Properties

Label 539.4.a.h.1.2
Level $539$
Weight $4$
Character 539.1
Self dual yes
Analytic conductor $31.802$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [539,4,Mod(1,539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(539, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("539.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 539.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.8020294931\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.18888\) of defining polynomial
Character \(\chi\) \(=\) 539.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18888 q^{2} -6.48496 q^{3} -3.20880 q^{4} -7.60736 q^{5} +14.1948 q^{6} +24.5347 q^{8} +15.0547 q^{9} +16.6516 q^{10} +11.0000 q^{11} +20.8090 q^{12} -0.174238 q^{13} +49.3335 q^{15} -28.0332 q^{16} -128.863 q^{17} -32.9530 q^{18} -141.685 q^{19} +24.4105 q^{20} -24.0777 q^{22} -133.369 q^{23} -159.107 q^{24} -67.1280 q^{25} +0.381386 q^{26} +77.4647 q^{27} -177.002 q^{29} -107.985 q^{30} -48.2757 q^{31} -134.917 q^{32} -71.3346 q^{33} +282.065 q^{34} -48.3076 q^{36} +161.625 q^{37} +310.131 q^{38} +1.12993 q^{39} -186.645 q^{40} +195.689 q^{41} -488.447 q^{43} -35.2968 q^{44} -114.527 q^{45} +291.928 q^{46} +171.705 q^{47} +181.794 q^{48} +146.935 q^{50} +835.671 q^{51} +0.559095 q^{52} -431.477 q^{53} -169.561 q^{54} -83.6810 q^{55} +918.821 q^{57} +387.437 q^{58} -194.176 q^{59} -158.301 q^{60} -585.008 q^{61} +105.670 q^{62} +519.582 q^{64} +1.32549 q^{65} +156.143 q^{66} +155.905 q^{67} +413.496 q^{68} +864.891 q^{69} -374.994 q^{71} +369.364 q^{72} -210.419 q^{73} -353.778 q^{74} +435.323 q^{75} +454.639 q^{76} -2.47327 q^{78} -7.00618 q^{79} +213.258 q^{80} -908.833 q^{81} -428.339 q^{82} +93.6417 q^{83} +980.307 q^{85} +1069.15 q^{86} +1147.85 q^{87} +269.882 q^{88} +307.119 q^{89} +250.685 q^{90} +427.954 q^{92} +313.066 q^{93} -375.842 q^{94} +1077.85 q^{95} +874.929 q^{96} -965.991 q^{97} +165.602 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - 2 q^{3} + 45 q^{4} + 24 q^{5} - 4 q^{6} + 57 q^{8} + 63 q^{9} + 10 q^{10} + 55 q^{11} - 24 q^{12} + 50 q^{13} - 146 q^{15} + 433 q^{16} - 222 q^{17} + 245 q^{18} - 160 q^{19} + 430 q^{20}+ \cdots + 693 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.18888 −0.773886 −0.386943 0.922104i \(-0.626469\pi\)
−0.386943 + 0.922104i \(0.626469\pi\)
\(3\) −6.48496 −1.24803 −0.624016 0.781412i \(-0.714500\pi\)
−0.624016 + 0.781412i \(0.714500\pi\)
\(4\) −3.20880 −0.401100
\(5\) −7.60736 −0.680423 −0.340212 0.940349i \(-0.610499\pi\)
−0.340212 + 0.940349i \(0.610499\pi\)
\(6\) 14.1948 0.965834
\(7\) 0 0
\(8\) 24.5347 1.08429
\(9\) 15.0547 0.557582
\(10\) 16.6516 0.526570
\(11\) 11.0000 0.301511
\(12\) 20.8090 0.500586
\(13\) −0.174238 −0.00371730 −0.00185865 0.999998i \(-0.500592\pi\)
−0.00185865 + 0.999998i \(0.500592\pi\)
\(14\) 0 0
\(15\) 49.3335 0.849190
\(16\) −28.0332 −0.438018
\(17\) −128.863 −1.83846 −0.919231 0.393719i \(-0.871188\pi\)
−0.919231 + 0.393719i \(0.871188\pi\)
\(18\) −32.9530 −0.431505
\(19\) −141.685 −1.71078 −0.855388 0.517988i \(-0.826681\pi\)
−0.855388 + 0.517988i \(0.826681\pi\)
\(20\) 24.4105 0.272918
\(21\) 0 0
\(22\) −24.0777 −0.233335
\(23\) −133.369 −1.20910 −0.604550 0.796567i \(-0.706647\pi\)
−0.604550 + 0.796567i \(0.706647\pi\)
\(24\) −159.107 −1.35323
\(25\) −67.1280 −0.537024
\(26\) 0.381386 0.00287677
\(27\) 77.4647 0.552151
\(28\) 0 0
\(29\) −177.002 −1.13340 −0.566698 0.823925i \(-0.691779\pi\)
−0.566698 + 0.823925i \(0.691779\pi\)
\(30\) −107.985 −0.657176
\(31\) −48.2757 −0.279696 −0.139848 0.990173i \(-0.544661\pi\)
−0.139848 + 0.990173i \(0.544661\pi\)
\(32\) −134.917 −0.745316
\(33\) −71.3346 −0.376296
\(34\) 282.065 1.42276
\(35\) 0 0
\(36\) −48.3076 −0.223647
\(37\) 161.625 0.718136 0.359068 0.933311i \(-0.383095\pi\)
0.359068 + 0.933311i \(0.383095\pi\)
\(38\) 310.131 1.32394
\(39\) 1.12993 0.00463931
\(40\) −186.645 −0.737778
\(41\) 195.689 0.745402 0.372701 0.927952i \(-0.378432\pi\)
0.372701 + 0.927952i \(0.378432\pi\)
\(42\) 0 0
\(43\) −488.447 −1.73227 −0.866133 0.499814i \(-0.833402\pi\)
−0.866133 + 0.499814i \(0.833402\pi\)
\(44\) −35.2968 −0.120936
\(45\) −114.527 −0.379392
\(46\) 291.928 0.935705
\(47\) 171.705 0.532889 0.266444 0.963850i \(-0.414151\pi\)
0.266444 + 0.963850i \(0.414151\pi\)
\(48\) 181.794 0.546660
\(49\) 0 0
\(50\) 146.935 0.415596
\(51\) 835.671 2.29446
\(52\) 0.559095 0.00149101
\(53\) −431.477 −1.11826 −0.559131 0.829079i \(-0.688865\pi\)
−0.559131 + 0.829079i \(0.688865\pi\)
\(54\) −169.561 −0.427302
\(55\) −83.6810 −0.205155
\(56\) 0 0
\(57\) 918.821 2.13510
\(58\) 387.437 0.877120
\(59\) −194.176 −0.428468 −0.214234 0.976782i \(-0.568725\pi\)
−0.214234 + 0.976782i \(0.568725\pi\)
\(60\) −158.301 −0.340610
\(61\) −585.008 −1.22791 −0.613955 0.789341i \(-0.710423\pi\)
−0.613955 + 0.789341i \(0.710423\pi\)
\(62\) 105.670 0.216453
\(63\) 0 0
\(64\) 519.582 1.01481
\(65\) 1.32549 0.00252934
\(66\) 156.143 0.291210
\(67\) 155.905 0.284281 0.142140 0.989847i \(-0.454602\pi\)
0.142140 + 0.989847i \(0.454602\pi\)
\(68\) 413.496 0.737408
\(69\) 864.891 1.50899
\(70\) 0 0
\(71\) −374.994 −0.626811 −0.313405 0.949619i \(-0.601470\pi\)
−0.313405 + 0.949619i \(0.601470\pi\)
\(72\) 369.364 0.604582
\(73\) −210.419 −0.337365 −0.168683 0.985670i \(-0.553951\pi\)
−0.168683 + 0.985670i \(0.553951\pi\)
\(74\) −353.778 −0.555755
\(75\) 435.323 0.670223
\(76\) 454.639 0.686193
\(77\) 0 0
\(78\) −2.47327 −0.00359029
\(79\) −7.00618 −0.00997793 −0.00498897 0.999988i \(-0.501588\pi\)
−0.00498897 + 0.999988i \(0.501588\pi\)
\(80\) 213.258 0.298038
\(81\) −908.833 −1.24668
\(82\) −428.339 −0.576856
\(83\) 93.6417 0.123837 0.0619187 0.998081i \(-0.480278\pi\)
0.0619187 + 0.998081i \(0.480278\pi\)
\(84\) 0 0
\(85\) 980.307 1.25093
\(86\) 1069.15 1.34058
\(87\) 1147.85 1.41451
\(88\) 269.882 0.326926
\(89\) 307.119 0.365781 0.182891 0.983133i \(-0.441455\pi\)
0.182891 + 0.983133i \(0.441455\pi\)
\(90\) 250.685 0.293606
\(91\) 0 0
\(92\) 427.954 0.484970
\(93\) 313.066 0.349069
\(94\) −375.842 −0.412395
\(95\) 1077.85 1.16405
\(96\) 874.929 0.930178
\(97\) −965.991 −1.01115 −0.505575 0.862783i \(-0.668720\pi\)
−0.505575 + 0.862783i \(0.668720\pi\)
\(98\) 0 0
\(99\) 165.602 0.168117
\(100\) 215.401 0.215401
\(101\) 577.986 0.569424 0.284712 0.958613i \(-0.408102\pi\)
0.284712 + 0.958613i \(0.408102\pi\)
\(102\) −1829.18 −1.77565
\(103\) −133.232 −0.127453 −0.0637267 0.997967i \(-0.520299\pi\)
−0.0637267 + 0.997967i \(0.520299\pi\)
\(104\) −4.27488 −0.00403064
\(105\) 0 0
\(106\) 944.451 0.865408
\(107\) 8.33627 0.00753175 0.00376587 0.999993i \(-0.498801\pi\)
0.00376587 + 0.999993i \(0.498801\pi\)
\(108\) −248.569 −0.221468
\(109\) −317.052 −0.278606 −0.139303 0.990250i \(-0.544486\pi\)
−0.139303 + 0.990250i \(0.544486\pi\)
\(110\) 183.168 0.158767
\(111\) −1048.13 −0.896256
\(112\) 0 0
\(113\) −2170.00 −1.80652 −0.903260 0.429093i \(-0.858833\pi\)
−0.903260 + 0.429093i \(0.858833\pi\)
\(114\) −2011.19 −1.65232
\(115\) 1014.58 0.822700
\(116\) 567.966 0.454606
\(117\) −2.62310 −0.00207270
\(118\) 425.028 0.331585
\(119\) 0 0
\(120\) 1210.38 0.920769
\(121\) 121.000 0.0909091
\(122\) 1280.51 0.950263
\(123\) −1269.03 −0.930285
\(124\) 154.907 0.112186
\(125\) 1461.59 1.04583
\(126\) 0 0
\(127\) 1301.24 0.909184 0.454592 0.890700i \(-0.349785\pi\)
0.454592 + 0.890700i \(0.349785\pi\)
\(128\) −57.9688 −0.0400294
\(129\) 3167.56 2.16192
\(130\) −2.90134 −0.00195742
\(131\) −2522.22 −1.68220 −0.841098 0.540883i \(-0.818090\pi\)
−0.841098 + 0.540883i \(0.818090\pi\)
\(132\) 228.899 0.150932
\(133\) 0 0
\(134\) −341.257 −0.220001
\(135\) −589.302 −0.375696
\(136\) −3161.62 −1.99343
\(137\) 2574.70 1.60563 0.802815 0.596228i \(-0.203334\pi\)
0.802815 + 0.596228i \(0.203334\pi\)
\(138\) −1893.14 −1.16779
\(139\) 2741.49 1.67288 0.836438 0.548061i \(-0.184634\pi\)
0.836438 + 0.548061i \(0.184634\pi\)
\(140\) 0 0
\(141\) −1113.50 −0.665062
\(142\) 820.816 0.485080
\(143\) −1.91662 −0.00112081
\(144\) −422.031 −0.244231
\(145\) 1346.52 0.771189
\(146\) 460.582 0.261082
\(147\) 0 0
\(148\) −518.624 −0.288045
\(149\) −1021.98 −0.561907 −0.280954 0.959721i \(-0.590651\pi\)
−0.280954 + 0.959721i \(0.590651\pi\)
\(150\) −952.869 −0.518676
\(151\) 1016.40 0.547769 0.273885 0.961763i \(-0.411691\pi\)
0.273885 + 0.961763i \(0.411691\pi\)
\(152\) −3476.20 −1.85498
\(153\) −1940.00 −1.02509
\(154\) 0 0
\(155\) 367.251 0.190312
\(156\) −3.62571 −0.00186083
\(157\) 1580.49 0.803422 0.401711 0.915767i \(-0.368416\pi\)
0.401711 + 0.915767i \(0.368416\pi\)
\(158\) 15.3357 0.00772178
\(159\) 2798.11 1.39563
\(160\) 1026.36 0.507130
\(161\) 0 0
\(162\) 1989.33 0.964792
\(163\) 768.358 0.369218 0.184609 0.982812i \(-0.440898\pi\)
0.184609 + 0.982812i \(0.440898\pi\)
\(164\) −627.927 −0.298981
\(165\) 542.668 0.256040
\(166\) −204.970 −0.0958361
\(167\) −3092.73 −1.43307 −0.716534 0.697552i \(-0.754273\pi\)
−0.716534 + 0.697552i \(0.754273\pi\)
\(168\) 0 0
\(169\) −2196.97 −0.999986
\(170\) −2145.77 −0.968079
\(171\) −2133.03 −0.953898
\(172\) 1567.33 0.694812
\(173\) 1327.46 0.583380 0.291690 0.956513i \(-0.405782\pi\)
0.291690 + 0.956513i \(0.405782\pi\)
\(174\) −2512.51 −1.09467
\(175\) 0 0
\(176\) −308.365 −0.132067
\(177\) 1259.23 0.534741
\(178\) −672.247 −0.283073
\(179\) 3141.37 1.31171 0.655857 0.754885i \(-0.272307\pi\)
0.655857 + 0.754885i \(0.272307\pi\)
\(180\) 367.494 0.152174
\(181\) 3683.36 1.51261 0.756303 0.654221i \(-0.227003\pi\)
0.756303 + 0.654221i \(0.227003\pi\)
\(182\) 0 0
\(183\) 3793.75 1.53247
\(184\) −3272.16 −1.31102
\(185\) −1229.54 −0.488636
\(186\) −685.264 −0.270140
\(187\) −1417.49 −0.554317
\(188\) −550.968 −0.213742
\(189\) 0 0
\(190\) −2359.28 −0.900843
\(191\) −2862.38 −1.08437 −0.542185 0.840259i \(-0.682403\pi\)
−0.542185 + 0.840259i \(0.682403\pi\)
\(192\) −3369.47 −1.26651
\(193\) 2023.91 0.754839 0.377420 0.926042i \(-0.376811\pi\)
0.377420 + 0.926042i \(0.376811\pi\)
\(194\) 2114.44 0.782515
\(195\) −8.59576 −0.00315669
\(196\) 0 0
\(197\) −4767.82 −1.72433 −0.862165 0.506628i \(-0.830892\pi\)
−0.862165 + 0.506628i \(0.830892\pi\)
\(198\) −362.483 −0.130104
\(199\) −3546.72 −1.26342 −0.631709 0.775205i \(-0.717646\pi\)
−0.631709 + 0.775205i \(0.717646\pi\)
\(200\) −1646.97 −0.582291
\(201\) −1011.04 −0.354791
\(202\) −1265.14 −0.440669
\(203\) 0 0
\(204\) −2681.50 −0.920308
\(205\) −1488.68 −0.507189
\(206\) 291.628 0.0986343
\(207\) −2007.83 −0.674173
\(208\) 4.88444 0.00162824
\(209\) −1558.53 −0.515818
\(210\) 0 0
\(211\) 1453.49 0.474230 0.237115 0.971482i \(-0.423798\pi\)
0.237115 + 0.971482i \(0.423798\pi\)
\(212\) 1384.52 0.448536
\(213\) 2431.82 0.782279
\(214\) −18.2471 −0.00582872
\(215\) 3715.79 1.17867
\(216\) 1900.57 0.598693
\(217\) 0 0
\(218\) 693.989 0.215610
\(219\) 1364.56 0.421042
\(220\) 268.516 0.0822879
\(221\) 22.4528 0.00683411
\(222\) 2294.24 0.693600
\(223\) −6440.10 −1.93391 −0.966953 0.254955i \(-0.917939\pi\)
−0.966953 + 0.254955i \(0.917939\pi\)
\(224\) 0 0
\(225\) −1010.59 −0.299435
\(226\) 4749.88 1.39804
\(227\) 1313.21 0.383970 0.191985 0.981398i \(-0.438508\pi\)
0.191985 + 0.981398i \(0.438508\pi\)
\(228\) −2948.31 −0.856390
\(229\) 3780.00 1.09078 0.545392 0.838181i \(-0.316381\pi\)
0.545392 + 0.838181i \(0.316381\pi\)
\(230\) −2220.80 −0.636676
\(231\) 0 0
\(232\) −4342.70 −1.22893
\(233\) 2322.65 0.653055 0.326527 0.945188i \(-0.394121\pi\)
0.326527 + 0.945188i \(0.394121\pi\)
\(234\) 5.74166 0.00160403
\(235\) −1306.22 −0.362590
\(236\) 623.073 0.171859
\(237\) 45.4348 0.0124528
\(238\) 0 0
\(239\) 2204.79 0.596718 0.298359 0.954454i \(-0.403561\pi\)
0.298359 + 0.954454i \(0.403561\pi\)
\(240\) −1382.97 −0.371960
\(241\) 4610.39 1.23229 0.616144 0.787634i \(-0.288694\pi\)
0.616144 + 0.787634i \(0.288694\pi\)
\(242\) −264.855 −0.0703533
\(243\) 3802.20 1.00375
\(244\) 1877.17 0.492516
\(245\) 0 0
\(246\) 2777.76 0.719934
\(247\) 24.6869 0.00635946
\(248\) −1184.43 −0.303272
\(249\) −607.263 −0.154553
\(250\) −3199.24 −0.809351
\(251\) −4981.12 −1.25261 −0.626306 0.779577i \(-0.715434\pi\)
−0.626306 + 0.779577i \(0.715434\pi\)
\(252\) 0 0
\(253\) −1467.06 −0.364557
\(254\) −2848.26 −0.703605
\(255\) −6357.25 −1.56120
\(256\) −4029.77 −0.983829
\(257\) −2726.08 −0.661665 −0.330833 0.943689i \(-0.607330\pi\)
−0.330833 + 0.943689i \(0.607330\pi\)
\(258\) −6933.40 −1.67308
\(259\) 0 0
\(260\) −4.25324 −0.00101452
\(261\) −2664.72 −0.631962
\(262\) 5520.84 1.30183
\(263\) −4228.84 −0.991489 −0.495744 0.868468i \(-0.665105\pi\)
−0.495744 + 0.868468i \(0.665105\pi\)
\(264\) −1750.17 −0.408014
\(265\) 3282.40 0.760892
\(266\) 0 0
\(267\) −1991.65 −0.456507
\(268\) −500.268 −0.114025
\(269\) 2396.04 0.543081 0.271541 0.962427i \(-0.412467\pi\)
0.271541 + 0.962427i \(0.412467\pi\)
\(270\) 1289.91 0.290746
\(271\) 2461.68 0.551795 0.275897 0.961187i \(-0.411025\pi\)
0.275897 + 0.961187i \(0.411025\pi\)
\(272\) 3612.43 0.805279
\(273\) 0 0
\(274\) −5635.71 −1.24258
\(275\) −738.408 −0.161919
\(276\) −2775.26 −0.605258
\(277\) 5890.54 1.27772 0.638860 0.769323i \(-0.279406\pi\)
0.638860 + 0.769323i \(0.279406\pi\)
\(278\) −6000.79 −1.29462
\(279\) −726.777 −0.155953
\(280\) 0 0
\(281\) −1964.26 −0.417004 −0.208502 0.978022i \(-0.566859\pi\)
−0.208502 + 0.978022i \(0.566859\pi\)
\(282\) 2437.32 0.514682
\(283\) −8513.60 −1.78827 −0.894136 0.447796i \(-0.852209\pi\)
−0.894136 + 0.447796i \(0.852209\pi\)
\(284\) 1203.28 0.251414
\(285\) −6989.80 −1.45277
\(286\) 4.19524 0.000867378 0
\(287\) 0 0
\(288\) −2031.13 −0.415575
\(289\) 11692.6 2.37994
\(290\) −2947.37 −0.596813
\(291\) 6264.42 1.26195
\(292\) 675.193 0.135317
\(293\) −5219.58 −1.04072 −0.520360 0.853947i \(-0.674202\pi\)
−0.520360 + 0.853947i \(0.674202\pi\)
\(294\) 0 0
\(295\) 1477.17 0.291539
\(296\) 3965.43 0.778669
\(297\) 852.111 0.166480
\(298\) 2237.00 0.434852
\(299\) 23.2379 0.00449459
\(300\) −1396.86 −0.268827
\(301\) 0 0
\(302\) −2224.77 −0.423911
\(303\) −3748.22 −0.710659
\(304\) 3971.87 0.749350
\(305\) 4450.37 0.835499
\(306\) 4246.42 0.793306
\(307\) −2887.29 −0.536764 −0.268382 0.963313i \(-0.586489\pi\)
−0.268382 + 0.963313i \(0.586489\pi\)
\(308\) 0 0
\(309\) 864.001 0.159066
\(310\) −803.868 −0.147279
\(311\) 5876.90 1.07154 0.535769 0.844364i \(-0.320022\pi\)
0.535769 + 0.844364i \(0.320022\pi\)
\(312\) 27.7224 0.00503036
\(313\) 7683.14 1.38747 0.693733 0.720233i \(-0.255965\pi\)
0.693733 + 0.720233i \(0.255965\pi\)
\(314\) −3459.51 −0.621757
\(315\) 0 0
\(316\) 22.4814 0.00400215
\(317\) −9642.33 −1.70841 −0.854207 0.519933i \(-0.825957\pi\)
−0.854207 + 0.519933i \(0.825957\pi\)
\(318\) −6124.73 −1.08006
\(319\) −1947.03 −0.341732
\(320\) −3952.65 −0.690499
\(321\) −54.0604 −0.00939986
\(322\) 0 0
\(323\) 18257.9 3.14519
\(324\) 2916.27 0.500046
\(325\) 11.6962 0.00199628
\(326\) −1681.84 −0.285732
\(327\) 2056.07 0.347710
\(328\) 4801.17 0.808233
\(329\) 0 0
\(330\) −1187.84 −0.198146
\(331\) −2069.87 −0.343717 −0.171859 0.985122i \(-0.554977\pi\)
−0.171859 + 0.985122i \(0.554977\pi\)
\(332\) −300.478 −0.0496713
\(333\) 2433.22 0.400420
\(334\) 6769.61 1.10903
\(335\) −1186.03 −0.193431
\(336\) 0 0
\(337\) 7547.59 1.22001 0.610005 0.792397i \(-0.291167\pi\)
0.610005 + 0.792397i \(0.291167\pi\)
\(338\) 4808.90 0.773875
\(339\) 14072.4 2.25459
\(340\) −3145.61 −0.501749
\(341\) −531.033 −0.0843315
\(342\) 4668.94 0.738208
\(343\) 0 0
\(344\) −11983.9 −1.87828
\(345\) −6579.54 −1.02675
\(346\) −2905.65 −0.451469
\(347\) −6353.22 −0.982877 −0.491439 0.870912i \(-0.663529\pi\)
−0.491439 + 0.870912i \(0.663529\pi\)
\(348\) −3683.23 −0.567362
\(349\) 1352.47 0.207439 0.103719 0.994607i \(-0.466926\pi\)
0.103719 + 0.994607i \(0.466926\pi\)
\(350\) 0 0
\(351\) −13.4973 −0.00205251
\(352\) −1484.08 −0.224721
\(353\) −4203.80 −0.633840 −0.316920 0.948452i \(-0.602649\pi\)
−0.316920 + 0.948452i \(0.602649\pi\)
\(354\) −2756.29 −0.413829
\(355\) 2852.71 0.426497
\(356\) −985.484 −0.146715
\(357\) 0 0
\(358\) −6876.08 −1.01512
\(359\) −11100.7 −1.63195 −0.815976 0.578086i \(-0.803800\pi\)
−0.815976 + 0.578086i \(0.803800\pi\)
\(360\) −2809.88 −0.411372
\(361\) 13215.6 1.92675
\(362\) −8062.43 −1.17059
\(363\) −784.680 −0.113457
\(364\) 0 0
\(365\) 1600.73 0.229551
\(366\) −8304.07 −1.18596
\(367\) 4963.35 0.705953 0.352977 0.935632i \(-0.385170\pi\)
0.352977 + 0.935632i \(0.385170\pi\)
\(368\) 3738.74 0.529607
\(369\) 2946.04 0.415623
\(370\) 2691.32 0.378149
\(371\) 0 0
\(372\) −1004.57 −0.140012
\(373\) −8882.54 −1.23303 −0.616515 0.787343i \(-0.711456\pi\)
−0.616515 + 0.787343i \(0.711456\pi\)
\(374\) 3102.72 0.428978
\(375\) −9478.34 −1.30522
\(376\) 4212.74 0.577807
\(377\) 30.8405 0.00421317
\(378\) 0 0
\(379\) −1218.83 −0.165190 −0.0825952 0.996583i \(-0.526321\pi\)
−0.0825952 + 0.996583i \(0.526321\pi\)
\(380\) −3458.60 −0.466901
\(381\) −8438.49 −1.13469
\(382\) 6265.41 0.839179
\(383\) −112.614 −0.0150243 −0.00751214 0.999972i \(-0.502391\pi\)
−0.00751214 + 0.999972i \(0.502391\pi\)
\(384\) 375.926 0.0499580
\(385\) 0 0
\(386\) −4430.09 −0.584159
\(387\) −7353.43 −0.965880
\(388\) 3099.68 0.405573
\(389\) 12656.2 1.64961 0.824804 0.565419i \(-0.191286\pi\)
0.824804 + 0.565419i \(0.191286\pi\)
\(390\) 18.8151 0.00244292
\(391\) 17186.3 2.22288
\(392\) 0 0
\(393\) 16356.5 2.09943
\(394\) 10436.2 1.33443
\(395\) 53.2985 0.00678922
\(396\) −531.384 −0.0674320
\(397\) −3707.14 −0.468655 −0.234327 0.972158i \(-0.575289\pi\)
−0.234327 + 0.972158i \(0.575289\pi\)
\(398\) 7763.35 0.977742
\(399\) 0 0
\(400\) 1881.81 0.235226
\(401\) 5671.06 0.706232 0.353116 0.935579i \(-0.385122\pi\)
0.353116 + 0.935579i \(0.385122\pi\)
\(402\) 2213.04 0.274568
\(403\) 8.41146 0.00103971
\(404\) −1854.64 −0.228396
\(405\) 6913.82 0.848273
\(406\) 0 0
\(407\) 1777.88 0.216526
\(408\) 20503.0 2.48786
\(409\) −260.465 −0.0314894 −0.0157447 0.999876i \(-0.505012\pi\)
−0.0157447 + 0.999876i \(0.505012\pi\)
\(410\) 3258.53 0.392506
\(411\) −16696.8 −2.00388
\(412\) 427.514 0.0511216
\(413\) 0 0
\(414\) 4394.90 0.521733
\(415\) −712.366 −0.0842619
\(416\) 23.5076 0.00277056
\(417\) −17778.4 −2.08780
\(418\) 3411.44 0.399184
\(419\) −4153.96 −0.484330 −0.242165 0.970235i \(-0.577858\pi\)
−0.242165 + 0.970235i \(0.577858\pi\)
\(420\) 0 0
\(421\) 4240.11 0.490856 0.245428 0.969415i \(-0.421072\pi\)
0.245428 + 0.969415i \(0.421072\pi\)
\(422\) −3181.52 −0.367000
\(423\) 2584.97 0.297129
\(424\) −10586.2 −1.21252
\(425\) 8650.31 0.987298
\(426\) −5322.96 −0.605395
\(427\) 0 0
\(428\) −26.7494 −0.00302099
\(429\) 12.4292 0.00139880
\(430\) −8133.42 −0.912159
\(431\) 1012.17 0.113119 0.0565595 0.998399i \(-0.481987\pi\)
0.0565595 + 0.998399i \(0.481987\pi\)
\(432\) −2171.58 −0.241852
\(433\) −1604.50 −0.178077 −0.0890386 0.996028i \(-0.528379\pi\)
−0.0890386 + 0.996028i \(0.528379\pi\)
\(434\) 0 0
\(435\) −8732.13 −0.962469
\(436\) 1017.36 0.111749
\(437\) 18896.3 2.06850
\(438\) −2986.85 −0.325839
\(439\) −10671.6 −1.16020 −0.580099 0.814546i \(-0.696986\pi\)
−0.580099 + 0.814546i \(0.696986\pi\)
\(440\) −2053.09 −0.222448
\(441\) 0 0
\(442\) −49.1465 −0.00528882
\(443\) 2193.74 0.235277 0.117638 0.993056i \(-0.462468\pi\)
0.117638 + 0.993056i \(0.462468\pi\)
\(444\) 3363.25 0.359489
\(445\) −2336.37 −0.248886
\(446\) 14096.6 1.49662
\(447\) 6627.52 0.701278
\(448\) 0 0
\(449\) −7070.36 −0.743143 −0.371571 0.928404i \(-0.621181\pi\)
−0.371571 + 0.928404i \(0.621181\pi\)
\(450\) 2212.07 0.231729
\(451\) 2152.58 0.224747
\(452\) 6963.12 0.724596
\(453\) −6591.29 −0.683633
\(454\) −2874.47 −0.297149
\(455\) 0 0
\(456\) 22543.0 2.31507
\(457\) 16245.8 1.66290 0.831451 0.555599i \(-0.187511\pi\)
0.831451 + 0.555599i \(0.187511\pi\)
\(458\) −8273.98 −0.844143
\(459\) −9982.32 −1.01511
\(460\) −3255.60 −0.329985
\(461\) 5235.18 0.528908 0.264454 0.964398i \(-0.414808\pi\)
0.264454 + 0.964398i \(0.414808\pi\)
\(462\) 0 0
\(463\) −11093.9 −1.11355 −0.556777 0.830662i \(-0.687962\pi\)
−0.556777 + 0.830662i \(0.687962\pi\)
\(464\) 4961.93 0.496448
\(465\) −2381.61 −0.237515
\(466\) −5084.00 −0.505390
\(467\) 7813.14 0.774195 0.387097 0.922039i \(-0.373478\pi\)
0.387097 + 0.922039i \(0.373478\pi\)
\(468\) 8.41702 0.000831361 0
\(469\) 0 0
\(470\) 2859.17 0.280603
\(471\) −10249.4 −1.00270
\(472\) −4764.06 −0.464584
\(473\) −5372.91 −0.522298
\(474\) −99.4513 −0.00963703
\(475\) 9511.02 0.918728
\(476\) 0 0
\(477\) −6495.76 −0.623523
\(478\) −4826.01 −0.461792
\(479\) −5298.54 −0.505420 −0.252710 0.967542i \(-0.581322\pi\)
−0.252710 + 0.967542i \(0.581322\pi\)
\(480\) −6655.90 −0.632915
\(481\) −28.1612 −0.00266953
\(482\) −10091.6 −0.953650
\(483\) 0 0
\(484\) −388.265 −0.0364637
\(485\) 7348.65 0.688010
\(486\) −8322.56 −0.776788
\(487\) 5580.89 0.519290 0.259645 0.965704i \(-0.416394\pi\)
0.259645 + 0.965704i \(0.416394\pi\)
\(488\) −14353.0 −1.33141
\(489\) −4982.77 −0.460795
\(490\) 0 0
\(491\) 16718.8 1.53668 0.768341 0.640041i \(-0.221083\pi\)
0.768341 + 0.640041i \(0.221083\pi\)
\(492\) 4072.08 0.373138
\(493\) 22809.0 2.08371
\(494\) −54.0366 −0.00492150
\(495\) −1259.79 −0.114391
\(496\) 1353.32 0.122512
\(497\) 0 0
\(498\) 1329.23 0.119606
\(499\) 19594.4 1.75784 0.878922 0.476965i \(-0.158263\pi\)
0.878922 + 0.476965i \(0.158263\pi\)
\(500\) −4689.95 −0.419482
\(501\) 20056.2 1.78851
\(502\) 10903.1 0.969379
\(503\) −9008.04 −0.798506 −0.399253 0.916841i \(-0.630731\pi\)
−0.399253 + 0.916841i \(0.630731\pi\)
\(504\) 0 0
\(505\) −4396.95 −0.387449
\(506\) 3211.21 0.282126
\(507\) 14247.3 1.24801
\(508\) −4175.42 −0.364674
\(509\) 3379.88 0.294324 0.147162 0.989112i \(-0.452986\pi\)
0.147162 + 0.989112i \(0.452986\pi\)
\(510\) 13915.3 1.20819
\(511\) 0 0
\(512\) 9284.42 0.801401
\(513\) −10975.6 −0.944606
\(514\) 5967.05 0.512053
\(515\) 1013.54 0.0867222
\(516\) −10164.1 −0.867148
\(517\) 1888.76 0.160672
\(518\) 0 0
\(519\) −8608.51 −0.728076
\(520\) 32.5206 0.00274254
\(521\) 736.886 0.0619646 0.0309823 0.999520i \(-0.490136\pi\)
0.0309823 + 0.999520i \(0.490136\pi\)
\(522\) 5832.75 0.489066
\(523\) −9541.00 −0.797703 −0.398852 0.917015i \(-0.630591\pi\)
−0.398852 + 0.917015i \(0.630591\pi\)
\(524\) 8093.32 0.674729
\(525\) 0 0
\(526\) 9256.43 0.767299
\(527\) 6220.95 0.514210
\(528\) 1999.73 0.164824
\(529\) 5620.20 0.461922
\(530\) −7184.78 −0.588843
\(531\) −2923.27 −0.238906
\(532\) 0 0
\(533\) −34.0964 −0.00277088
\(534\) 4359.49 0.353284
\(535\) −63.4170 −0.00512478
\(536\) 3825.08 0.308243
\(537\) −20371.7 −1.63706
\(538\) −5244.64 −0.420283
\(539\) 0 0
\(540\) 1890.95 0.150692
\(541\) 16721.0 1.32882 0.664411 0.747368i \(-0.268683\pi\)
0.664411 + 0.747368i \(0.268683\pi\)
\(542\) −5388.32 −0.427026
\(543\) −23886.4 −1.88778
\(544\) 17385.7 1.37023
\(545\) 2411.93 0.189570
\(546\) 0 0
\(547\) 8958.59 0.700259 0.350129 0.936701i \(-0.386138\pi\)
0.350129 + 0.936701i \(0.386138\pi\)
\(548\) −8261.70 −0.644019
\(549\) −8807.13 −0.684661
\(550\) 1616.29 0.125307
\(551\) 25078.5 1.93899
\(552\) 21219.9 1.63619
\(553\) 0 0
\(554\) −12893.7 −0.988809
\(555\) 7973.53 0.609834
\(556\) −8796.89 −0.670992
\(557\) −14329.6 −1.09006 −0.545031 0.838416i \(-0.683482\pi\)
−0.545031 + 0.838416i \(0.683482\pi\)
\(558\) 1590.83 0.120690
\(559\) 85.1059 0.00643935
\(560\) 0 0
\(561\) 9192.38 0.691805
\(562\) 4299.54 0.322713
\(563\) −15791.2 −1.18209 −0.591047 0.806637i \(-0.701285\pi\)
−0.591047 + 0.806637i \(0.701285\pi\)
\(564\) 3573.01 0.266757
\(565\) 16508.0 1.22920
\(566\) 18635.2 1.38392
\(567\) 0 0
\(568\) −9200.37 −0.679646
\(569\) −13996.4 −1.03121 −0.515605 0.856826i \(-0.672433\pi\)
−0.515605 + 0.856826i \(0.672433\pi\)
\(570\) 15299.8 1.12428
\(571\) −6642.54 −0.486833 −0.243417 0.969922i \(-0.578268\pi\)
−0.243417 + 0.969922i \(0.578268\pi\)
\(572\) 6.15005 0.000449557 0
\(573\) 18562.4 1.35333
\(574\) 0 0
\(575\) 8952.78 0.649316
\(576\) 7822.16 0.565839
\(577\) 85.5448 0.00617206 0.00308603 0.999995i \(-0.499018\pi\)
0.00308603 + 0.999995i \(0.499018\pi\)
\(578\) −25593.8 −1.84180
\(579\) −13125.0 −0.942063
\(580\) −4320.72 −0.309324
\(581\) 0 0
\(582\) −13712.1 −0.976603
\(583\) −4746.25 −0.337169
\(584\) −5162.57 −0.365802
\(585\) 19.9549 0.00141031
\(586\) 11425.0 0.805399
\(587\) −11205.0 −0.787869 −0.393934 0.919139i \(-0.628886\pi\)
−0.393934 + 0.919139i \(0.628886\pi\)
\(588\) 0 0
\(589\) 6839.93 0.478497
\(590\) −3233.35 −0.225618
\(591\) 30919.1 2.15202
\(592\) −4530.87 −0.314556
\(593\) −11664.6 −0.807773 −0.403886 0.914809i \(-0.632341\pi\)
−0.403886 + 0.914809i \(0.632341\pi\)
\(594\) −1865.17 −0.128836
\(595\) 0 0
\(596\) 3279.34 0.225381
\(597\) 23000.3 1.57679
\(598\) −50.8649 −0.00347830
\(599\) −20545.1 −1.40142 −0.700711 0.713445i \(-0.747134\pi\)
−0.700711 + 0.713445i \(0.747134\pi\)
\(600\) 10680.5 0.726718
\(601\) −3885.01 −0.263682 −0.131841 0.991271i \(-0.542089\pi\)
−0.131841 + 0.991271i \(0.542089\pi\)
\(602\) 0 0
\(603\) 2347.11 0.158510
\(604\) −3261.42 −0.219710
\(605\) −920.491 −0.0618567
\(606\) 8204.40 0.549969
\(607\) −8439.80 −0.564351 −0.282175 0.959363i \(-0.591056\pi\)
−0.282175 + 0.959363i \(0.591056\pi\)
\(608\) 19115.6 1.27507
\(609\) 0 0
\(610\) −9741.32 −0.646581
\(611\) −29.9175 −0.00198091
\(612\) 6225.06 0.411165
\(613\) 17997.8 1.18584 0.592922 0.805260i \(-0.297974\pi\)
0.592922 + 0.805260i \(0.297974\pi\)
\(614\) 6319.94 0.415394
\(615\) 9654.01 0.632987
\(616\) 0 0
\(617\) −26336.6 −1.71843 −0.859214 0.511616i \(-0.829047\pi\)
−0.859214 + 0.511616i \(0.829047\pi\)
\(618\) −1891.20 −0.123099
\(619\) −27875.5 −1.81003 −0.905016 0.425376i \(-0.860142\pi\)
−0.905016 + 0.425376i \(0.860142\pi\)
\(620\) −1178.44 −0.0763341
\(621\) −10331.4 −0.667606
\(622\) −12863.8 −0.829249
\(623\) 0 0
\(624\) −31.6754 −0.00203210
\(625\) −2727.83 −0.174581
\(626\) −16817.5 −1.07374
\(627\) 10107.0 0.643757
\(628\) −5071.50 −0.322253
\(629\) −20827.5 −1.32027
\(630\) 0 0
\(631\) 8242.15 0.519992 0.259996 0.965610i \(-0.416279\pi\)
0.259996 + 0.965610i \(0.416279\pi\)
\(632\) −171.895 −0.0108190
\(633\) −9425.84 −0.591854
\(634\) 21105.9 1.32212
\(635\) −9899.00 −0.618630
\(636\) −8978.59 −0.559786
\(637\) 0 0
\(638\) 4261.80 0.264462
\(639\) −5645.43 −0.349499
\(640\) 440.990 0.0272370
\(641\) −7001.97 −0.431453 −0.215726 0.976454i \(-0.569212\pi\)
−0.215726 + 0.976454i \(0.569212\pi\)
\(642\) 118.332 0.00727442
\(643\) −2473.25 −0.151688 −0.0758442 0.997120i \(-0.524165\pi\)
−0.0758442 + 0.997120i \(0.524165\pi\)
\(644\) 0 0
\(645\) −24096.8 −1.47102
\(646\) −39964.4 −2.43402
\(647\) −9153.21 −0.556182 −0.278091 0.960555i \(-0.589702\pi\)
−0.278091 + 0.960555i \(0.589702\pi\)
\(648\) −22298.0 −1.35177
\(649\) −2135.94 −0.129188
\(650\) −25.6017 −0.00154489
\(651\) 0 0
\(652\) −2465.51 −0.148093
\(653\) 725.254 0.0434630 0.0217315 0.999764i \(-0.493082\pi\)
0.0217315 + 0.999764i \(0.493082\pi\)
\(654\) −4500.49 −0.269088
\(655\) 19187.5 1.14461
\(656\) −5485.78 −0.326499
\(657\) −3167.80 −0.188109
\(658\) 0 0
\(659\) 14332.9 0.847242 0.423621 0.905840i \(-0.360759\pi\)
0.423621 + 0.905840i \(0.360759\pi\)
\(660\) −1741.32 −0.102698
\(661\) −26773.3 −1.57543 −0.787715 0.616040i \(-0.788736\pi\)
−0.787715 + 0.616040i \(0.788736\pi\)
\(662\) 4530.70 0.265998
\(663\) −145.606 −0.00852919
\(664\) 2297.47 0.134276
\(665\) 0 0
\(666\) −5326.04 −0.309879
\(667\) 23606.6 1.37039
\(668\) 9923.95 0.574804
\(669\) 41763.8 2.41358
\(670\) 2596.07 0.149694
\(671\) −6435.08 −0.370229
\(672\) 0 0
\(673\) −25423.9 −1.45619 −0.728096 0.685475i \(-0.759595\pi\)
−0.728096 + 0.685475i \(0.759595\pi\)
\(674\) −16520.8 −0.944149
\(675\) −5200.05 −0.296519
\(676\) 7049.64 0.401095
\(677\) −9287.48 −0.527248 −0.263624 0.964625i \(-0.584918\pi\)
−0.263624 + 0.964625i \(0.584918\pi\)
\(678\) −30802.8 −1.74480
\(679\) 0 0
\(680\) 24051.6 1.35638
\(681\) −8516.15 −0.479206
\(682\) 1162.37 0.0652629
\(683\) −31888.8 −1.78652 −0.893258 0.449544i \(-0.851586\pi\)
−0.893258 + 0.449544i \(0.851586\pi\)
\(684\) 6844.46 0.382609
\(685\) −19586.7 −1.09251
\(686\) 0 0
\(687\) −24513.2 −1.36133
\(688\) 13692.7 0.758763
\(689\) 75.1796 0.00415692
\(690\) 14401.8 0.794591
\(691\) 18650.3 1.02676 0.513379 0.858162i \(-0.328394\pi\)
0.513379 + 0.858162i \(0.328394\pi\)
\(692\) −4259.55 −0.233994
\(693\) 0 0
\(694\) 13906.4 0.760635
\(695\) −20855.5 −1.13826
\(696\) 28162.3 1.53375
\(697\) −25217.0 −1.37039
\(698\) −2960.40 −0.160534
\(699\) −15062.3 −0.815033
\(700\) 0 0
\(701\) 8566.01 0.461532 0.230766 0.973009i \(-0.425877\pi\)
0.230766 + 0.973009i \(0.425877\pi\)
\(702\) 29.5439 0.00158841
\(703\) −22899.8 −1.22857
\(704\) 5715.40 0.305976
\(705\) 8470.81 0.452524
\(706\) 9201.61 0.490520
\(707\) 0 0
\(708\) −4040.61 −0.214485
\(709\) 680.116 0.0360258 0.0180129 0.999838i \(-0.494266\pi\)
0.0180129 + 0.999838i \(0.494266\pi\)
\(710\) −6244.25 −0.330060
\(711\) −105.476 −0.00556352
\(712\) 7535.08 0.396614
\(713\) 6438.47 0.338180
\(714\) 0 0
\(715\) 14.5804 0.000762624 0
\(716\) −10080.0 −0.526129
\(717\) −14297.9 −0.744723
\(718\) 24298.0 1.26294
\(719\) −12557.6 −0.651346 −0.325673 0.945482i \(-0.605591\pi\)
−0.325673 + 0.945482i \(0.605591\pi\)
\(720\) 3210.55 0.166181
\(721\) 0 0
\(722\) −28927.3 −1.49109
\(723\) −29898.2 −1.53793
\(724\) −11819.2 −0.606707
\(725\) 11881.8 0.608661
\(726\) 1717.57 0.0878031
\(727\) −22253.6 −1.13527 −0.567635 0.823281i \(-0.692141\pi\)
−0.567635 + 0.823281i \(0.692141\pi\)
\(728\) 0 0
\(729\) −118.633 −0.00602716
\(730\) −3503.81 −0.177646
\(731\) 62942.6 3.18470
\(732\) −12173.4 −0.614675
\(733\) −6852.72 −0.345308 −0.172654 0.984982i \(-0.555234\pi\)
−0.172654 + 0.984982i \(0.555234\pi\)
\(734\) −10864.2 −0.546327
\(735\) 0 0
\(736\) 17993.6 0.901161
\(737\) 1714.95 0.0857139
\(738\) −6448.53 −0.321645
\(739\) −9133.20 −0.454628 −0.227314 0.973821i \(-0.572994\pi\)
−0.227314 + 0.973821i \(0.572994\pi\)
\(740\) 3945.36 0.195992
\(741\) −160.093 −0.00793681
\(742\) 0 0
\(743\) −33458.7 −1.65206 −0.826031 0.563624i \(-0.809407\pi\)
−0.826031 + 0.563624i \(0.809407\pi\)
\(744\) 7680.99 0.378493
\(745\) 7774.60 0.382335
\(746\) 19442.8 0.954225
\(747\) 1409.75 0.0690496
\(748\) 4548.45 0.222337
\(749\) 0 0
\(750\) 20746.9 1.01010
\(751\) −37530.0 −1.82355 −0.911776 0.410688i \(-0.865289\pi\)
−0.911776 + 0.410688i \(0.865289\pi\)
\(752\) −4813.44 −0.233415
\(753\) 32302.4 1.56330
\(754\) −67.5062 −0.00326052
\(755\) −7732.10 −0.372715
\(756\) 0 0
\(757\) 32174.8 1.54480 0.772399 0.635138i \(-0.219057\pi\)
0.772399 + 0.635138i \(0.219057\pi\)
\(758\) 2667.88 0.127839
\(759\) 9513.80 0.454979
\(760\) 26444.7 1.26217
\(761\) −4457.43 −0.212328 −0.106164 0.994349i \(-0.533857\pi\)
−0.106164 + 0.994349i \(0.533857\pi\)
\(762\) 18470.8 0.878121
\(763\) 0 0
\(764\) 9184.82 0.434941
\(765\) 14758.2 0.697497
\(766\) 246.498 0.0116271
\(767\) 33.8329 0.00159274
\(768\) 26132.9 1.22785
\(769\) 38329.0 1.79737 0.898687 0.438591i \(-0.144522\pi\)
0.898687 + 0.438591i \(0.144522\pi\)
\(770\) 0 0
\(771\) 17678.5 0.825779
\(772\) −6494.32 −0.302766
\(773\) 9529.23 0.443393 0.221696 0.975116i \(-0.428841\pi\)
0.221696 + 0.975116i \(0.428841\pi\)
\(774\) 16095.8 0.747481
\(775\) 3240.65 0.150203
\(776\) −23700.3 −1.09638
\(777\) 0 0
\(778\) −27703.0 −1.27661
\(779\) −27726.1 −1.27521
\(780\) 27.5821 0.00126615
\(781\) −4124.93 −0.188991
\(782\) −37618.7 −1.72026
\(783\) −13711.4 −0.625806
\(784\) 0 0
\(785\) −12023.4 −0.546667
\(786\) −35802.5 −1.62472
\(787\) −29705.1 −1.34545 −0.672726 0.739892i \(-0.734877\pi\)
−0.672726 + 0.739892i \(0.734877\pi\)
\(788\) 15299.0 0.691629
\(789\) 27423.9 1.23741
\(790\) −116.664 −0.00525408
\(791\) 0 0
\(792\) 4063.00 0.182288
\(793\) 101.931 0.00456451
\(794\) 8114.48 0.362685
\(795\) −21286.2 −0.949617
\(796\) 11380.7 0.506758
\(797\) −8596.99 −0.382084 −0.191042 0.981582i \(-0.561187\pi\)
−0.191042 + 0.981582i \(0.561187\pi\)
\(798\) 0 0
\(799\) −22126.4 −0.979695
\(800\) 9056.69 0.400253
\(801\) 4623.59 0.203953
\(802\) −12413.3 −0.546543
\(803\) −2314.61 −0.101719
\(804\) 3244.22 0.142307
\(805\) 0 0
\(806\) −18.4117 −0.000804620 0
\(807\) −15538.2 −0.677783
\(808\) 14180.7 0.617422
\(809\) 16630.2 0.722727 0.361364 0.932425i \(-0.382311\pi\)
0.361364 + 0.932425i \(0.382311\pi\)
\(810\) −15133.5 −0.656467
\(811\) −18584.2 −0.804660 −0.402330 0.915495i \(-0.631799\pi\)
−0.402330 + 0.915495i \(0.631799\pi\)
\(812\) 0 0
\(813\) −15963.9 −0.688657
\(814\) −3891.56 −0.167567
\(815\) −5845.18 −0.251224
\(816\) −23426.5 −1.00501
\(817\) 69205.5 2.96352
\(818\) 570.127 0.0243692
\(819\) 0 0
\(820\) 4776.87 0.203434
\(821\) −4088.88 −0.173816 −0.0869079 0.996216i \(-0.527699\pi\)
−0.0869079 + 0.996216i \(0.527699\pi\)
\(822\) 36547.3 1.55077
\(823\) −12830.0 −0.543410 −0.271705 0.962381i \(-0.587587\pi\)
−0.271705 + 0.962381i \(0.587587\pi\)
\(824\) −3268.80 −0.138197
\(825\) 4788.55 0.202080
\(826\) 0 0
\(827\) −13768.7 −0.578942 −0.289471 0.957187i \(-0.593479\pi\)
−0.289471 + 0.957187i \(0.593479\pi\)
\(828\) 6442.73 0.270411
\(829\) 10907.8 0.456987 0.228494 0.973545i \(-0.426620\pi\)
0.228494 + 0.973545i \(0.426620\pi\)
\(830\) 1559.28 0.0652091
\(831\) −38199.9 −1.59463
\(832\) −90.5308 −0.00377234
\(833\) 0 0
\(834\) 38914.9 1.61572
\(835\) 23527.5 0.975093
\(836\) 5001.03 0.206895
\(837\) −3739.66 −0.154434
\(838\) 9092.53 0.374817
\(839\) 27174.8 1.11821 0.559105 0.829097i \(-0.311145\pi\)
0.559105 + 0.829097i \(0.311145\pi\)
\(840\) 0 0
\(841\) 6940.81 0.284588
\(842\) −9281.09 −0.379866
\(843\) 12738.2 0.520434
\(844\) −4663.97 −0.190214
\(845\) 16713.1 0.680414
\(846\) −5658.20 −0.229944
\(847\) 0 0
\(848\) 12095.7 0.489819
\(849\) 55210.3 2.23182
\(850\) −18934.5 −0.764056
\(851\) −21555.7 −0.868298
\(852\) −7803.23 −0.313773
\(853\) 33975.1 1.36376 0.681878 0.731466i \(-0.261163\pi\)
0.681878 + 0.731466i \(0.261163\pi\)
\(854\) 0 0
\(855\) 16226.7 0.649054
\(856\) 204.528 0.00816662
\(857\) −20423.7 −0.814073 −0.407037 0.913412i \(-0.633438\pi\)
−0.407037 + 0.913412i \(0.633438\pi\)
\(858\) −27.2060 −0.00108251
\(859\) 36704.2 1.45789 0.728947 0.684570i \(-0.240010\pi\)
0.728947 + 0.684570i \(0.240010\pi\)
\(860\) −11923.2 −0.472766
\(861\) 0 0
\(862\) −2215.51 −0.0875413
\(863\) 26222.8 1.03434 0.517170 0.855883i \(-0.326985\pi\)
0.517170 + 0.855883i \(0.326985\pi\)
\(864\) −10451.3 −0.411527
\(865\) −10098.5 −0.396945
\(866\) 3512.06 0.137811
\(867\) −75826.4 −2.97024
\(868\) 0 0
\(869\) −77.0680 −0.00300846
\(870\) 19113.6 0.744841
\(871\) −27.1645 −0.00105676
\(872\) −7778.79 −0.302091
\(873\) −14542.7 −0.563799
\(874\) −41361.8 −1.60078
\(875\) 0 0
\(876\) −4378.60 −0.168880
\(877\) 44950.8 1.73076 0.865382 0.501113i \(-0.167076\pi\)
0.865382 + 0.501113i \(0.167076\pi\)
\(878\) 23358.8 0.897861
\(879\) 33848.8 1.29885
\(880\) 2345.84 0.0898617
\(881\) −3896.87 −0.149023 −0.0745113 0.997220i \(-0.523740\pi\)
−0.0745113 + 0.997220i \(0.523740\pi\)
\(882\) 0 0
\(883\) 6257.41 0.238481 0.119240 0.992865i \(-0.461954\pi\)
0.119240 + 0.992865i \(0.461954\pi\)
\(884\) −72.0466 −0.00274117
\(885\) −9579.38 −0.363850
\(886\) −4801.83 −0.182077
\(887\) −40626.2 −1.53787 −0.768937 0.639324i \(-0.779214\pi\)
−0.768937 + 0.639324i \(0.779214\pi\)
\(888\) −25715.7 −0.971803
\(889\) 0 0
\(890\) 5114.02 0.192610
\(891\) −9997.16 −0.375889
\(892\) 20665.0 0.775691
\(893\) −24328.0 −0.911653
\(894\) −14506.9 −0.542709
\(895\) −23897.5 −0.892521
\(896\) 0 0
\(897\) −150.697 −0.00560938
\(898\) 15476.2 0.575108
\(899\) 8544.91 0.317006
\(900\) 3242.80 0.120104
\(901\) 55601.4 2.05588
\(902\) −4711.73 −0.173929
\(903\) 0 0
\(904\) −53240.5 −1.95880
\(905\) −28020.6 −1.02921
\(906\) 14427.5 0.529054
\(907\) 42366.9 1.55101 0.775506 0.631340i \(-0.217495\pi\)
0.775506 + 0.631340i \(0.217495\pi\)
\(908\) −4213.85 −0.154010
\(909\) 8701.42 0.317501
\(910\) 0 0
\(911\) 26231.4 0.953992 0.476996 0.878906i \(-0.341726\pi\)
0.476996 + 0.878906i \(0.341726\pi\)
\(912\) −25757.4 −0.935213
\(913\) 1030.06 0.0373384
\(914\) −35560.1 −1.28690
\(915\) −28860.5 −1.04273
\(916\) −12129.3 −0.437514
\(917\) 0 0
\(918\) 21850.1 0.785578
\(919\) 2542.24 0.0912522 0.0456261 0.998959i \(-0.485472\pi\)
0.0456261 + 0.998959i \(0.485472\pi\)
\(920\) 24892.5 0.892047
\(921\) 18724.0 0.669898
\(922\) −11459.2 −0.409314
\(923\) 65.3381 0.00233004
\(924\) 0 0
\(925\) −10849.6 −0.385656
\(926\) 24283.2 0.861764
\(927\) −2005.76 −0.0710657
\(928\) 23880.5 0.844739
\(929\) 20097.8 0.709782 0.354891 0.934908i \(-0.384518\pi\)
0.354891 + 0.934908i \(0.384518\pi\)
\(930\) 5213.05 0.183809
\(931\) 0 0
\(932\) −7452.92 −0.261941
\(933\) −38111.5 −1.33731
\(934\) −17102.0 −0.599138
\(935\) 10783.4 0.377170
\(936\) −64.3571 −0.00224741
\(937\) 202.788 0.00707023 0.00353511 0.999994i \(-0.498875\pi\)
0.00353511 + 0.999994i \(0.498875\pi\)
\(938\) 0 0
\(939\) −49824.9 −1.73160
\(940\) 4191.41 0.145435
\(941\) −12419.1 −0.430235 −0.215118 0.976588i \(-0.569013\pi\)
−0.215118 + 0.976588i \(0.569013\pi\)
\(942\) 22434.8 0.775972
\(943\) −26098.8 −0.901265
\(944\) 5443.37 0.187677
\(945\) 0 0
\(946\) 11760.7 0.404199
\(947\) 369.282 0.0126717 0.00633583 0.999980i \(-0.497983\pi\)
0.00633583 + 0.999980i \(0.497983\pi\)
\(948\) −145.791 −0.00499481
\(949\) 36.6629 0.00125409
\(950\) −20818.5 −0.710990
\(951\) 62530.1 2.13215
\(952\) 0 0
\(953\) 25994.1 0.883558 0.441779 0.897124i \(-0.354348\pi\)
0.441779 + 0.897124i \(0.354348\pi\)
\(954\) 14218.5 0.482536
\(955\) 21775.2 0.737830
\(956\) −7074.72 −0.239344
\(957\) 12626.4 0.426492
\(958\) 11597.9 0.391138
\(959\) 0 0
\(960\) 25632.8 0.861764
\(961\) −27460.5 −0.921770
\(962\) 61.6416 0.00206591
\(963\) 125.500 0.00419957
\(964\) −14793.8 −0.494271
\(965\) −15396.6 −0.513610
\(966\) 0 0
\(967\) −53830.0 −1.79013 −0.895065 0.445937i \(-0.852871\pi\)
−0.895065 + 0.445937i \(0.852871\pi\)
\(968\) 2968.70 0.0985720
\(969\) −118402. −3.92530
\(970\) −16085.3 −0.532441
\(971\) 1349.54 0.0446022 0.0223011 0.999751i \(-0.492901\pi\)
0.0223011 + 0.999751i \(0.492901\pi\)
\(972\) −12200.5 −0.402605
\(973\) 0 0
\(974\) −12215.9 −0.401872
\(975\) −75.8497 −0.00249142
\(976\) 16399.6 0.537847
\(977\) 6611.71 0.216507 0.108253 0.994123i \(-0.465474\pi\)
0.108253 + 0.994123i \(0.465474\pi\)
\(978\) 10906.7 0.356603
\(979\) 3378.31 0.110287
\(980\) 0 0
\(981\) −4773.13 −0.155346
\(982\) −36595.5 −1.18922
\(983\) −40595.9 −1.31720 −0.658601 0.752493i \(-0.728851\pi\)
−0.658601 + 0.752493i \(0.728851\pi\)
\(984\) −31135.4 −1.00870
\(985\) 36270.5 1.17327
\(986\) −49926.2 −1.61255
\(987\) 0 0
\(988\) −79.2153 −0.00255078
\(989\) 65143.5 2.09448
\(990\) 2757.54 0.0885256
\(991\) −48877.7 −1.56675 −0.783376 0.621548i \(-0.786504\pi\)
−0.783376 + 0.621548i \(0.786504\pi\)
\(992\) 6513.19 0.208462
\(993\) 13423.0 0.428970
\(994\) 0 0
\(995\) 26981.2 0.859660
\(996\) 1948.59 0.0619913
\(997\) −13127.4 −0.417000 −0.208500 0.978022i \(-0.566858\pi\)
−0.208500 + 0.978022i \(0.566858\pi\)
\(998\) −42889.7 −1.36037
\(999\) 12520.2 0.396520
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.4.a.h.1.2 5
7.6 odd 2 77.4.a.e.1.2 5
21.20 even 2 693.4.a.o.1.4 5
28.27 even 2 1232.4.a.y.1.2 5
35.34 odd 2 1925.4.a.r.1.4 5
77.76 even 2 847.4.a.f.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.e.1.2 5 7.6 odd 2
539.4.a.h.1.2 5 1.1 even 1 trivial
693.4.a.o.1.4 5 21.20 even 2
847.4.a.f.1.4 5 77.76 even 2
1232.4.a.y.1.2 5 28.27 even 2
1925.4.a.r.1.4 5 35.34 odd 2