Properties

Label 5390.2.a.a
Level $5390$
Weight $2$
Character orbit 5390.a
Self dual yes
Analytic conductor $43.039$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5390 = 2 \cdot 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5390.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(43.0393666895\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 770)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - 3 q^{3} + q^{4} - q^{5} + 3 q^{6} - q^{8} + 6 q^{9} + O(q^{10}) \) \( q - q^{2} - 3 q^{3} + q^{4} - q^{5} + 3 q^{6} - q^{8} + 6 q^{9} + q^{10} - q^{11} - 3 q^{12} + q^{13} + 3 q^{15} + q^{16} + 6 q^{17} - 6 q^{18} - 4 q^{19} - q^{20} + q^{22} + 4 q^{23} + 3 q^{24} + q^{25} - q^{26} - 9 q^{27} + q^{29} - 3 q^{30} - 8 q^{31} - q^{32} + 3 q^{33} - 6 q^{34} + 6 q^{36} + 8 q^{37} + 4 q^{38} - 3 q^{39} + q^{40} + 12 q^{41} + 12 q^{43} - q^{44} - 6 q^{45} - 4 q^{46} + 6 q^{47} - 3 q^{48} - q^{50} - 18 q^{51} + q^{52} - 6 q^{53} + 9 q^{54} + q^{55} + 12 q^{57} - q^{58} - 15 q^{59} + 3 q^{60} - 3 q^{61} + 8 q^{62} + q^{64} - q^{65} - 3 q^{66} - 7 q^{67} + 6 q^{68} - 12 q^{69} + 10 q^{71} - 6 q^{72} + 4 q^{73} - 8 q^{74} - 3 q^{75} - 4 q^{76} + 3 q^{78} + 15 q^{79} - q^{80} + 9 q^{81} - 12 q^{82} - 10 q^{83} - 6 q^{85} - 12 q^{86} - 3 q^{87} + q^{88} - 6 q^{89} + 6 q^{90} + 4 q^{92} + 24 q^{93} - 6 q^{94} + 4 q^{95} + 3 q^{96} + 5 q^{97} - 6 q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −3.00000 1.00000 −1.00000 3.00000 0 −1.00000 6.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5390.2.a.a 1
7.b odd 2 1 5390.2.a.t 1
7.d odd 6 2 770.2.i.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.i.d 2 7.d odd 6 2
5390.2.a.a 1 1.a even 1 1 trivial
5390.2.a.t 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5390))\):

\( T_{3} + 3 \)
\( T_{13} - 1 \)
\( T_{17} - 6 \)
\( T_{19} + 4 \)
\( T_{31} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( 3 + T \)
$5$ \( 1 + T \)
$7$ \( T \)
$11$ \( 1 + T \)
$13$ \( -1 + T \)
$17$ \( -6 + T \)
$19$ \( 4 + T \)
$23$ \( -4 + T \)
$29$ \( -1 + T \)
$31$ \( 8 + T \)
$37$ \( -8 + T \)
$41$ \( -12 + T \)
$43$ \( -12 + T \)
$47$ \( -6 + T \)
$53$ \( 6 + T \)
$59$ \( 15 + T \)
$61$ \( 3 + T \)
$67$ \( 7 + T \)
$71$ \( -10 + T \)
$73$ \( -4 + T \)
$79$ \( -15 + T \)
$83$ \( 10 + T \)
$89$ \( 6 + T \)
$97$ \( -5 + T \)
show more
show less