\)
0.0727308 + 0.997352i \(0.476829\pi\)
\(90\) 8.37228 0.882516
\(91\) 0 0
\(92\) 2.74456 0.286140
\(93\) −11.3723 −1.17925
\(94\) 2.74456 0.283080
\(95\) 0.627719 0.0644026
\(96\) −3.37228 −0.344182
\(97\) 12.7446 1.29401 0.647007 0.762484i \(-0.276020\pi\)
0.647007 + 0.762484i \(0.276020\pi\)
\(98\) 0 0
\(99\) −8.37228 −0.841446
\(100\) 1.00000 0.100000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 4.62772 0.458212
\(103\) 9.48913 0.934991 0.467496 0.883995i \(-0.345156\pi\)
0.467496 + 0.883995i \(0.345156\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 4.11684 0.399863
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 18.1168 1.74329
\(109\) −15.4891 −1.48359 −0.741795 0.670627i \(-0.766025\pi\)
−0.741795 + 0.670627i \(0.766025\pi\)
\(110\) −1.00000 −0.0953463
\(111\) 31.6060 2.99991
\(112\) 0 0
\(113\) 3.25544 0.306246 0.153123 0.988207i \(-0.451067\pi\)
0.153123 + 0.988207i \(0.451067\pi\)
\(114\) 2.11684 0.198261
\(115\) −2.74456 −0.255932
\(116\) 1.37228 0.127413
\(117\) −16.7446 −1.54804
\(118\) −2.74456 −0.252657
\(119\) 0 0
\(120\) 3.37228 0.307846
\(121\) 1.00000 0.0909091
\(122\) −5.37228 −0.486383
\(123\) 38.7446 3.49348
\(124\) −3.37228 −0.302840
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −13.4891 −1.18765
\(130\) −2.00000 −0.175412
\(131\) −22.1168 −1.93236 −0.966179 0.257873i \(-0.916978\pi\)
−0.966179 + 0.257873i \(0.916978\pi\)
\(132\) −3.37228 −0.293519
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) −18.1168 −1.55925
\(136\) 1.37228 0.117672
\(137\) 8.74456 0.747098 0.373549 0.927610i \(-0.378141\pi\)
0.373549 + 0.927610i \(0.378141\pi\)
\(138\) −9.25544 −0.787875
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) −9.25544 −0.779448
\(142\) −10.1168 −0.848987
\(143\) 2.00000 0.167248
\(144\) 8.37228 0.697690
\(145\) −1.37228 −0.113962
\(146\) −15.4891 −1.28189
\(147\) 0 0
\(148\) 9.37228 0.770397
\(149\) 21.6060 1.77003 0.885015 0.465563i \(-0.154148\pi\)
0.885015 + 0.465563i \(0.154148\pi\)
\(150\) −3.37228 −0.275346
\(151\) −12.2337 −0.995563 −0.497782 0.867302i \(-0.665852\pi\)
−0.497782 + 0.867302i \(0.665852\pi\)
\(152\) 0.627719 0.0509147
\(153\) −11.4891 −0.928841
\(154\) 0 0
\(155\) 3.37228 0.270868
\(156\) −6.74456 −0.539997
\(157\) −9.37228 −0.747989 −0.373995 0.927431i \(-0.622012\pi\)
−0.373995 + 0.927431i \(0.622012\pi\)
\(158\) 1.25544 0.0998772
\(159\) −13.8832 −1.10101
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) −35.9783 −2.82672
\(163\) −5.88316 −0.460804 −0.230402 0.973095i \(-0.574004\pi\)
−0.230402 + 0.973095i \(0.574004\pi\)
\(164\) 11.4891 0.897150
\(165\) 3.37228 0.262532
\(166\) −2.74456 −0.213019
\(167\) 4.62772 0.358104 0.179052 0.983840i \(-0.442697\pi\)
0.179052 + 0.983840i \(0.442697\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −1.37228 −0.105249
\(171\) −5.25544 −0.401893
\(172\) −4.00000 −0.304997
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) −4.62772 −0.350826
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 9.25544 0.695681
\(178\) −1.37228 −0.102857
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) −8.37228 −0.624033
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 18.1168 1.33924
\(184\) −2.74456 −0.202332
\(185\) −9.37228 −0.689064
\(186\) 11.3723 0.833856
\(187\) 1.37228 0.100351
\(188\) −2.74456 −0.200168
\(189\) 0 0
\(190\) −0.627719 −0.0455395
\(191\) −5.48913 −0.397179 −0.198590 0.980083i \(-0.563636\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(192\) 3.37228 0.243373
\(193\) 14.8614 1.06975 0.534874 0.844932i \(-0.320359\pi\)
0.534874 + 0.844932i \(0.320359\pi\)
\(194\) −12.7446 −0.915006
\(195\) 6.74456 0.482988
\(196\) 0 0
\(197\) −20.7446 −1.47799 −0.738994 0.673712i \(-0.764699\pi\)
−0.738994 + 0.673712i \(0.764699\pi\)
\(198\) 8.37228 0.594992
\(199\) −18.1168 −1.28427 −0.642135 0.766592i \(-0.721951\pi\)
−0.642135 + 0.766592i \(0.721951\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 26.9783 1.90290
\(202\) 6.00000 0.422159
\(203\) 0 0
\(204\) −4.62772 −0.324005
\(205\) −11.4891 −0.802435
\(206\) −9.48913 −0.661139
\(207\) 22.9783 1.59710
\(208\) −2.00000 −0.138675
\(209\) 0.627719 0.0434202
\(210\) 0 0
\(211\) 6.11684 0.421101 0.210550 0.977583i \(-0.432474\pi\)
0.210550 + 0.977583i \(0.432474\pi\)
\(212\) −4.11684 −0.282746
\(213\) 34.1168 2.33765
\(214\) 12.0000 0.820303
\(215\) 4.00000 0.272798
\(216\) −18.1168 −1.23270
\(217\) 0 0
\(218\) 15.4891 1.04906
\(219\) 52.2337 3.52963
\(220\) 1.00000 0.0674200
\(221\) 2.74456 0.184619
\(222\) −31.6060 −2.12125
\(223\) 18.7446 1.25523 0.627614 0.778524i \(-0.284031\pi\)
0.627614 + 0.778524i \(0.284031\pi\)
\(224\) 0 0
\(225\) 8.37228 0.558152
\(226\) −3.25544 −0.216548
\(227\) 2.74456 0.182163 0.0910815 0.995843i \(-0.470968\pi\)
0.0910815 + 0.995843i \(0.470968\pi\)
\(228\) −2.11684 −0.140191
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 2.74456 0.180971
\(231\) 0 0
\(232\) −1.37228 −0.0900947
\(233\) 1.37228 0.0899011 0.0449506 0.998989i \(-0.485687\pi\)
0.0449506 + 0.998989i \(0.485687\pi\)
\(234\) 16.7446 1.09463
\(235\) 2.74456 0.179036
\(236\) 2.74456 0.178656
\(237\) −4.23369 −0.275008
\(238\) 0 0
\(239\) −14.7446 −0.953746 −0.476873 0.878972i \(-0.658230\pi\)
−0.476873 + 0.878972i \(0.658230\pi\)
\(240\) −3.37228 −0.217680
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 66.9783 4.29666
\(244\) 5.37228 0.343925
\(245\) 0 0
\(246\) −38.7446 −2.47026
\(247\) 1.25544 0.0798816
\(248\) 3.37228 0.214140
\(249\) 9.25544 0.586540
\(250\) 1.00000 0.0632456
\(251\) −2.74456 −0.173235 −0.0866176 0.996242i \(-0.527606\pi\)
−0.0866176 + 0.996242i \(0.527606\pi\)
\(252\) 0 0
\(253\) −2.74456 −0.172549
\(254\) −8.00000 −0.501965
\(255\) 4.62772 0.289799
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 13.4891 0.839796
\(259\) 0 0
\(260\) 2.00000 0.124035
\(261\) 11.4891 0.711159
\(262\) 22.1168 1.36638
\(263\) −24.8614 −1.53302 −0.766510 0.642232i \(-0.778008\pi\)
−0.766510 + 0.642232i \(0.778008\pi\)
\(264\) 3.37228 0.207550
\(265\) 4.11684 0.252896
\(266\) 0 0
\(267\) 4.62772 0.283212
\(268\) 8.00000 0.488678
\(269\) 8.74456 0.533165 0.266583 0.963812i \(-0.414105\pi\)
0.266583 + 0.963812i \(0.414105\pi\)
\(270\) 18.1168 1.10256
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) −1.37228 −0.0832068
\(273\) 0 0
\(274\) −8.74456 −0.528278
\(275\) −1.00000 −0.0603023
\(276\) 9.25544 0.557112
\(277\) −12.7446 −0.765747 −0.382873 0.923801i \(-0.625065\pi\)
−0.382873 + 0.923801i \(0.625065\pi\)
\(278\) −4.00000 −0.239904
\(279\) −28.2337 −1.69031
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 9.25544 0.551153
\(283\) −5.25544 −0.312403 −0.156202 0.987725i \(-0.549925\pi\)
−0.156202 + 0.987725i \(0.549925\pi\)
\(284\) 10.1168 0.600324
\(285\) 2.11684 0.125391
\(286\) −2.00000 −0.118262
\(287\) 0 0
\(288\) −8.37228 −0.493341
\(289\) −15.1168 −0.889226
\(290\) 1.37228 0.0805831
\(291\) 42.9783 2.51943
\(292\) 15.4891 0.906432
\(293\) −23.4891 −1.37225 −0.686125 0.727484i \(-0.740690\pi\)
−0.686125 + 0.727484i \(0.740690\pi\)
\(294\) 0 0
\(295\) −2.74456 −0.159795
\(296\) −9.37228 −0.544753
\(297\) −18.1168 −1.05125
\(298\) −21.6060 −1.25160
\(299\) −5.48913 −0.317444
\(300\) 3.37228 0.194699
\(301\) 0 0
\(302\) 12.2337 0.703970
\(303\) −20.2337 −1.16240
\(304\) −0.627719 −0.0360021
\(305\) −5.37228 −0.307616
\(306\) 11.4891 0.656790
\(307\) −5.25544 −0.299944 −0.149972 0.988690i \(-0.547918\pi\)
−0.149972 + 0.988690i \(0.547918\pi\)
\(308\) 0 0
\(309\) 32.0000 1.82042
\(310\) −3.37228 −0.191533
\(311\) −19.3723 −1.09850 −0.549251 0.835658i \(-0.685087\pi\)
−0.549251 + 0.835658i \(0.685087\pi\)
\(312\) 6.74456 0.381836
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 9.37228 0.528908
\(315\) 0 0
\(316\) −1.25544 −0.0706239
\(317\) −24.3505 −1.36766 −0.683831 0.729640i \(-0.739687\pi\)
−0.683831 + 0.729640i \(0.739687\pi\)
\(318\) 13.8832 0.778529
\(319\) −1.37228 −0.0768330
\(320\) −1.00000 −0.0559017
\(321\) −40.4674 −2.25867
\(322\) 0 0
\(323\) 0.861407 0.0479299
\(324\) 35.9783 1.99879
\(325\) −2.00000 −0.110940
\(326\) 5.88316 0.325838
\(327\) −52.2337 −2.88853
\(328\) −11.4891 −0.634381
\(329\) 0 0
\(330\) −3.37228 −0.185638
\(331\) 30.9783 1.70272 0.851359 0.524583i \(-0.175779\pi\)
0.851359 + 0.524583i \(0.175779\pi\)
\(332\) 2.74456 0.150627
\(333\) 78.4674 4.29999
\(334\) −4.62772 −0.253217
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) 24.1168 1.31373 0.656864 0.754009i \(-0.271883\pi\)
0.656864 + 0.754009i \(0.271883\pi\)
\(338\) 9.00000 0.489535
\(339\) 10.9783 0.596257
\(340\) 1.37228 0.0744224
\(341\) 3.37228 0.182619
\(342\) 5.25544 0.284182
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) −9.25544 −0.498296
\(346\) −6.00000 −0.322562
\(347\) −32.2337 −1.73040 −0.865198 0.501431i \(-0.832807\pi\)
−0.865198 + 0.501431i \(0.832807\pi\)
\(348\) 4.62772 0.248072
\(349\) −19.4891 −1.04323 −0.521614 0.853181i \(-0.674670\pi\)
−0.521614 + 0.853181i \(0.674670\pi\)
\(350\) 0 0
\(351\) −36.2337 −1.93401
\(352\) 1.00000 0.0533002
\(353\) 0.510875 0.0271911 0.0135956 0.999908i \(-0.495672\pi\)
0.0135956 + 0.999908i \(0.495672\pi\)
\(354\) −9.25544 −0.491921
\(355\) −10.1168 −0.536946
\(356\) 1.37228 0.0727308
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 8.37228 0.441258
\(361\) −18.6060 −0.979262
\(362\) −10.0000 −0.525588
\(363\) 3.37228 0.176999
\(364\) 0 0
\(365\) −15.4891 −0.810738
\(366\) −18.1168 −0.946983
\(367\) 4.00000 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) 2.74456 0.143070
\(369\) 96.1902 5.00746
\(370\) 9.37228 0.487242
\(371\) 0 0
\(372\) −11.3723 −0.589625
\(373\) 31.4891 1.63045 0.815223 0.579148i \(-0.196615\pi\)
0.815223 + 0.579148i \(0.196615\pi\)
\(374\) −1.37228 −0.0709590
\(375\) −3.37228 −0.174144
\(376\) 2.74456 0.141540
\(377\) −2.74456 −0.141352
\(378\) 0 0
\(379\) −0.233688 −0.0120037 −0.00600187 0.999982i \(-0.501910\pi\)
−0.00600187 + 0.999982i \(0.501910\pi\)
\(380\) 0.627719 0.0322013
\(381\) 26.9783 1.38214
\(382\) 5.48913 0.280848
\(383\) −32.2337 −1.64706 −0.823532 0.567269i \(-0.808000\pi\)
−0.823532 + 0.567269i \(0.808000\pi\)
\(384\) −3.37228 −0.172091
\(385\) 0 0
\(386\) −14.8614 −0.756426
\(387\) −33.4891 −1.70235
\(388\) 12.7446 0.647007
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) −6.74456 −0.341524
\(391\) −3.76631 −0.190471
\(392\) 0 0
\(393\) −74.5842 −3.76228
\(394\) 20.7446 1.04510
\(395\) 1.25544 0.0631679
\(396\) −8.37228 −0.420723
\(397\) −24.9783 −1.25362 −0.626811 0.779171i \(-0.715640\pi\)
−0.626811 + 0.779171i \(0.715640\pi\)
\(398\) 18.1168 0.908115
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 13.3723 0.667780 0.333890 0.942612i \(-0.391639\pi\)
0.333890 + 0.942612i \(0.391639\pi\)
\(402\) −26.9783 −1.34555
\(403\) 6.74456 0.335971
\(404\) −6.00000 −0.298511
\(405\) −35.9783 −1.78777
\(406\) 0 0
\(407\) −9.37228 −0.464567
\(408\) 4.62772 0.229106
\(409\) 1.76631 0.0873385 0.0436693 0.999046i \(-0.486095\pi\)
0.0436693 + 0.999046i \(0.486095\pi\)
\(410\) 11.4891 0.567407
\(411\) 29.4891 1.45459
\(412\) 9.48913 0.467496
\(413\) 0 0
\(414\) −22.9783 −1.12932
\(415\) −2.74456 −0.134725
\(416\) 2.00000 0.0980581
\(417\) 13.4891 0.660565
\(418\) −0.627719 −0.0307027
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 10.2337 0.498759 0.249380 0.968406i \(-0.419773\pi\)
0.249380 + 0.968406i \(0.419773\pi\)
\(422\) −6.11684 −0.297763
\(423\) −22.9783 −1.11724
\(424\) 4.11684 0.199932
\(425\) −1.37228 −0.0665654
\(426\) −34.1168 −1.65297
\(427\) 0 0
\(428\) −12.0000 −0.580042
\(429\) 6.74456 0.325631
\(430\) −4.00000 −0.192897
\(431\) −34.9783 −1.68484 −0.842422 0.538819i \(-0.818871\pi\)
−0.842422 + 0.538819i \(0.818871\pi\)
\(432\) 18.1168 0.871647
\(433\) −27.7228 −1.33227 −0.666137 0.745830i \(-0.732053\pi\)
−0.666137 + 0.745830i \(0.732053\pi\)
\(434\) 0 0
\(435\) −4.62772 −0.221882
\(436\) −15.4891 −0.741795
\(437\) −1.72281 −0.0824133
\(438\) −52.2337 −2.49582
\(439\) −18.9783 −0.905782 −0.452891 0.891566i \(-0.649607\pi\)
−0.452891 + 0.891566i \(0.649607\pi\)
\(440\) −1.00000 −0.0476731
\(441\) 0 0
\(442\) −2.74456 −0.130546
\(443\) 29.4891 1.40107 0.700535 0.713618i \(-0.252945\pi\)
0.700535 + 0.713618i \(0.252945\pi\)
\(444\) 31.6060 1.49995
\(445\) −1.37228 −0.0650524
\(446\) −18.7446 −0.887581
\(447\) 72.8614 3.44623
\(448\) 0 0
\(449\) 28.9783 1.36757 0.683784 0.729684i \(-0.260333\pi\)
0.683784 + 0.729684i \(0.260333\pi\)
\(450\) −8.37228 −0.394673
\(451\) −11.4891 −0.541002
\(452\) 3.25544 0.153123
\(453\) −41.2554 −1.93835
\(454\) −2.74456 −0.128809
\(455\) 0 0
\(456\) 2.11684 0.0991303
\(457\) −16.3505 −0.764846 −0.382423 0.923987i \(-0.624910\pi\)
−0.382423 + 0.923987i \(0.624910\pi\)
\(458\) −10.0000 −0.467269
\(459\) −24.8614 −1.16043
\(460\) −2.74456 −0.127966
\(461\) −16.1168 −0.750636 −0.375318 0.926896i \(-0.622467\pi\)
−0.375318 + 0.926896i \(0.622467\pi\)
\(462\) 0 0
\(463\) −0.233688 −0.0108604 −0.00543020 0.999985i \(-0.501728\pi\)
−0.00543020 + 0.999985i \(0.501728\pi\)
\(464\) 1.37228 0.0637066
\(465\) 11.3723 0.527377
\(466\) −1.37228 −0.0635697
\(467\) 19.3723 0.896442 0.448221 0.893923i \(-0.352058\pi\)
0.448221 + 0.893923i \(0.352058\pi\)
\(468\) −16.7446 −0.774018
\(469\) 0 0
\(470\) −2.74456 −0.126597
\(471\) −31.6060 −1.45633
\(472\) −2.74456 −0.126329
\(473\) 4.00000 0.183920
\(474\) 4.23369 0.194460
\(475\) −0.627719 −0.0288017
\(476\) 0 0
\(477\) −34.4674 −1.57815
\(478\) 14.7446 0.674401
\(479\) −5.48913 −0.250805 −0.125402 0.992106i \(-0.540022\pi\)
−0.125402 + 0.992106i \(0.540022\pi\)
\(480\) 3.37228 0.153923
\(481\) −18.7446 −0.854678
\(482\) −22.0000 −1.00207
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −12.7446 −0.578701
\(486\) −66.9783 −3.03820
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) −5.37228 −0.243192
\(489\) −19.8397 −0.897180
\(490\) 0 0
\(491\) −7.37228 −0.332706 −0.166353 0.986066i \(-0.553199\pi\)
−0.166353 + 0.986066i \(0.553199\pi\)
\(492\) 38.7446 1.74674
\(493\) −1.88316 −0.0848131
\(494\) −1.25544 −0.0564848
\(495\) 8.37228 0.376306
\(496\) −3.37228 −0.151420
\(497\) 0 0
\(498\) −9.25544 −0.414746
\(499\) −33.4891 −1.49918 −0.749590 0.661903i \(-0.769749\pi\)
−0.749590 + 0.661903i \(0.769749\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 15.6060 0.697223
\(502\) 2.74456 0.122496
\(503\) 34.9783 1.55960 0.779802 0.626027i \(-0.215320\pi\)
0.779802 + 0.626027i \(0.215320\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 2.74456 0.122011
\(507\) −30.3505 −1.34791
\(508\) 8.00000 0.354943
\(509\) −9.76631 −0.432884 −0.216442 0.976295i \(-0.569445\pi\)
−0.216442 + 0.976295i \(0.569445\pi\)
\(510\) −4.62772 −0.204919
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −11.3723 −0.502098
\(514\) 18.0000 0.793946
\(515\) −9.48913 −0.418141
\(516\) −13.4891 −0.593826
\(517\) 2.74456 0.120706
\(518\) 0 0
\(519\) 20.2337 0.888160
\(520\) −2.00000 −0.0877058
\(521\) −12.5109 −0.548111 −0.274056 0.961714i \(-0.588365\pi\)
−0.274056 + 0.961714i \(0.588365\pi\)
\(522\) −11.4891 −0.502865
\(523\) −30.9783 −1.35458 −0.677292 0.735714i \(-0.736847\pi\)
−0.677292 + 0.735714i \(0.736847\pi\)
\(524\) −22.1168 −0.966179
\(525\) 0 0
\(526\) 24.8614 1.08401
\(527\) 4.62772 0.201587
\(528\) −3.37228 −0.146760
\(529\) −15.4674 −0.672495
\(530\) −4.11684 −0.178824
\(531\) 22.9783 0.997171
\(532\) 0 0
\(533\) −22.9783 −0.995299
\(534\) −4.62772 −0.200261
\(535\) 12.0000 0.518805
\(536\) −8.00000 −0.345547
\(537\) −40.4674 −1.74630
\(538\) −8.74456 −0.377005
\(539\) 0 0
\(540\) −18.1168 −0.779625
\(541\) −20.1168 −0.864891 −0.432445 0.901660i \(-0.642349\pi\)
−0.432445 + 0.901660i \(0.642349\pi\)
\(542\) −16.0000 −0.687259
\(543\) 33.7228 1.44718
\(544\) 1.37228 0.0588361
\(545\) 15.4891 0.663481
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 8.74456 0.373549
\(549\) 44.9783 1.91962
\(550\) 1.00000 0.0426401
\(551\) −0.861407 −0.0366972
\(552\) −9.25544 −0.393938
\(553\) 0 0
\(554\) 12.7446 0.541465
\(555\) −31.6060 −1.34160
\(556\) 4.00000 0.169638
\(557\) 4.97825 0.210935 0.105468 0.994423i \(-0.466366\pi\)
0.105468 + 0.994423i \(0.466366\pi\)
\(558\) 28.2337 1.19523
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 4.62772 0.195382
\(562\) −18.0000 −0.759284
\(563\) 8.23369 0.347009 0.173504 0.984833i \(-0.444491\pi\)
0.173504 + 0.984833i \(0.444491\pi\)
\(564\) −9.25544 −0.389724
\(565\) −3.25544 −0.136957
\(566\) 5.25544 0.220903
\(567\) 0 0
\(568\) −10.1168 −0.424493
\(569\) −15.2554 −0.639541 −0.319771 0.947495i \(-0.603606\pi\)
−0.319771 + 0.947495i \(0.603606\pi\)
\(570\) −2.11684 −0.0886648
\(571\) 15.3723 0.643310 0.321655 0.946857i \(-0.395761\pi\)
0.321655 + 0.946857i \(0.395761\pi\)
\(572\) 2.00000 0.0836242
\(573\) −18.5109 −0.773303
\(574\) 0 0
\(575\) 2.74456 0.114456
\(576\) 8.37228 0.348845
\(577\) −36.9783 −1.53942 −0.769712 0.638391i \(-0.779600\pi\)
−0.769712 + 0.638391i \(0.779600\pi\)
\(578\) 15.1168 0.628778
\(579\) 50.1168 2.08278
\(580\) −1.37228 −0.0569809
\(581\) 0 0
\(582\) −42.9783 −1.78151
\(583\) 4.11684 0.170502
\(584\) −15.4891 −0.640945
\(585\) 16.7446 0.692302
\(586\) 23.4891 0.970327
\(587\) −24.8614 −1.02614 −0.513070 0.858347i \(-0.671492\pi\)
−0.513070 + 0.858347i \(0.671492\pi\)
\(588\) 0 0
\(589\) 2.11684 0.0872230
\(590\) 2.74456 0.112992
\(591\) −69.9565 −2.87763
\(592\) 9.37228 0.385198
\(593\) 12.5109 0.513760 0.256880 0.966443i \(-0.417305\pi\)
0.256880 + 0.966443i \(0.417305\pi\)
\(594\) 18.1168 0.743343
\(595\) 0 0
\(596\) 21.6060 0.885015
\(597\) −61.0951 −2.50046
\(598\) 5.48913 0.224467
\(599\) −39.6060 −1.61826 −0.809128 0.587632i \(-0.800060\pi\)
−0.809128 + 0.587632i \(0.800060\pi\)
\(600\) −3.37228 −0.137673
\(601\) 16.5109 0.673493 0.336746 0.941595i \(-0.390674\pi\)
0.336746 + 0.941595i \(0.390674\pi\)
\(602\) 0 0
\(603\) 66.9783 2.72757
\(604\) −12.2337 −0.497782
\(605\) −1.00000 −0.0406558
\(606\) 20.2337 0.821937
\(607\) 5.88316 0.238790 0.119395 0.992847i \(-0.461905\pi\)
0.119395 + 0.992847i \(0.461905\pi\)
\(608\) 0.627719 0.0254574
\(609\) 0 0
\(610\) 5.37228 0.217517
\(611\) 5.48913 0.222066
\(612\) −11.4891 −0.464420
\(613\) 20.5109 0.828426 0.414213 0.910180i \(-0.364057\pi\)
0.414213 + 0.910180i \(0.364057\pi\)
\(614\) 5.25544 0.212092
\(615\) −38.7446 −1.56233
\(616\) 0 0
\(617\) −2.23369 −0.0899249 −0.0449624 0.998989i \(-0.514317\pi\)
−0.0449624 + 0.998989i \(0.514317\pi\)
\(618\) −32.0000 −1.28723
\(619\) 44.4674 1.78729 0.893647 0.448770i \(-0.148138\pi\)
0.893647 + 0.448770i \(0.148138\pi\)
\(620\) 3.37228 0.135434
\(621\) 49.7228 1.99531
\(622\) 19.3723 0.776758
\(623\) 0 0
\(624\) −6.74456 −0.269999
\(625\) 1.00000 0.0400000
\(626\) −22.0000 −0.879297
\(627\) 2.11684 0.0845386
\(628\) −9.37228 −0.373995
\(629\) −12.8614 −0.512818
\(630\) 0 0
\(631\) 42.1168 1.67665 0.838323 0.545175i \(-0.183537\pi\)
0.838323 + 0.545175i \(0.183537\pi\)
\(632\) 1.25544 0.0499386
\(633\) 20.6277 0.819878
\(634\) 24.3505 0.967083
\(635\) −8.00000 −0.317470
\(636\) −13.8832 −0.550503
\(637\) 0 0
\(638\) 1.37228 0.0543291
\(639\) 84.7011 3.35072
\(640\) 1.00000 0.0395285
\(641\) −27.0951 −1.07019 −0.535096 0.844791i \(-0.679725\pi\)
−0.535096 + 0.844791i \(0.679725\pi\)
\(642\) 40.4674 1.59712
\(643\) 5.88316 0.232009 0.116005 0.993249i \(-0.462991\pi\)
0.116005 + 0.993249i \(0.462991\pi\)
\(644\) 0 0
\(645\) 13.4891 0.531134
\(646\) −0.861407 −0.0338916
\(647\) 37.7228 1.48304 0.741518 0.670933i \(-0.234106\pi\)
0.741518 + 0.670933i \(0.234106\pi\)
\(648\) −35.9783 −1.41336
\(649\) −2.74456 −0.107734
\(650\) 2.00000 0.0784465
\(651\) 0 0
\(652\) −5.88316 −0.230402
\(653\) 10.6277 0.415895 0.207947 0.978140i \(-0.433322\pi\)
0.207947 + 0.978140i \(0.433322\pi\)
\(654\) 52.2337 2.04250
\(655\) 22.1168 0.864177
\(656\) 11.4891 0.448575
\(657\) 129.679 5.05927
\(658\) 0 0
\(659\) 12.8614 0.501009 0.250505 0.968115i \(-0.419403\pi\)
0.250505 + 0.968115i \(0.419403\pi\)
\(660\) 3.37228 0.131266
\(661\) −8.51087 −0.331035 −0.165517 0.986207i \(-0.552929\pi\)
−0.165517 + 0.986207i \(0.552929\pi\)
\(662\) −30.9783 −1.20400
\(663\) 9.25544 0.359451
\(664\) −2.74456 −0.106510
\(665\) 0 0
\(666\) −78.4674 −3.04055
\(667\) 3.76631 0.145832
\(668\) 4.62772 0.179052
\(669\) 63.2119 2.44391
\(670\) 8.00000 0.309067
\(671\) −5.37228 −0.207395
\(672\) 0 0
\(673\) 14.8614 0.572865 0.286433 0.958100i \(-0.407531\pi\)
0.286433 + 0.958100i \(0.407531\pi\)
\(674\) −24.1168 −0.928946
\(675\) 18.1168 0.697318
\(676\) −9.00000 −0.346154
\(677\) −3.25544 −0.125117 −0.0625583 0.998041i \(-0.519926\pi\)
−0.0625583 + 0.998041i \(0.519926\pi\)
\(678\) −10.9783 −0.421617
\(679\) 0 0
\(680\) −1.37228 −0.0526246
\(681\) 9.25544 0.354669
\(682\) −3.37228 −0.129131
\(683\) −28.6277 −1.09541 −0.547705 0.836672i \(-0.684498\pi\)
−0.547705 + 0.836672i \(0.684498\pi\)
\(684\) −5.25544 −0.200947
\(685\) −8.74456 −0.334113
\(686\) 0 0
\(687\) 33.7228 1.28661
\(688\) −4.00000 −0.152499
\(689\) 8.23369 0.313679
\(690\) 9.25544 0.352348
\(691\) −40.2337 −1.53056 −0.765281 0.643697i \(-0.777400\pi\)
−0.765281 + 0.643697i \(0.777400\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 32.2337 1.22357
\(695\) −4.00000 −0.151729
\(696\) −4.62772 −0.175413
\(697\) −15.7663 −0.597192
\(698\) 19.4891 0.737674
\(699\) 4.62772 0.175036
\(700\) 0 0
\(701\) −37.3723 −1.41153 −0.705766 0.708445i \(-0.749397\pi\)
−0.705766 + 0.708445i \(0.749397\pi\)
\(702\) 36.2337 1.36755
\(703\) −5.88316 −0.221887
\(704\) −1.00000 −0.0376889
\(705\) 9.25544 0.348580
\(706\) −0.510875 −0.0192270
\(707\) 0 0
\(708\) 9.25544 0.347841
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 10.1168 0.379678
\(711\) −10.5109 −0.394189
\(712\) −1.37228 −0.0514284
\(713\) −9.25544 −0.346619
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) −12.0000 −0.448461
\(717\) −49.7228 −1.85693
\(718\) 0 0
\(719\) −13.8832 −0.517754 −0.258877 0.965910i \(-0.583352\pi\)
−0.258877 + 0.965910i \(0.583352\pi\)
\(720\) −8.37228 −0.312017
\(721\) 0 0
\(722\) 18.6060 0.692442
\(723\) 74.1902 2.75916
\(724\) 10.0000 0.371647
\(725\) 1.37228 0.0509652
\(726\) −3.37228 −0.125157
\(727\) 24.2337 0.898778 0.449389 0.893336i \(-0.351642\pi\)
0.449389 + 0.893336i \(0.351642\pi\)
\(728\) 0 0
\(729\) 117.935 4.36795
\(730\) 15.4891 0.573278
\(731\) 5.48913 0.203023
\(732\) 18.1168 0.669618
\(733\) −46.2337 −1.70768 −0.853840 0.520535i \(-0.825732\pi\)
−0.853840 + 0.520535i \(0.825732\pi\)
\(734\) −4.00000 −0.147643
\(735\) 0 0
\(736\) −2.74456 −0.101166
\(737\) −8.00000 −0.294684
\(738\) −96.1902 −3.54081
\(739\) −20.4674 −0.752905 −0.376452 0.926436i \(-0.622856\pi\)
−0.376452 + 0.926436i \(0.622856\pi\)
\(740\) −9.37228 −0.344532
\(741\) 4.23369 0.155528
\(742\) 0 0
\(743\) −4.62772 −0.169775 −0.0848873 0.996391i \(-0.527053\pi\)
−0.0848873 + 0.996391i \(0.527053\pi\)
\(744\) 11.3723 0.416928
\(745\) −21.6060 −0.791581
\(746\) −31.4891 −1.15290
\(747\) 22.9783 0.840730
\(748\) 1.37228 0.0501756
\(749\) 0 0
\(750\) 3.37228 0.123138
\(751\) 8.86141 0.323357 0.161679 0.986843i \(-0.448309\pi\)
0.161679 + 0.986843i \(0.448309\pi\)
\(752\) −2.74456 −0.100084
\(753\) −9.25544 −0.337287
\(754\) 2.74456 0.0999511
\(755\) 12.2337 0.445229
\(756\) 0 0
\(757\) −20.9783 −0.762467 −0.381234 0.924479i \(-0.624501\pi\)
−0.381234 + 0.924479i \(0.624501\pi\)
\(758\) 0.233688 0.00848793
\(759\) −9.25544 −0.335951
\(760\) −0.627719 −0.0227697
\(761\) −4.97825 −0.180461 −0.0902307 0.995921i \(-0.528760\pi\)
−0.0902307 + 0.995921i \(0.528760\pi\)
\(762\) −26.9783 −0.977319
\(763\) 0 0
\(764\) −5.48913 −0.198590
\(765\) 11.4891 0.415390
\(766\) 32.2337 1.16465
\(767\) −5.48913 −0.198201
\(768\) 3.37228 0.121687
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) −60.7011 −2.18610
\(772\) 14.8614 0.534874
\(773\) 33.6060 1.20872 0.604361 0.796710i \(-0.293428\pi\)
0.604361 + 0.796710i \(0.293428\pi\)
\(774\) 33.4891 1.20374
\(775\) −3.37228 −0.121136
\(776\) −12.7446 −0.457503
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) −7.21194 −0.258395
\(780\) 6.74456 0.241494
\(781\) −10.1168 −0.362009
\(782\) 3.76631 0.134683
\(783\) 24.8614 0.888474
\(784\) 0 0
\(785\) 9.37228 0.334511
\(786\) 74.5842 2.66033
\(787\) 44.4674 1.58509 0.792545 0.609813i \(-0.208755\pi\)
0.792545 + 0.609813i \(0.208755\pi\)
\(788\) −20.7446 −0.738994
\(789\) −83.8397 −2.98477
\(790\) −1.25544 −0.0446665
\(791\) 0 0
\(792\) 8.37228 0.297496
\(793\) −10.7446 −0.381551
\(794\) 24.9783 0.886445
\(795\) 13.8832 0.492385
\(796\) −18.1168 −0.642135
\(797\) −11.4891 −0.406966 −0.203483 0.979079i \(-0.565226\pi\)
−0.203483 + 0.979079i \(0.565226\pi\)
\(798\) 0 0
\(799\) 3.76631 0.133243
\(800\) −1.00000 −0.0353553
\(801\) 11.4891 0.405948
\(802\) −13.3723 −0.472192
\(803\) −15.4891 −0.546599
\(804\) 26.9783 0.951450
\(805\) 0 0
\(806\) −6.74456 −0.237567
\(807\) 29.4891 1.03807
\(808\) 6.00000 0.211079
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 35.9783 1.26415
\(811\) −44.8614 −1.57530 −0.787649 0.616125i \(-0.788702\pi\)
−0.787649 + 0.616125i \(0.788702\pi\)
\(812\) 0 0
\(813\) 53.9565 1.89234
\(814\) 9.37228 0.328498
\(815\) 5.88316 0.206078
\(816\) −4.62772 −0.162003
\(817\) 2.51087 0.0878444
\(818\) −1.76631 −0.0617577
\(819\) 0 0
\(820\) −11.4891 −0.401218
\(821\) 11.4891 0.400973 0.200487 0.979696i \(-0.435748\pi\)
0.200487 + 0.979696i \(0.435748\pi\)
\(822\) −29.4891 −1.02855
\(823\) −28.0000 −0.976019 −0.488009 0.872838i \(-0.662277\pi\)
−0.488009 + 0.872838i \(0.662277\pi\)
\(824\) −9.48913 −0.330569
\(825\) −3.37228 −0.117408
\(826\) 0 0
\(827\) 46.9783 1.63359 0.816797 0.576925i \(-0.195748\pi\)
0.816797 + 0.576925i \(0.195748\pi\)
\(828\) 22.9783 0.798549
\(829\) 24.7446 0.859414 0.429707 0.902968i \(-0.358617\pi\)
0.429707 + 0.902968i \(0.358617\pi\)
\(830\) 2.74456 0.0952652
\(831\) −42.9783 −1.49090
\(832\) −2.00000 −0.0693375
\(833\) 0 0
\(834\) −13.4891 −0.467090
\(835\) −4.62772 −0.160149
\(836\) 0.627719 0.0217101
\(837\) −61.0951 −2.11176
\(838\) −12.0000 −0.414533
\(839\) 10.9783 0.379011 0.189506 0.981880i \(-0.439311\pi\)
0.189506 + 0.981880i \(0.439311\pi\)
\(840\) 0 0
\(841\) −27.1168 −0.935064
\(842\) −10.2337 −0.352676
\(843\) 60.7011 2.09066
\(844\) 6.11684 0.210550
\(845\) 9.00000 0.309609
\(846\) 22.9783 0.790009
\(847\) 0 0
\(848\) −4.11684 −0.141373
\(849\) −17.7228 −0.608245
\(850\) 1.37228 0.0470689
\(851\) 25.7228 0.881767
\(852\) 34.1168 1.16882
\(853\) 38.4674 1.31710 0.658549 0.752538i \(-0.271171\pi\)
0.658549 + 0.752538i \(0.271171\pi\)
\(854\) 0 0
\(855\) 5.25544 0.179732
\(856\) 12.0000 0.410152
\(857\) −36.3505 −1.24171 −0.620855 0.783925i \(-0.713215\pi\)
−0.620855 + 0.783925i \(0.713215\pi\)
\(858\) −6.74456 −0.230256
\(859\) 42.7446 1.45843 0.729213 0.684287i \(-0.239886\pi\)
0.729213 + 0.684287i \(0.239886\pi\)
\(860\) 4.00000 0.136399
\(861\) 0 0
\(862\) 34.9783 1.19136
\(863\) 21.2554 0.723544 0.361772 0.932267i \(-0.382172\pi\)
0.361772 + 0.932267i \(0.382172\pi\)
\(864\) −18.1168 −0.616348
\(865\) −6.00000 −0.204006
\(866\) 27.7228 0.942060
\(867\) −50.9783 −1.73131
\(868\) 0 0
\(869\) 1.25544 0.0425878
\(870\) 4.62772 0.156894
\(871\) −16.0000 −0.542139
\(872\) 15.4891 0.524528
\(873\) 106.701 3.61128
\(874\) 1.72281 0.0582750
\(875\) 0 0
\(876\) 52.2337 1.76481
\(877\) 36.9783 1.24867 0.624333 0.781158i \(-0.285371\pi\)
0.624333 + 0.781158i \(0.285371\pi\)
\(878\) 18.9783 0.640485
\(879\) −79.2119 −2.67175
\(880\) 1.00000 0.0337100
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 3.37228 0.113486 0.0567432 0.998389i \(-0.481928\pi\)
0.0567432 + 0.998389i \(0.481928\pi\)
\(884\) 2.74456 0.0923096
\(885\) −9.25544 −0.311118
\(886\) −29.4891 −0.990707
\(887\) 10.9783 0.368614 0.184307 0.982869i \(-0.440996\pi\)
0.184307 + 0.982869i \(0.440996\pi\)
\(888\) −31.6060 −1.06063
\(889\) 0 0
\(890\) 1.37228 0.0459990
\(891\) −35.9783 −1.20532
\(892\) 18.7446 0.627614
\(893\) 1.72281 0.0576517
\(894\) −72.8614 −2.43685
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) −18.5109 −0.618060
\(898\) −28.9783 −0.967017
\(899\) −4.62772 −0.154343
\(900\) 8.37228 0.279076
\(901\) 5.64947 0.188211
\(902\) 11.4891 0.382546
\(903\) 0 0
\(904\) −3.25544 −0.108274
\(905\) −10.0000 −0.332411
\(906\) 41.2554 1.37062
\(907\) −0.394031 −0.0130836 −0.00654179 0.999979i \(-0.502082\pi\)
−0.00654179 + 0.999979i \(0.502082\pi\)
\(908\) 2.74456 0.0910815
\(909\) −50.2337 −1.66615
\(910\) 0 0
\(911\) −8.39403 −0.278107 −0.139053 0.990285i \(-0.544406\pi\)
−0.139053 + 0.990285i \(0.544406\pi\)
\(912\) −2.11684 −0.0700957
\(913\) −2.74456 −0.0908318
\(914\) 16.3505 0.540828
\(915\) −18.1168 −0.598924
\(916\) 10.0000 0.330409
\(917\) 0 0
\(918\) 24.8614 0.820549
\(919\) 18.9783 0.626035 0.313017 0.949747i \(-0.398660\pi\)
0.313017 + 0.949747i \(0.398660\pi\)
\(920\) 2.74456 0.0904856
\(921\) −17.7228 −0.583987
\(922\) 16.1168 0.530780
\(923\) −20.2337 −0.666000
\(924\) 0 0
\(925\) 9.37228 0.308159
\(926\) 0.233688 0.00767946
\(927\) 79.4456 2.60934
\(928\) −1.37228 −0.0450473
\(929\) −24.3505 −0.798915 −0.399458 0.916752i \(-0.630801\pi\)
−0.399458 + 0.916752i \(0.630801\pi\)
\(930\) −11.3723 −0.372912
\(931\) 0 0
\(932\) 1.37228 0.0449506
\(933\) −65.3288 −2.13877
\(934\) −19.3723 −0.633880
\(935\) −1.37228 −0.0448784
\(936\) 16.7446 0.547313
\(937\) 28.5109 0.931410 0.465705 0.884940i \(-0.345801\pi\)
0.465705 + 0.884940i \(0.345801\pi\)
\(938\) 0 0
\(939\) 74.1902 2.42111
\(940\) 2.74456 0.0895178
\(941\) 15.0951 0.492086 0.246043 0.969259i \(-0.420870\pi\)
0.246043 + 0.969259i \(0.420870\pi\)
\(942\) 31.6060 1.02978
\(943\) 31.5326 1.02684
\(944\) 2.74456 0.0893279
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) 48.8614 1.58778 0.793891 0.608060i \(-0.208052\pi\)
0.793891 + 0.608060i \(0.208052\pi\)
\(948\) −4.23369 −0.137504
\(949\) −30.9783 −1.00560
\(950\) 0.627719 0.0203659
\(951\) −82.1168 −2.66282
\(952\) 0 0
\(953\) 40.1168 1.29951 0.649756 0.760143i \(-0.274871\pi\)
0.649756 + 0.760143i \(0.274871\pi\)
\(954\) 34.4674 1.11592
\(955\) 5.48913 0.177624
\(956\) −14.7446 −0.476873
\(957\) −4.62772 −0.149593
\(958\) 5.48913 0.177346
\(959\) 0 0
\(960\) −3.37228 −0.108840
\(961\) −19.6277 −0.633152
\(962\) 18.7446 0.604349
\(963\) −100.467 −3.23752
\(964\) 22.0000 0.708572
\(965\) −14.8614 −0.478406
\(966\) 0 0
\(967\) 47.6060 1.53090 0.765452 0.643493i \(-0.222515\pi\)
0.765452 + 0.643493i \(0.222515\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 2.90491 0.0933190
\(970\) 12.7446 0.409203
\(971\) 1.02175 0.0327895 0.0163947 0.999866i \(-0.494781\pi\)
0.0163947 + 0.999866i \(0.494781\pi\)
\(972\) 66.9783 2.14833
\(973\) 0 0
\(974\) −20.0000 −0.640841
\(975\) −6.74456 −0.215999
\(976\) 5.37228 0.171963
\(977\) 14.2337 0.455376 0.227688 0.973734i \(-0.426883\pi\)
0.227688 + 0.973734i \(0.426883\pi\)
\(978\) 19.8397 0.634402
\(979\) −1.37228 −0.0438583
\(980\) 0 0
\(981\) −129.679 −4.14034
\(982\) 7.37228 0.235259
\(983\) 13.7228 0.437690 0.218845 0.975760i \(-0.429771\pi\)
0.218845 + 0.975760i \(0.429771\pi\)
\(984\) −38.7446 −1.23513
\(985\) 20.7446 0.660977
\(986\) 1.88316 0.0599719
\(987\) 0 0
\(988\) 1.25544 0.0399408
\(989\) −10.9783 −0.349088
\(990\) −8.37228 −0.266089
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 3.37228 0.107070
\(993\) 104.467 3.31517
\(994\) 0 0
\(995\) 18.1168 0.574343
\(996\) 9.25544 0.293270
\(997\) −22.2337 −0.704148 −0.352074 0.935972i \(-0.614523\pi\)
−0.352074 + 0.935972i \(0.614523\pi\)
\(998\) 33.4891 1.06008
\(999\) 169.796 5.37211
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5390.2.a.bp.1.2 2
7.6 odd 2 110.2.a.d.1.1 2
21.20 even 2 990.2.a.m.1.2 2
28.27 even 2 880.2.a.n.1.2 2
35.13 even 4 550.2.b.f.199.3 4
35.27 even 4 550.2.b.f.199.2 4
35.34 odd 2 550.2.a.n.1.2 2
56.13 odd 2 3520.2.a.bq.1.2 2
56.27 even 2 3520.2.a.bj.1.1 2
77.76 even 2 1210.2.a.r.1.1 2
84.83 odd 2 7920.2.a.bq.1.1 2
105.62 odd 4 4950.2.c.bc.199.4 4
105.83 odd 4 4950.2.c.bc.199.1 4
105.104 even 2 4950.2.a.bw.1.1 2
140.27 odd 4 4400.2.b.p.4049.1 4
140.83 odd 4 4400.2.b.p.4049.4 4
140.139 even 2 4400.2.a.bl.1.1 2
308.307 odd 2 9680.2.a.bt.1.2 2
385.384 even 2 6050.2.a.cb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.a.d.1.1 2 7.6 odd 2
550.2.a.n.1.2 2 35.34 odd 2
550.2.b.f.199.2 4 35.27 even 4
550.2.b.f.199.3 4 35.13 even 4
880.2.a.n.1.2 2 28.27 even 2
990.2.a.m.1.2 2 21.20 even 2
1210.2.a.r.1.1 2 77.76 even 2
3520.2.a.bj.1.1 2 56.27 even 2
3520.2.a.bq.1.2 2 56.13 odd 2
4400.2.a.bl.1.1 2 140.139 even 2
4400.2.b.p.4049.1 4 140.27 odd 4
4400.2.b.p.4049.4 4 140.83 odd 4
4950.2.a.bw.1.1 2 105.104 even 2
4950.2.c.bc.199.1 4 105.83 odd 4
4950.2.c.bc.199.4 4 105.62 odd 4
5390.2.a.bp.1.2 2 1.1 even 1 trivial
6050.2.a.cb.1.2 2 385.384 even 2
7920.2.a.bq.1.1 2 84.83 odd 2
9680.2.a.bt.1.2 2 308.307 odd 2