Properties

Label 539.4.a.g.1.4
Level $539$
Weight $4$
Character 539.1
Self dual yes
Analytic conductor $31.802$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [539,4,Mod(1,539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(539, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("539.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 539.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.8020294931\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.522072.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.148103\) of defining polynomial
Character \(\chi\) \(=\) 539.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.60395 q^{2} -2.77399 q^{3} +13.1964 q^{4} -1.84418 q^{5} -12.7713 q^{6} +23.9238 q^{8} -19.3050 q^{9} -8.49053 q^{10} -11.0000 q^{11} -36.6066 q^{12} -24.6401 q^{13} +5.11574 q^{15} +4.57310 q^{16} -17.8800 q^{17} -88.8792 q^{18} -32.1459 q^{19} -24.3365 q^{20} -50.6435 q^{22} +14.1248 q^{23} -66.3643 q^{24} -121.599 q^{25} -113.442 q^{26} +128.450 q^{27} -41.5471 q^{29} +23.5526 q^{30} -175.766 q^{31} -170.336 q^{32} +30.5139 q^{33} -82.3187 q^{34} -254.756 q^{36} +292.877 q^{37} -147.998 q^{38} +68.3513 q^{39} -44.1199 q^{40} -154.296 q^{41} -277.144 q^{43} -145.160 q^{44} +35.6019 q^{45} +65.0300 q^{46} +52.1450 q^{47} -12.6857 q^{48} -559.836 q^{50} +49.5989 q^{51} -325.160 q^{52} +82.3907 q^{53} +591.375 q^{54} +20.2860 q^{55} +89.1723 q^{57} -191.281 q^{58} -712.816 q^{59} +67.5092 q^{60} +647.078 q^{61} -809.217 q^{62} -820.804 q^{64} +45.4408 q^{65} +140.484 q^{66} +260.867 q^{67} -235.951 q^{68} -39.1821 q^{69} +369.025 q^{71} -461.849 q^{72} -1145.77 q^{73} +1348.39 q^{74} +337.314 q^{75} -424.209 q^{76} +314.686 q^{78} +488.885 q^{79} -8.43362 q^{80} +164.917 q^{81} -710.372 q^{82} -548.982 q^{83} +32.9740 q^{85} -1275.96 q^{86} +115.251 q^{87} -263.162 q^{88} -105.039 q^{89} +163.910 q^{90} +186.396 q^{92} +487.572 q^{93} +240.073 q^{94} +59.2829 q^{95} +472.510 q^{96} +1361.91 q^{97} +212.355 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 14 q^{3} + 26 q^{4} - 10 q^{5} - 14 q^{6} - 18 q^{8} + 76 q^{9} + 2 q^{10} - 44 q^{11} - 70 q^{12} - 58 q^{13} + 284 q^{15} + 2 q^{16} - 4 q^{17} - 62 q^{18} - 258 q^{19} - 182 q^{20} + 22 q^{22}+ \cdots - 836 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.60395 1.62774 0.813871 0.581045i \(-0.197356\pi\)
0.813871 + 0.581045i \(0.197356\pi\)
\(3\) −2.77399 −0.533854 −0.266927 0.963717i \(-0.586008\pi\)
−0.266927 + 0.963717i \(0.586008\pi\)
\(4\) 13.1964 1.64955
\(5\) −1.84418 −0.164949 −0.0824744 0.996593i \(-0.526282\pi\)
−0.0824744 + 0.996593i \(0.526282\pi\)
\(6\) −12.7713 −0.868977
\(7\) 0 0
\(8\) 23.9238 1.05729
\(9\) −19.3050 −0.715000
\(10\) −8.49053 −0.268494
\(11\) −11.0000 −0.301511
\(12\) −36.6066 −0.880617
\(13\) −24.6401 −0.525687 −0.262844 0.964838i \(-0.584660\pi\)
−0.262844 + 0.964838i \(0.584660\pi\)
\(14\) 0 0
\(15\) 5.11574 0.0880586
\(16\) 4.57310 0.0714546
\(17\) −17.8800 −0.255090 −0.127545 0.991833i \(-0.540710\pi\)
−0.127545 + 0.991833i \(0.540710\pi\)
\(18\) −88.8792 −1.16384
\(19\) −32.1459 −0.388146 −0.194073 0.980987i \(-0.562170\pi\)
−0.194073 + 0.980987i \(0.562170\pi\)
\(20\) −24.3365 −0.272090
\(21\) 0 0
\(22\) −50.6435 −0.490783
\(23\) 14.1248 0.128054 0.0640268 0.997948i \(-0.479606\pi\)
0.0640268 + 0.997948i \(0.479606\pi\)
\(24\) −66.3643 −0.564440
\(25\) −121.599 −0.972792
\(26\) −113.442 −0.855683
\(27\) 128.450 0.915560
\(28\) 0 0
\(29\) −41.5471 −0.266038 −0.133019 0.991113i \(-0.542467\pi\)
−0.133019 + 0.991113i \(0.542467\pi\)
\(30\) 23.5526 0.143337
\(31\) −175.766 −1.01834 −0.509169 0.860667i \(-0.670047\pi\)
−0.509169 + 0.860667i \(0.670047\pi\)
\(32\) −170.336 −0.940983
\(33\) 30.5139 0.160963
\(34\) −82.3187 −0.415222
\(35\) 0 0
\(36\) −254.756 −1.17942
\(37\) 292.877 1.30131 0.650657 0.759372i \(-0.274494\pi\)
0.650657 + 0.759372i \(0.274494\pi\)
\(38\) −147.998 −0.631801
\(39\) 68.3513 0.280640
\(40\) −44.1199 −0.174399
\(41\) −154.296 −0.587732 −0.293866 0.955847i \(-0.594942\pi\)
−0.293866 + 0.955847i \(0.594942\pi\)
\(42\) 0 0
\(43\) −277.144 −0.982887 −0.491443 0.870910i \(-0.663530\pi\)
−0.491443 + 0.870910i \(0.663530\pi\)
\(44\) −145.160 −0.497357
\(45\) 35.6019 0.117938
\(46\) 65.0300 0.208438
\(47\) 52.1450 0.161832 0.0809162 0.996721i \(-0.474215\pi\)
0.0809162 + 0.996721i \(0.474215\pi\)
\(48\) −12.6857 −0.0381464
\(49\) 0 0
\(50\) −559.836 −1.58345
\(51\) 49.5989 0.136181
\(52\) −325.160 −0.867145
\(53\) 82.3907 0.213533 0.106766 0.994284i \(-0.465950\pi\)
0.106766 + 0.994284i \(0.465950\pi\)
\(54\) 591.375 1.49030
\(55\) 20.2860 0.0497339
\(56\) 0 0
\(57\) 89.1723 0.207213
\(58\) −191.281 −0.433041
\(59\) −712.816 −1.57289 −0.786447 0.617658i \(-0.788081\pi\)
−0.786447 + 0.617658i \(0.788081\pi\)
\(60\) 67.5092 0.145257
\(61\) 647.078 1.35819 0.679097 0.734048i \(-0.262371\pi\)
0.679097 + 0.734048i \(0.262371\pi\)
\(62\) −809.217 −1.65759
\(63\) 0 0
\(64\) −820.804 −1.60313
\(65\) 45.4408 0.0867114
\(66\) 140.484 0.262007
\(67\) 260.867 0.475672 0.237836 0.971305i \(-0.423562\pi\)
0.237836 + 0.971305i \(0.423562\pi\)
\(68\) −235.951 −0.420783
\(69\) −39.1821 −0.0683619
\(70\) 0 0
\(71\) 369.025 0.616833 0.308417 0.951251i \(-0.400201\pi\)
0.308417 + 0.951251i \(0.400201\pi\)
\(72\) −461.849 −0.755964
\(73\) −1145.77 −1.83702 −0.918509 0.395401i \(-0.870606\pi\)
−0.918509 + 0.395401i \(0.870606\pi\)
\(74\) 1348.39 2.11820
\(75\) 337.314 0.519329
\(76\) −424.209 −0.640264
\(77\) 0 0
\(78\) 314.686 0.456810
\(79\) 488.885 0.696251 0.348125 0.937448i \(-0.386818\pi\)
0.348125 + 0.937448i \(0.386818\pi\)
\(80\) −8.43362 −0.0117863
\(81\) 164.917 0.226224
\(82\) −710.372 −0.956676
\(83\) −548.982 −0.726008 −0.363004 0.931788i \(-0.618249\pi\)
−0.363004 + 0.931788i \(0.618249\pi\)
\(84\) 0 0
\(85\) 32.9740 0.0420769
\(86\) −1275.96 −1.59989
\(87\) 115.251 0.142026
\(88\) −263.162 −0.318786
\(89\) −105.039 −0.125102 −0.0625510 0.998042i \(-0.519924\pi\)
−0.0625510 + 0.998042i \(0.519924\pi\)
\(90\) 163.910 0.191973
\(91\) 0 0
\(92\) 186.396 0.211230
\(93\) 487.572 0.543644
\(94\) 240.073 0.263422
\(95\) 59.2829 0.0640242
\(96\) 472.510 0.502348
\(97\) 1361.91 1.42557 0.712787 0.701381i \(-0.247433\pi\)
0.712787 + 0.701381i \(0.247433\pi\)
\(98\) 0 0
\(99\) 212.355 0.215580
\(100\) −1604.66 −1.60466
\(101\) 1610.32 1.58647 0.793234 0.608917i \(-0.208396\pi\)
0.793234 + 0.608917i \(0.208396\pi\)
\(102\) 228.351 0.221668
\(103\) 123.044 0.117708 0.0588540 0.998267i \(-0.481255\pi\)
0.0588540 + 0.998267i \(0.481255\pi\)
\(104\) −589.485 −0.555805
\(105\) 0 0
\(106\) 379.323 0.347576
\(107\) −1740.90 −1.57289 −0.786446 0.617660i \(-0.788081\pi\)
−0.786446 + 0.617660i \(0.788081\pi\)
\(108\) 1695.07 1.51026
\(109\) 248.938 0.218752 0.109376 0.994000i \(-0.465115\pi\)
0.109376 + 0.994000i \(0.465115\pi\)
\(110\) 93.3958 0.0809540
\(111\) −812.436 −0.694712
\(112\) 0 0
\(113\) −494.465 −0.411641 −0.205820 0.978590i \(-0.565986\pi\)
−0.205820 + 0.978590i \(0.565986\pi\)
\(114\) 410.545 0.337290
\(115\) −26.0488 −0.0211223
\(116\) −548.271 −0.438842
\(117\) 475.677 0.375866
\(118\) −3281.77 −2.56026
\(119\) 0 0
\(120\) 122.388 0.0931037
\(121\) 121.000 0.0909091
\(122\) 2979.12 2.21079
\(123\) 428.016 0.313763
\(124\) −2319.47 −1.67979
\(125\) 454.774 0.325410
\(126\) 0 0
\(127\) −979.104 −0.684106 −0.342053 0.939681i \(-0.611122\pi\)
−0.342053 + 0.939681i \(0.611122\pi\)
\(128\) −2416.25 −1.66850
\(129\) 768.795 0.524718
\(130\) 209.207 0.141144
\(131\) 1660.85 1.10770 0.553851 0.832616i \(-0.313158\pi\)
0.553851 + 0.832616i \(0.313158\pi\)
\(132\) 402.672 0.265516
\(133\) 0 0
\(134\) 1201.02 0.774271
\(135\) −236.884 −0.151020
\(136\) −427.758 −0.269705
\(137\) −1618.17 −1.00912 −0.504559 0.863377i \(-0.668345\pi\)
−0.504559 + 0.863377i \(0.668345\pi\)
\(138\) −180.393 −0.111276
\(139\) −695.736 −0.424544 −0.212272 0.977211i \(-0.568086\pi\)
−0.212272 + 0.977211i \(0.568086\pi\)
\(140\) 0 0
\(141\) −144.650 −0.0863950
\(142\) 1698.97 1.00405
\(143\) 271.041 0.158501
\(144\) −88.2835 −0.0510900
\(145\) 76.6205 0.0438826
\(146\) −5275.07 −2.99019
\(147\) 0 0
\(148\) 3864.90 2.14658
\(149\) −2081.84 −1.14464 −0.572318 0.820032i \(-0.693956\pi\)
−0.572318 + 0.820032i \(0.693956\pi\)
\(150\) 1552.98 0.845334
\(151\) 2679.28 1.44395 0.721975 0.691919i \(-0.243234\pi\)
0.721975 + 0.691919i \(0.243234\pi\)
\(152\) −769.052 −0.410384
\(153\) 345.173 0.182390
\(154\) 0 0
\(155\) 324.144 0.167973
\(156\) 901.989 0.462929
\(157\) −2410.32 −1.22525 −0.612627 0.790372i \(-0.709887\pi\)
−0.612627 + 0.790372i \(0.709887\pi\)
\(158\) 2250.80 1.13332
\(159\) −228.551 −0.113995
\(160\) 314.131 0.155214
\(161\) 0 0
\(162\) 759.271 0.368234
\(163\) 3629.08 1.74388 0.871938 0.489616i \(-0.162863\pi\)
0.871938 + 0.489616i \(0.162863\pi\)
\(164\) −2036.15 −0.969491
\(165\) −56.2732 −0.0265507
\(166\) −2527.49 −1.18175
\(167\) 3826.04 1.77286 0.886432 0.462859i \(-0.153176\pi\)
0.886432 + 0.462859i \(0.153176\pi\)
\(168\) 0 0
\(169\) −1589.87 −0.723653
\(170\) 151.811 0.0684903
\(171\) 620.576 0.277524
\(172\) −3657.30 −1.62132
\(173\) 4310.67 1.89442 0.947209 0.320617i \(-0.103890\pi\)
0.947209 + 0.320617i \(0.103890\pi\)
\(174\) 530.611 0.231181
\(175\) 0 0
\(176\) −50.3040 −0.0215444
\(177\) 1977.34 0.839696
\(178\) −483.593 −0.203634
\(179\) 2491.12 1.04019 0.520097 0.854107i \(-0.325896\pi\)
0.520097 + 0.854107i \(0.325896\pi\)
\(180\) 469.816 0.194545
\(181\) 4315.49 1.77220 0.886098 0.463498i \(-0.153406\pi\)
0.886098 + 0.463498i \(0.153406\pi\)
\(182\) 0 0
\(183\) −1794.99 −0.725078
\(184\) 337.920 0.135390
\(185\) −540.118 −0.214650
\(186\) 2244.76 0.884912
\(187\) 196.680 0.0769127
\(188\) 688.124 0.266950
\(189\) 0 0
\(190\) 272.936 0.104215
\(191\) 2840.41 1.07605 0.538024 0.842930i \(-0.319171\pi\)
0.538024 + 0.842930i \(0.319171\pi\)
\(192\) 2276.90 0.855839
\(193\) −1734.68 −0.646969 −0.323485 0.946233i \(-0.604854\pi\)
−0.323485 + 0.946233i \(0.604854\pi\)
\(194\) 6270.15 2.32047
\(195\) −126.052 −0.0462913
\(196\) 0 0
\(197\) −3098.42 −1.12057 −0.560287 0.828298i \(-0.689309\pi\)
−0.560287 + 0.828298i \(0.689309\pi\)
\(198\) 977.671 0.350909
\(199\) −4497.38 −1.60206 −0.801032 0.598622i \(-0.795715\pi\)
−0.801032 + 0.598622i \(0.795715\pi\)
\(200\) −2909.11 −1.02853
\(201\) −723.643 −0.253940
\(202\) 7413.85 2.58236
\(203\) 0 0
\(204\) 654.525 0.224637
\(205\) 284.550 0.0969456
\(206\) 566.491 0.191598
\(207\) −272.680 −0.0915582
\(208\) −112.682 −0.0375628
\(209\) 353.605 0.117030
\(210\) 0 0
\(211\) 1262.32 0.411857 0.205929 0.978567i \(-0.433979\pi\)
0.205929 + 0.978567i \(0.433979\pi\)
\(212\) 1087.26 0.352232
\(213\) −1023.67 −0.329299
\(214\) −8015.03 −2.56026
\(215\) 511.105 0.162126
\(216\) 3073.00 0.968015
\(217\) 0 0
\(218\) 1146.10 0.356071
\(219\) 3178.35 0.980700
\(220\) 267.702 0.0820384
\(221\) 440.565 0.134098
\(222\) −3740.42 −1.13081
\(223\) −2931.38 −0.880268 −0.440134 0.897932i \(-0.645069\pi\)
−0.440134 + 0.897932i \(0.645069\pi\)
\(224\) 0 0
\(225\) 2347.47 0.695546
\(226\) −2276.49 −0.670045
\(227\) −4298.37 −1.25680 −0.628399 0.777891i \(-0.716289\pi\)
−0.628399 + 0.777891i \(0.716289\pi\)
\(228\) 1176.75 0.341808
\(229\) −698.500 −0.201564 −0.100782 0.994909i \(-0.532134\pi\)
−0.100782 + 0.994909i \(0.532134\pi\)
\(230\) −119.927 −0.0343816
\(231\) 0 0
\(232\) −993.965 −0.281280
\(233\) 1887.78 0.530783 0.265391 0.964141i \(-0.414499\pi\)
0.265391 + 0.964141i \(0.414499\pi\)
\(234\) 2189.99 0.611813
\(235\) −96.1649 −0.0266941
\(236\) −9406.57 −2.59456
\(237\) −1356.16 −0.371697
\(238\) 0 0
\(239\) −6449.93 −1.74565 −0.872827 0.488030i \(-0.837716\pi\)
−0.872827 + 0.488030i \(0.837716\pi\)
\(240\) 23.3948 0.00629219
\(241\) −4636.98 −1.23939 −0.619697 0.784841i \(-0.712744\pi\)
−0.619697 + 0.784841i \(0.712744\pi\)
\(242\) 557.078 0.147977
\(243\) −3925.62 −1.03633
\(244\) 8539.08 2.24040
\(245\) 0 0
\(246\) 1970.56 0.510726
\(247\) 792.078 0.204043
\(248\) −4204.98 −1.07668
\(249\) 1522.87 0.387582
\(250\) 2093.76 0.529683
\(251\) −2194.11 −0.551758 −0.275879 0.961192i \(-0.588969\pi\)
−0.275879 + 0.961192i \(0.588969\pi\)
\(252\) 0 0
\(253\) −155.373 −0.0386096
\(254\) −4507.75 −1.11355
\(255\) −91.4695 −0.0224629
\(256\) −4557.87 −1.11276
\(257\) 2966.97 0.720133 0.360067 0.932927i \(-0.382754\pi\)
0.360067 + 0.932927i \(0.382754\pi\)
\(258\) 3539.50 0.854106
\(259\) 0 0
\(260\) 599.654 0.143034
\(261\) 802.066 0.190217
\(262\) 7646.47 1.80305
\(263\) 915.810 0.214720 0.107360 0.994220i \(-0.465760\pi\)
0.107360 + 0.994220i \(0.465760\pi\)
\(264\) 730.008 0.170185
\(265\) −151.944 −0.0352220
\(266\) 0 0
\(267\) 291.376 0.0667863
\(268\) 3442.50 0.784642
\(269\) 164.462 0.0372768 0.0186384 0.999826i \(-0.494067\pi\)
0.0186384 + 0.999826i \(0.494067\pi\)
\(270\) −1090.60 −0.245822
\(271\) −1502.60 −0.336815 −0.168407 0.985718i \(-0.553862\pi\)
−0.168407 + 0.985718i \(0.553862\pi\)
\(272\) −81.7670 −0.0182274
\(273\) 0 0
\(274\) −7449.96 −1.64259
\(275\) 1337.59 0.293308
\(276\) −517.061 −0.112766
\(277\) −7500.11 −1.62685 −0.813426 0.581669i \(-0.802400\pi\)
−0.813426 + 0.581669i \(0.802400\pi\)
\(278\) −3203.14 −0.691048
\(279\) 3393.15 0.728111
\(280\) 0 0
\(281\) −2945.12 −0.625235 −0.312618 0.949879i \(-0.601206\pi\)
−0.312618 + 0.949879i \(0.601206\pi\)
\(282\) −665.959 −0.140629
\(283\) −5215.29 −1.09547 −0.547733 0.836653i \(-0.684509\pi\)
−0.547733 + 0.836653i \(0.684509\pi\)
\(284\) 4869.78 1.01749
\(285\) −164.450 −0.0341796
\(286\) 1247.86 0.257998
\(287\) 0 0
\(288\) 3288.34 0.672802
\(289\) −4593.31 −0.934929
\(290\) 352.757 0.0714296
\(291\) −3777.91 −0.761049
\(292\) −15120.0 −3.03024
\(293\) −7407.99 −1.47706 −0.738531 0.674219i \(-0.764480\pi\)
−0.738531 + 0.674219i \(0.764480\pi\)
\(294\) 0 0
\(295\) 1314.56 0.259447
\(296\) 7006.72 1.37587
\(297\) −1412.94 −0.276052
\(298\) −9584.68 −1.86317
\(299\) −348.037 −0.0673161
\(300\) 4451.32 0.856657
\(301\) 0 0
\(302\) 12335.3 2.35038
\(303\) −4467.02 −0.846942
\(304\) −147.006 −0.0277348
\(305\) −1193.33 −0.224033
\(306\) 1589.16 0.296883
\(307\) 6850.01 1.27345 0.636727 0.771089i \(-0.280288\pi\)
0.636727 + 0.771089i \(0.280288\pi\)
\(308\) 0 0
\(309\) −341.324 −0.0628390
\(310\) 1492.34 0.273417
\(311\) 5538.62 1.00986 0.504929 0.863161i \(-0.331519\pi\)
0.504929 + 0.863161i \(0.331519\pi\)
\(312\) 1635.22 0.296719
\(313\) −9361.13 −1.69049 −0.845243 0.534382i \(-0.820544\pi\)
−0.845243 + 0.534382i \(0.820544\pi\)
\(314\) −11097.0 −1.99440
\(315\) 0 0
\(316\) 6451.50 1.14850
\(317\) 219.221 0.0388413 0.0194206 0.999811i \(-0.493818\pi\)
0.0194206 + 0.999811i \(0.493818\pi\)
\(318\) −1052.24 −0.185555
\(319\) 457.018 0.0802135
\(320\) 1513.71 0.264435
\(321\) 4829.24 0.839695
\(322\) 0 0
\(323\) 574.769 0.0990123
\(324\) 2176.31 0.373167
\(325\) 2996.21 0.511384
\(326\) 16708.1 2.83858
\(327\) −690.551 −0.116781
\(328\) −3691.35 −0.621405
\(329\) 0 0
\(330\) −259.079 −0.0432176
\(331\) 3377.63 0.560880 0.280440 0.959872i \(-0.409520\pi\)
0.280440 + 0.959872i \(0.409520\pi\)
\(332\) −7244.57 −1.19758
\(333\) −5653.98 −0.930439
\(334\) 17614.9 2.88577
\(335\) −481.087 −0.0784615
\(336\) 0 0
\(337\) 7755.93 1.25369 0.626843 0.779145i \(-0.284347\pi\)
0.626843 + 0.779145i \(0.284347\pi\)
\(338\) −7319.66 −1.17792
\(339\) 1371.64 0.219756
\(340\) 435.137 0.0694077
\(341\) 1933.42 0.307040
\(342\) 2857.10 0.451738
\(343\) 0 0
\(344\) −6630.35 −1.03920
\(345\) 72.2590 0.0112762
\(346\) 19846.1 3.08362
\(347\) −831.044 −0.128567 −0.0642835 0.997932i \(-0.520476\pi\)
−0.0642835 + 0.997932i \(0.520476\pi\)
\(348\) 1520.90 0.234278
\(349\) −1840.94 −0.282359 −0.141180 0.989984i \(-0.545089\pi\)
−0.141180 + 0.989984i \(0.545089\pi\)
\(350\) 0 0
\(351\) −3165.01 −0.481298
\(352\) 1873.70 0.283717
\(353\) −3409.11 −0.514019 −0.257009 0.966409i \(-0.582737\pi\)
−0.257009 + 0.966409i \(0.582737\pi\)
\(354\) 9103.59 1.36681
\(355\) −680.549 −0.101746
\(356\) −1386.13 −0.206361
\(357\) 0 0
\(358\) 11469.0 1.69317
\(359\) 2199.75 0.323394 0.161697 0.986840i \(-0.448303\pi\)
0.161697 + 0.986840i \(0.448303\pi\)
\(360\) 851.734 0.124695
\(361\) −5825.64 −0.849343
\(362\) 19868.3 2.88468
\(363\) −335.653 −0.0485322
\(364\) 0 0
\(365\) 2113.01 0.303014
\(366\) −8264.04 −1.18024
\(367\) 855.008 0.121611 0.0608053 0.998150i \(-0.480633\pi\)
0.0608053 + 0.998150i \(0.480633\pi\)
\(368\) 64.5942 0.00915002
\(369\) 2978.69 0.420228
\(370\) −2486.68 −0.349395
\(371\) 0 0
\(372\) 6434.18 0.896765
\(373\) 3193.40 0.443293 0.221646 0.975127i \(-0.428857\pi\)
0.221646 + 0.975127i \(0.428857\pi\)
\(374\) 905.505 0.125194
\(375\) −1261.54 −0.173721
\(376\) 1247.51 0.171104
\(377\) 1023.72 0.139853
\(378\) 0 0
\(379\) −5614.48 −0.760940 −0.380470 0.924793i \(-0.624238\pi\)
−0.380470 + 0.924793i \(0.624238\pi\)
\(380\) 782.319 0.105611
\(381\) 2716.02 0.365213
\(382\) 13077.1 1.75153
\(383\) 1736.86 0.231721 0.115861 0.993265i \(-0.463037\pi\)
0.115861 + 0.993265i \(0.463037\pi\)
\(384\) 6702.65 0.890738
\(385\) 0 0
\(386\) −7986.38 −1.05310
\(387\) 5350.27 0.702763
\(388\) 17972.2 2.35155
\(389\) 8710.78 1.13536 0.567679 0.823250i \(-0.307841\pi\)
0.567679 + 0.823250i \(0.307841\pi\)
\(390\) −580.339 −0.0753503
\(391\) −252.552 −0.0326652
\(392\) 0 0
\(393\) −4607.17 −0.591352
\(394\) −14265.0 −1.82401
\(395\) −901.593 −0.114846
\(396\) 2802.31 0.355610
\(397\) −11731.6 −1.48311 −0.741553 0.670894i \(-0.765911\pi\)
−0.741553 + 0.670894i \(0.765911\pi\)
\(398\) −20705.7 −2.60775
\(399\) 0 0
\(400\) −556.084 −0.0695105
\(401\) −14408.8 −1.79437 −0.897183 0.441659i \(-0.854390\pi\)
−0.897183 + 0.441659i \(0.854390\pi\)
\(402\) −3331.62 −0.413348
\(403\) 4330.88 0.535327
\(404\) 21250.4 2.61695
\(405\) −304.138 −0.0373154
\(406\) 0 0
\(407\) −3221.64 −0.392361
\(408\) 1186.59 0.143983
\(409\) 2155.54 0.260598 0.130299 0.991475i \(-0.458406\pi\)
0.130299 + 0.991475i \(0.458406\pi\)
\(410\) 1310.06 0.157803
\(411\) 4488.77 0.538722
\(412\) 1623.74 0.194165
\(413\) 0 0
\(414\) −1255.40 −0.149033
\(415\) 1012.42 0.119754
\(416\) 4197.10 0.494663
\(417\) 1929.96 0.226644
\(418\) 1627.98 0.190495
\(419\) −8443.41 −0.984458 −0.492229 0.870466i \(-0.663818\pi\)
−0.492229 + 0.870466i \(0.663818\pi\)
\(420\) 0 0
\(421\) −3070.28 −0.355430 −0.177715 0.984082i \(-0.556871\pi\)
−0.177715 + 0.984082i \(0.556871\pi\)
\(422\) 5811.67 0.670398
\(423\) −1006.66 −0.115710
\(424\) 1971.10 0.225767
\(425\) 2174.19 0.248150
\(426\) −4712.93 −0.536014
\(427\) 0 0
\(428\) −22973.6 −2.59456
\(429\) −751.865 −0.0846163
\(430\) 2353.10 0.263899
\(431\) −7004.40 −0.782808 −0.391404 0.920219i \(-0.628010\pi\)
−0.391404 + 0.920219i \(0.628010\pi\)
\(432\) 587.412 0.0654210
\(433\) −7486.00 −0.830841 −0.415421 0.909629i \(-0.636366\pi\)
−0.415421 + 0.909629i \(0.636366\pi\)
\(434\) 0 0
\(435\) −212.544 −0.0234269
\(436\) 3285.07 0.360841
\(437\) −454.055 −0.0497034
\(438\) 14633.0 1.59633
\(439\) 13046.2 1.41836 0.709179 0.705029i \(-0.249066\pi\)
0.709179 + 0.705029i \(0.249066\pi\)
\(440\) 485.319 0.0525833
\(441\) 0 0
\(442\) 2028.34 0.218277
\(443\) −11781.3 −1.26354 −0.631768 0.775157i \(-0.717671\pi\)
−0.631768 + 0.775157i \(0.717671\pi\)
\(444\) −10721.2 −1.14596
\(445\) 193.711 0.0206354
\(446\) −13495.9 −1.43285
\(447\) 5774.99 0.611069
\(448\) 0 0
\(449\) 7576.58 0.796349 0.398175 0.917310i \(-0.369644\pi\)
0.398175 + 0.917310i \(0.369644\pi\)
\(450\) 10807.6 1.13217
\(451\) 1697.26 0.177208
\(452\) −6525.14 −0.679020
\(453\) −7432.28 −0.770859
\(454\) −19789.5 −2.04574
\(455\) 0 0
\(456\) 2133.34 0.219085
\(457\) 11793.0 1.20712 0.603560 0.797318i \(-0.293748\pi\)
0.603560 + 0.797318i \(0.293748\pi\)
\(458\) −3215.86 −0.328095
\(459\) −2296.68 −0.233551
\(460\) −343.749 −0.0348421
\(461\) −4228.32 −0.427185 −0.213592 0.976923i \(-0.568516\pi\)
−0.213592 + 0.976923i \(0.568516\pi\)
\(462\) 0 0
\(463\) 14448.8 1.45031 0.725154 0.688586i \(-0.241768\pi\)
0.725154 + 0.688586i \(0.241768\pi\)
\(464\) −189.999 −0.0190096
\(465\) −899.172 −0.0896733
\(466\) 8691.23 0.863977
\(467\) −16547.5 −1.63967 −0.819836 0.572599i \(-0.805935\pi\)
−0.819836 + 0.572599i \(0.805935\pi\)
\(468\) 6277.20 0.620008
\(469\) 0 0
\(470\) −442.738 −0.0434511
\(471\) 6686.21 0.654107
\(472\) −17053.3 −1.66301
\(473\) 3048.59 0.296351
\(474\) −6243.69 −0.605026
\(475\) 3908.91 0.377585
\(476\) 0 0
\(477\) −1590.55 −0.152676
\(478\) −29695.2 −2.84148
\(479\) 2989.34 0.285149 0.142575 0.989784i \(-0.454462\pi\)
0.142575 + 0.989784i \(0.454462\pi\)
\(480\) −871.396 −0.0828616
\(481\) −7216.51 −0.684084
\(482\) −21348.4 −2.01741
\(483\) 0 0
\(484\) 1596.76 0.149959
\(485\) −2511.60 −0.235147
\(486\) −18073.3 −1.68688
\(487\) −5549.61 −0.516379 −0.258190 0.966094i \(-0.583126\pi\)
−0.258190 + 0.966094i \(0.583126\pi\)
\(488\) 15480.6 1.43601
\(489\) −10067.0 −0.930976
\(490\) 0 0
\(491\) −7751.20 −0.712438 −0.356219 0.934403i \(-0.615934\pi\)
−0.356219 + 0.934403i \(0.615934\pi\)
\(492\) 5648.25 0.517567
\(493\) 742.862 0.0678638
\(494\) 3646.69 0.332130
\(495\) −391.621 −0.0355597
\(496\) −803.793 −0.0727649
\(497\) 0 0
\(498\) 7011.22 0.630884
\(499\) −6841.83 −0.613792 −0.306896 0.951743i \(-0.599290\pi\)
−0.306896 + 0.951743i \(0.599290\pi\)
\(500\) 6001.36 0.536778
\(501\) −10613.4 −0.946451
\(502\) −10101.6 −0.898120
\(503\) 11518.5 1.02105 0.510523 0.859864i \(-0.329452\pi\)
0.510523 + 0.859864i \(0.329452\pi\)
\(504\) 0 0
\(505\) −2969.73 −0.261686
\(506\) −715.330 −0.0628465
\(507\) 4410.27 0.386325
\(508\) −12920.6 −1.12846
\(509\) −8292.40 −0.722110 −0.361055 0.932545i \(-0.617583\pi\)
−0.361055 + 0.932545i \(0.617583\pi\)
\(510\) −421.121 −0.0365638
\(511\) 0 0
\(512\) −1654.21 −0.142786
\(513\) −4129.12 −0.355371
\(514\) 13659.8 1.17219
\(515\) −226.917 −0.0194158
\(516\) 10145.3 0.865547
\(517\) −573.595 −0.0487943
\(518\) 0 0
\(519\) −11957.8 −1.01134
\(520\) 1087.12 0.0916794
\(521\) −10891.6 −0.915868 −0.457934 0.888986i \(-0.651410\pi\)
−0.457934 + 0.888986i \(0.651410\pi\)
\(522\) 3692.67 0.309624
\(523\) −14662.0 −1.22586 −0.612928 0.790139i \(-0.710008\pi\)
−0.612928 + 0.790139i \(0.710008\pi\)
\(524\) 21917.2 1.82721
\(525\) 0 0
\(526\) 4216.34 0.349508
\(527\) 3142.69 0.259768
\(528\) 139.543 0.0115016
\(529\) −11967.5 −0.983602
\(530\) −699.541 −0.0573323
\(531\) 13760.9 1.12462
\(532\) 0 0
\(533\) 3801.87 0.308963
\(534\) 1341.48 0.108711
\(535\) 3210.54 0.259446
\(536\) 6240.94 0.502924
\(537\) −6910.33 −0.555313
\(538\) 757.177 0.0606770
\(539\) 0 0
\(540\) −3126.01 −0.249115
\(541\) −19825.8 −1.57556 −0.787778 0.615960i \(-0.788768\pi\)
−0.787778 + 0.615960i \(0.788768\pi\)
\(542\) −6917.92 −0.548247
\(543\) −11971.1 −0.946094
\(544\) 3045.61 0.240036
\(545\) −459.087 −0.0360828
\(546\) 0 0
\(547\) 12706.1 0.993187 0.496593 0.867983i \(-0.334584\pi\)
0.496593 + 0.867983i \(0.334584\pi\)
\(548\) −21353.9 −1.66459
\(549\) −12491.8 −0.971109
\(550\) 6158.19 0.477430
\(551\) 1335.57 0.103262
\(552\) −937.385 −0.0722786
\(553\) 0 0
\(554\) −34530.1 −2.64809
\(555\) 1498.28 0.114592
\(556\) −9181.19 −0.700304
\(557\) −12599.1 −0.958421 −0.479211 0.877700i \(-0.659077\pi\)
−0.479211 + 0.877700i \(0.659077\pi\)
\(558\) 15621.9 1.18518
\(559\) 6828.86 0.516691
\(560\) 0 0
\(561\) −545.588 −0.0410602
\(562\) −13559.2 −1.01772
\(563\) −6004.47 −0.449482 −0.224741 0.974419i \(-0.572154\pi\)
−0.224741 + 0.974419i \(0.572154\pi\)
\(564\) −1908.85 −0.142512
\(565\) 911.884 0.0678996
\(566\) −24010.9 −1.78314
\(567\) 0 0
\(568\) 8828.47 0.652173
\(569\) −3145.89 −0.231779 −0.115890 0.993262i \(-0.536972\pi\)
−0.115890 + 0.993262i \(0.536972\pi\)
\(570\) −757.120 −0.0556356
\(571\) 23549.1 1.72592 0.862960 0.505273i \(-0.168608\pi\)
0.862960 + 0.505273i \(0.168608\pi\)
\(572\) 3576.76 0.261454
\(573\) −7879.27 −0.574453
\(574\) 0 0
\(575\) −1717.57 −0.124569
\(576\) 15845.6 1.14624
\(577\) −327.335 −0.0236172 −0.0118086 0.999930i \(-0.503759\pi\)
−0.0118086 + 0.999930i \(0.503759\pi\)
\(578\) −21147.4 −1.52182
\(579\) 4811.98 0.345387
\(580\) 1011.11 0.0723864
\(581\) 0 0
\(582\) −17393.3 −1.23879
\(583\) −906.298 −0.0643825
\(584\) −27411.2 −1.94226
\(585\) −877.235 −0.0619986
\(586\) −34106.0 −2.40428
\(587\) 13270.8 0.933123 0.466562 0.884489i \(-0.345493\pi\)
0.466562 + 0.884489i \(0.345493\pi\)
\(588\) 0 0
\(589\) 5650.14 0.395263
\(590\) 6052.18 0.422312
\(591\) 8594.98 0.598224
\(592\) 1339.35 0.0929849
\(593\) −5098.92 −0.353099 −0.176549 0.984292i \(-0.556494\pi\)
−0.176549 + 0.984292i \(0.556494\pi\)
\(594\) −6505.13 −0.449341
\(595\) 0 0
\(596\) −27472.7 −1.88813
\(597\) 12475.7 0.855268
\(598\) −1602.35 −0.109573
\(599\) 19358.2 1.32046 0.660230 0.751064i \(-0.270459\pi\)
0.660230 + 0.751064i \(0.270459\pi\)
\(600\) 8069.84 0.549083
\(601\) −1238.87 −0.0840841 −0.0420420 0.999116i \(-0.513386\pi\)
−0.0420420 + 0.999116i \(0.513386\pi\)
\(602\) 0 0
\(603\) −5036.04 −0.340105
\(604\) 35356.7 2.38186
\(605\) −223.146 −0.0149953
\(606\) −20565.9 −1.37860
\(607\) 14175.6 0.947888 0.473944 0.880555i \(-0.342830\pi\)
0.473944 + 0.880555i \(0.342830\pi\)
\(608\) 5475.60 0.365239
\(609\) 0 0
\(610\) −5494.04 −0.364667
\(611\) −1284.86 −0.0850732
\(612\) 4555.03 0.300860
\(613\) 6906.67 0.455070 0.227535 0.973770i \(-0.426933\pi\)
0.227535 + 0.973770i \(0.426933\pi\)
\(614\) 31537.1 2.07286
\(615\) −789.339 −0.0517549
\(616\) 0 0
\(617\) 12104.3 0.789789 0.394894 0.918727i \(-0.370781\pi\)
0.394894 + 0.918727i \(0.370781\pi\)
\(618\) −1571.44 −0.102286
\(619\) −14945.2 −0.970437 −0.485218 0.874393i \(-0.661260\pi\)
−0.485218 + 0.874393i \(0.661260\pi\)
\(620\) 4277.52 0.277080
\(621\) 1814.33 0.117241
\(622\) 25499.5 1.64379
\(623\) 0 0
\(624\) 312.577 0.0200530
\(625\) 14361.2 0.919116
\(626\) −43098.2 −2.75168
\(627\) −980.895 −0.0624772
\(628\) −31807.5 −2.02111
\(629\) −5236.63 −0.331953
\(630\) 0 0
\(631\) −17711.9 −1.11743 −0.558717 0.829358i \(-0.688706\pi\)
−0.558717 + 0.829358i \(0.688706\pi\)
\(632\) 11696.0 0.736141
\(633\) −3501.67 −0.219872
\(634\) 1009.28 0.0632236
\(635\) 1805.65 0.112842
\(636\) −3016.04 −0.188041
\(637\) 0 0
\(638\) 2104.09 0.130567
\(639\) −7124.02 −0.441036
\(640\) 4456.01 0.275218
\(641\) −17994.4 −1.10879 −0.554396 0.832253i \(-0.687051\pi\)
−0.554396 + 0.832253i \(0.687051\pi\)
\(642\) 22233.6 1.36681
\(643\) −27947.8 −1.71408 −0.857039 0.515251i \(-0.827699\pi\)
−0.857039 + 0.515251i \(0.827699\pi\)
\(644\) 0 0
\(645\) −1417.80 −0.0865516
\(646\) 2646.21 0.161167
\(647\) 14336.2 0.871122 0.435561 0.900159i \(-0.356550\pi\)
0.435561 + 0.900159i \(0.356550\pi\)
\(648\) 3945.45 0.239185
\(649\) 7840.97 0.474245
\(650\) 13794.4 0.832402
\(651\) 0 0
\(652\) 47890.7 2.87660
\(653\) 4315.79 0.258637 0.129318 0.991603i \(-0.458721\pi\)
0.129318 + 0.991603i \(0.458721\pi\)
\(654\) −3179.26 −0.190090
\(655\) −3062.91 −0.182714
\(656\) −705.611 −0.0419962
\(657\) 22119.1 1.31347
\(658\) 0 0
\(659\) 4002.23 0.236578 0.118289 0.992979i \(-0.462259\pi\)
0.118289 + 0.992979i \(0.462259\pi\)
\(660\) −742.601 −0.0437965
\(661\) 12223.4 0.719268 0.359634 0.933094i \(-0.382902\pi\)
0.359634 + 0.933094i \(0.382902\pi\)
\(662\) 15550.4 0.912968
\(663\) −1222.12 −0.0715887
\(664\) −13133.7 −0.767603
\(665\) 0 0
\(666\) −26030.6 −1.51451
\(667\) −586.846 −0.0340671
\(668\) 50489.9 2.92442
\(669\) 8131.61 0.469935
\(670\) −2214.90 −0.127715
\(671\) −7117.86 −0.409511
\(672\) 0 0
\(673\) −6121.53 −0.350621 −0.175310 0.984513i \(-0.556093\pi\)
−0.175310 + 0.984513i \(0.556093\pi\)
\(674\) 35707.9 2.04068
\(675\) −15619.3 −0.890649
\(676\) −20980.4 −1.19370
\(677\) −9626.46 −0.546492 −0.273246 0.961944i \(-0.588097\pi\)
−0.273246 + 0.961944i \(0.588097\pi\)
\(678\) 6314.97 0.357706
\(679\) 0 0
\(680\) 788.863 0.0444875
\(681\) 11923.6 0.670947
\(682\) 8901.38 0.499782
\(683\) 11554.4 0.647315 0.323658 0.946174i \(-0.395087\pi\)
0.323658 + 0.946174i \(0.395087\pi\)
\(684\) 8189.34 0.457789
\(685\) 2984.19 0.166453
\(686\) 0 0
\(687\) 1937.63 0.107606
\(688\) −1267.41 −0.0702318
\(689\) −2030.12 −0.112251
\(690\) 332.677 0.0183548
\(691\) −2991.45 −0.164689 −0.0823444 0.996604i \(-0.526241\pi\)
−0.0823444 + 0.996604i \(0.526241\pi\)
\(692\) 56885.2 3.12493
\(693\) 0 0
\(694\) −3826.08 −0.209274
\(695\) 1283.06 0.0700279
\(696\) 2757.25 0.150163
\(697\) 2758.82 0.149925
\(698\) −8475.60 −0.459608
\(699\) −5236.67 −0.283361
\(700\) 0 0
\(701\) 30772.8 1.65802 0.829010 0.559234i \(-0.188905\pi\)
0.829010 + 0.559234i \(0.188905\pi\)
\(702\) −14571.5 −0.783429
\(703\) −9414.77 −0.505099
\(704\) 9028.84 0.483363
\(705\) 266.760 0.0142507
\(706\) −15695.4 −0.836690
\(707\) 0 0
\(708\) 26093.7 1.38512
\(709\) −21698.3 −1.14936 −0.574681 0.818377i \(-0.694874\pi\)
−0.574681 + 0.818377i \(0.694874\pi\)
\(710\) −3133.21 −0.165616
\(711\) −9437.91 −0.497819
\(712\) −2512.93 −0.132269
\(713\) −2482.66 −0.130402
\(714\) 0 0
\(715\) −499.849 −0.0261445
\(716\) 32873.7 1.71585
\(717\) 17892.0 0.931925
\(718\) 10127.5 0.526402
\(719\) 12364.2 0.641318 0.320659 0.947195i \(-0.396096\pi\)
0.320659 + 0.947195i \(0.396096\pi\)
\(720\) 162.811 0.00842723
\(721\) 0 0
\(722\) −26821.0 −1.38251
\(723\) 12862.9 0.661656
\(724\) 56948.7 2.92332
\(725\) 5052.09 0.258800
\(726\) −1545.33 −0.0789979
\(727\) 16017.2 0.817119 0.408559 0.912732i \(-0.366031\pi\)
0.408559 + 0.912732i \(0.366031\pi\)
\(728\) 0 0
\(729\) 6436.85 0.327026
\(730\) 9728.19 0.493228
\(731\) 4955.34 0.250725
\(732\) −23687.3 −1.19605
\(733\) −10564.4 −0.532340 −0.266170 0.963926i \(-0.585758\pi\)
−0.266170 + 0.963926i \(0.585758\pi\)
\(734\) 3936.42 0.197951
\(735\) 0 0
\(736\) −2405.97 −0.120496
\(737\) −2869.54 −0.143420
\(738\) 13713.7 0.684023
\(739\) 1760.32 0.0876242 0.0438121 0.999040i \(-0.486050\pi\)
0.0438121 + 0.999040i \(0.486050\pi\)
\(740\) −7127.59 −0.354075
\(741\) −2197.21 −0.108929
\(742\) 0 0
\(743\) 11383.4 0.562067 0.281034 0.959698i \(-0.409323\pi\)
0.281034 + 0.959698i \(0.409323\pi\)
\(744\) 11664.6 0.574790
\(745\) 3839.29 0.188806
\(746\) 14702.3 0.721566
\(747\) 10598.1 0.519095
\(748\) 2595.46 0.126871
\(749\) 0 0
\(750\) −5808.05 −0.282774
\(751\) −15058.3 −0.731670 −0.365835 0.930680i \(-0.619217\pi\)
−0.365835 + 0.930680i \(0.619217\pi\)
\(752\) 238.464 0.0115637
\(753\) 6086.45 0.294558
\(754\) 4713.18 0.227644
\(755\) −4941.08 −0.238178
\(756\) 0 0
\(757\) 38073.4 1.82801 0.914004 0.405706i \(-0.132974\pi\)
0.914004 + 0.405706i \(0.132974\pi\)
\(758\) −25848.8 −1.23861
\(759\) 431.003 0.0206119
\(760\) 1418.27 0.0676923
\(761\) −15232.1 −0.725577 −0.362788 0.931872i \(-0.618175\pi\)
−0.362788 + 0.931872i \(0.618175\pi\)
\(762\) 12504.4 0.594473
\(763\) 0 0
\(764\) 37483.1 1.77499
\(765\) −636.563 −0.0300849
\(766\) 7996.40 0.377182
\(767\) 17563.8 0.826850
\(768\) 12643.5 0.594053
\(769\) −12013.1 −0.563332 −0.281666 0.959513i \(-0.590887\pi\)
−0.281666 + 0.959513i \(0.590887\pi\)
\(770\) 0 0
\(771\) −8230.33 −0.384446
\(772\) −22891.5 −1.06720
\(773\) 14258.5 0.663443 0.331721 0.943377i \(-0.392371\pi\)
0.331721 + 0.943377i \(0.392371\pi\)
\(774\) 24632.4 1.14392
\(775\) 21372.9 0.990630
\(776\) 32582.0 1.50725
\(777\) 0 0
\(778\) 40104.0 1.84807
\(779\) 4959.99 0.228126
\(780\) −1663.43 −0.0763596
\(781\) −4059.27 −0.185982
\(782\) −1162.74 −0.0531706
\(783\) −5336.70 −0.243574
\(784\) 0 0
\(785\) 4445.08 0.202104
\(786\) −21211.2 −0.962568
\(787\) 14377.9 0.651227 0.325613 0.945503i \(-0.394429\pi\)
0.325613 + 0.945503i \(0.394429\pi\)
\(788\) −40887.9 −1.84844
\(789\) −2540.45 −0.114629
\(790\) −4150.89 −0.186939
\(791\) 0 0
\(792\) 5080.34 0.227932
\(793\) −15944.1 −0.713986
\(794\) −54011.8 −2.41412
\(795\) 421.490 0.0188034
\(796\) −59349.0 −2.64268
\(797\) −38515.9 −1.71180 −0.855899 0.517144i \(-0.826995\pi\)
−0.855899 + 0.517144i \(0.826995\pi\)
\(798\) 0 0
\(799\) −932.352 −0.0412819
\(800\) 20712.7 0.915381
\(801\) 2027.77 0.0894479
\(802\) −66337.4 −2.92076
\(803\) 12603.5 0.553882
\(804\) −9549.46 −0.418885
\(805\) 0 0
\(806\) 19939.2 0.871374
\(807\) −456.217 −0.0199004
\(808\) 38525.1 1.67736
\(809\) 11438.6 0.497106 0.248553 0.968618i \(-0.420045\pi\)
0.248553 + 0.968618i \(0.420045\pi\)
\(810\) −1400.23 −0.0607398
\(811\) −15872.9 −0.687265 −0.343632 0.939104i \(-0.611657\pi\)
−0.343632 + 0.939104i \(0.611657\pi\)
\(812\) 0 0
\(813\) 4168.21 0.179810
\(814\) −14832.3 −0.638662
\(815\) −6692.70 −0.287650
\(816\) 226.821 0.00973077
\(817\) 8909.05 0.381503
\(818\) 9924.00 0.424186
\(819\) 0 0
\(820\) 3755.03 0.159916
\(821\) −11988.8 −0.509638 −0.254819 0.966989i \(-0.582016\pi\)
−0.254819 + 0.966989i \(0.582016\pi\)
\(822\) 20666.1 0.876901
\(823\) −222.224 −0.00941219 −0.00470610 0.999989i \(-0.501498\pi\)
−0.00470610 + 0.999989i \(0.501498\pi\)
\(824\) 2943.69 0.124452
\(825\) −3710.46 −0.156584
\(826\) 0 0
\(827\) 7524.36 0.316382 0.158191 0.987409i \(-0.449434\pi\)
0.158191 + 0.987409i \(0.449434\pi\)
\(828\) −3598.38 −0.151029
\(829\) 11807.1 0.494663 0.247332 0.968931i \(-0.420446\pi\)
0.247332 + 0.968931i \(0.420446\pi\)
\(830\) 4661.15 0.194929
\(831\) 20805.2 0.868502
\(832\) 20224.7 0.842746
\(833\) 0 0
\(834\) 8885.46 0.368919
\(835\) −7055.93 −0.292432
\(836\) 4666.30 0.193047
\(837\) −22577.0 −0.932349
\(838\) −38873.1 −1.60244
\(839\) 29112.9 1.19796 0.598980 0.800764i \(-0.295573\pi\)
0.598980 + 0.800764i \(0.295573\pi\)
\(840\) 0 0
\(841\) −22662.8 −0.929224
\(842\) −14135.4 −0.578549
\(843\) 8169.73 0.333785
\(844\) 16658.1 0.679377
\(845\) 2932.00 0.119366
\(846\) −4634.60 −0.188346
\(847\) 0 0
\(848\) 376.781 0.0152579
\(849\) 14467.2 0.584819
\(850\) 10009.9 0.403924
\(851\) 4136.83 0.166638
\(852\) −13508.7 −0.543194
\(853\) 24892.1 0.999169 0.499584 0.866265i \(-0.333486\pi\)
0.499584 + 0.866265i \(0.333486\pi\)
\(854\) 0 0
\(855\) −1144.46 −0.0457773
\(856\) −41649.0 −1.66301
\(857\) 27299.2 1.08812 0.544062 0.839045i \(-0.316886\pi\)
0.544062 + 0.839045i \(0.316886\pi\)
\(858\) −3461.55 −0.137733
\(859\) 6975.13 0.277053 0.138526 0.990359i \(-0.455763\pi\)
0.138526 + 0.990359i \(0.455763\pi\)
\(860\) 6744.73 0.267434
\(861\) 0 0
\(862\) −32247.9 −1.27421
\(863\) −4481.56 −0.176772 −0.0883858 0.996086i \(-0.528171\pi\)
−0.0883858 + 0.996086i \(0.528171\pi\)
\(864\) −21879.6 −0.861526
\(865\) −7949.67 −0.312482
\(866\) −34465.2 −1.35240
\(867\) 12741.8 0.499116
\(868\) 0 0
\(869\) −5377.73 −0.209928
\(870\) −978.543 −0.0381330
\(871\) −6427.80 −0.250055
\(872\) 5955.54 0.231284
\(873\) −26291.6 −1.01928
\(874\) −2090.45 −0.0809044
\(875\) 0 0
\(876\) 41942.7 1.61771
\(877\) −7207.96 −0.277532 −0.138766 0.990325i \(-0.544314\pi\)
−0.138766 + 0.990325i \(0.544314\pi\)
\(878\) 60063.9 2.30872
\(879\) 20549.7 0.788536
\(880\) 92.7699 0.00355372
\(881\) 38413.7 1.46900 0.734502 0.678607i \(-0.237416\pi\)
0.734502 + 0.678607i \(0.237416\pi\)
\(882\) 0 0
\(883\) −8705.04 −0.331764 −0.165882 0.986146i \(-0.553047\pi\)
−0.165882 + 0.986146i \(0.553047\pi\)
\(884\) 5813.86 0.221200
\(885\) −3646.58 −0.138507
\(886\) −54240.6 −2.05671
\(887\) 44100.0 1.66937 0.834687 0.550725i \(-0.185649\pi\)
0.834687 + 0.550725i \(0.185649\pi\)
\(888\) −19436.6 −0.734514
\(889\) 0 0
\(890\) 891.834 0.0335892
\(891\) −1814.09 −0.0682091
\(892\) −38683.6 −1.45204
\(893\) −1676.25 −0.0628146
\(894\) 26587.8 0.994663
\(895\) −4594.08 −0.171579
\(896\) 0 0
\(897\) 965.451 0.0359370
\(898\) 34882.2 1.29625
\(899\) 7302.55 0.270916
\(900\) 30978.0 1.14733
\(901\) −1473.15 −0.0544702
\(902\) 7814.09 0.288449
\(903\) 0 0
\(904\) −11829.5 −0.435224
\(905\) −7958.54 −0.292322
\(906\) −34217.9 −1.25476
\(907\) 19921.2 0.729296 0.364648 0.931145i \(-0.381189\pi\)
0.364648 + 0.931145i \(0.381189\pi\)
\(908\) −56722.9 −2.07314
\(909\) −31087.3 −1.13432
\(910\) 0 0
\(911\) −14446.7 −0.525402 −0.262701 0.964877i \(-0.584613\pi\)
−0.262701 + 0.964877i \(0.584613\pi\)
\(912\) 407.793 0.0148063
\(913\) 6038.81 0.218900
\(914\) 54294.4 1.96488
\(915\) 3310.29 0.119601
\(916\) −9217.66 −0.332489
\(917\) 0 0
\(918\) −10573.8 −0.380160
\(919\) 44381.1 1.59303 0.796516 0.604617i \(-0.206674\pi\)
0.796516 + 0.604617i \(0.206674\pi\)
\(920\) −623.186 −0.0223324
\(921\) −19001.8 −0.679839
\(922\) −19467.0 −0.695347
\(923\) −9092.80 −0.324261
\(924\) 0 0
\(925\) −35613.5 −1.26591
\(926\) 66521.6 2.36073
\(927\) −2375.37 −0.0841612
\(928\) 7076.97 0.250337
\(929\) 3455.30 0.122029 0.0610145 0.998137i \(-0.480566\pi\)
0.0610145 + 0.998137i \(0.480566\pi\)
\(930\) −4139.74 −0.145965
\(931\) 0 0
\(932\) 24911.8 0.875550
\(933\) −15364.1 −0.539117
\(934\) −76183.8 −2.66896
\(935\) −362.714 −0.0126866
\(936\) 11380.0 0.397400
\(937\) 14962.8 0.521678 0.260839 0.965382i \(-0.416001\pi\)
0.260839 + 0.965382i \(0.416001\pi\)
\(938\) 0 0
\(939\) 25967.7 0.902474
\(940\) −1269.03 −0.0440331
\(941\) 6116.95 0.211909 0.105955 0.994371i \(-0.466210\pi\)
0.105955 + 0.994371i \(0.466210\pi\)
\(942\) 30783.0 1.06472
\(943\) −2179.41 −0.0752611
\(944\) −3259.77 −0.112390
\(945\) 0 0
\(946\) 14035.6 0.482384
\(947\) 53343.7 1.83045 0.915225 0.402943i \(-0.132013\pi\)
0.915225 + 0.402943i \(0.132013\pi\)
\(948\) −17896.4 −0.613130
\(949\) 28231.9 0.965696
\(950\) 17996.4 0.614611
\(951\) −608.117 −0.0207356
\(952\) 0 0
\(953\) 1979.62 0.0672887 0.0336443 0.999434i \(-0.489289\pi\)
0.0336443 + 0.999434i \(0.489289\pi\)
\(954\) −7322.82 −0.248517
\(955\) −5238.24 −0.177493
\(956\) −85115.6 −2.87954
\(957\) −1267.76 −0.0428223
\(958\) 13762.8 0.464149
\(959\) 0 0
\(960\) −4199.02 −0.141170
\(961\) 1102.58 0.0370104
\(962\) −33224.4 −1.11351
\(963\) 33608.1 1.12462
\(964\) −61191.2 −2.04444
\(965\) 3199.07 0.106717
\(966\) 0 0
\(967\) −38892.0 −1.29336 −0.646681 0.762761i \(-0.723843\pi\)
−0.646681 + 0.762761i \(0.723843\pi\)
\(968\) 2894.78 0.0961175
\(969\) −1594.40 −0.0528582
\(970\) −11563.3 −0.382758
\(971\) 47826.1 1.58065 0.790325 0.612688i \(-0.209912\pi\)
0.790325 + 0.612688i \(0.209912\pi\)
\(972\) −51803.8 −1.70947
\(973\) 0 0
\(974\) −25550.1 −0.840533
\(975\) −8311.45 −0.273005
\(976\) 2959.15 0.0970493
\(977\) 20840.5 0.682442 0.341221 0.939983i \(-0.389160\pi\)
0.341221 + 0.939983i \(0.389160\pi\)
\(978\) −46348.1 −1.51539
\(979\) 1155.43 0.0377197
\(980\) 0 0
\(981\) −4805.74 −0.156407
\(982\) −35686.2 −1.15966
\(983\) 54430.5 1.76609 0.883044 0.469290i \(-0.155490\pi\)
0.883044 + 0.469290i \(0.155490\pi\)
\(984\) 10239.8 0.331740
\(985\) 5714.05 0.184837
\(986\) 3420.10 0.110465
\(987\) 0 0
\(988\) 10452.5 0.336579
\(989\) −3914.62 −0.125862
\(990\) −1803.00 −0.0578821
\(991\) −35161.9 −1.12710 −0.563550 0.826082i \(-0.690565\pi\)
−0.563550 + 0.826082i \(0.690565\pi\)
\(992\) 29939.2 0.958238
\(993\) −9369.50 −0.299428
\(994\) 0 0
\(995\) 8293.99 0.264258
\(996\) 20096.4 0.639335
\(997\) −26961.6 −0.856451 −0.428225 0.903672i \(-0.640861\pi\)
−0.428225 + 0.903672i \(0.640861\pi\)
\(998\) −31499.4 −0.999096
\(999\) 37619.8 1.19143
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.4.a.g.1.4 4
7.6 odd 2 77.4.a.d.1.4 4
21.20 even 2 693.4.a.l.1.1 4
28.27 even 2 1232.4.a.s.1.3 4
35.34 odd 2 1925.4.a.p.1.1 4
77.76 even 2 847.4.a.d.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.d.1.4 4 7.6 odd 2
539.4.a.g.1.4 4 1.1 even 1 trivial
693.4.a.l.1.1 4 21.20 even 2
847.4.a.d.1.1 4 77.76 even 2
1232.4.a.s.1.3 4 28.27 even 2
1925.4.a.p.1.1 4 35.34 odd 2