Properties

Label 539.4.a.g.1.3
Level $539$
Weight $4$
Character 539.1
Self dual yes
Analytic conductor $31.802$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [539,4,Mod(1,539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(539, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("539.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 539.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.8020294931\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.522072.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.79597\) of defining polynomial
Character \(\chi\) \(=\) 539.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.53253 q^{2} -10.1459 q^{3} -5.65135 q^{4} -8.69995 q^{5} -15.5490 q^{6} -20.9211 q^{8} +75.9402 q^{9} -13.3330 q^{10} -11.0000 q^{11} +57.3382 q^{12} +76.3572 q^{13} +88.2693 q^{15} +13.1485 q^{16} -39.7278 q^{17} +116.381 q^{18} +27.9876 q^{19} +49.1664 q^{20} -16.8579 q^{22} +87.2055 q^{23} +212.265 q^{24} -49.3108 q^{25} +117.020 q^{26} -496.545 q^{27} -38.3019 q^{29} +135.275 q^{30} +186.071 q^{31} +187.519 q^{32} +111.605 q^{33} -60.8842 q^{34} -429.164 q^{36} -218.781 q^{37} +42.8919 q^{38} -774.716 q^{39} +182.013 q^{40} -80.1687 q^{41} -35.1155 q^{43} +62.1648 q^{44} -660.676 q^{45} +133.645 q^{46} +282.620 q^{47} -133.404 q^{48} -75.5704 q^{50} +403.077 q^{51} -431.521 q^{52} +145.296 q^{53} -760.971 q^{54} +95.6995 q^{55} -283.961 q^{57} -58.6989 q^{58} -91.0461 q^{59} -498.840 q^{60} -808.142 q^{61} +285.160 q^{62} +182.192 q^{64} -664.304 q^{65} +171.039 q^{66} +794.222 q^{67} +224.516 q^{68} -884.783 q^{69} +946.901 q^{71} -1588.75 q^{72} -801.324 q^{73} -335.288 q^{74} +500.305 q^{75} -158.168 q^{76} -1187.28 q^{78} -890.737 q^{79} -114.391 q^{80} +2987.53 q^{81} -122.861 q^{82} +559.333 q^{83} +345.630 q^{85} -53.8156 q^{86} +388.609 q^{87} +230.132 q^{88} +1523.75 q^{89} -1012.51 q^{90} -492.829 q^{92} -1887.87 q^{93} +433.125 q^{94} -243.491 q^{95} -1902.56 q^{96} -664.651 q^{97} -835.342 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 14 q^{3} + 26 q^{4} - 10 q^{5} - 14 q^{6} - 18 q^{8} + 76 q^{9} + 2 q^{10} - 44 q^{11} - 70 q^{12} - 58 q^{13} + 284 q^{15} + 2 q^{16} - 4 q^{17} - 62 q^{18} - 258 q^{19} - 182 q^{20} + 22 q^{22}+ \cdots - 836 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.53253 0.541832 0.270916 0.962603i \(-0.412673\pi\)
0.270916 + 0.962603i \(0.412673\pi\)
\(3\) −10.1459 −1.95259 −0.976294 0.216448i \(-0.930553\pi\)
−0.976294 + 0.216448i \(0.930553\pi\)
\(4\) −5.65135 −0.706418
\(5\) −8.69995 −0.778148 −0.389074 0.921207i \(-0.627205\pi\)
−0.389074 + 0.921207i \(0.627205\pi\)
\(6\) −15.5490 −1.05797
\(7\) 0 0
\(8\) −20.9211 −0.924592
\(9\) 75.9402 2.81260
\(10\) −13.3330 −0.421625
\(11\) −11.0000 −0.301511
\(12\) 57.3382 1.37934
\(13\) 76.3572 1.62905 0.814526 0.580127i \(-0.196997\pi\)
0.814526 + 0.580127i \(0.196997\pi\)
\(14\) 0 0
\(15\) 88.2693 1.51940
\(16\) 13.1485 0.205445
\(17\) −39.7278 −0.566789 −0.283395 0.959003i \(-0.591461\pi\)
−0.283395 + 0.959003i \(0.591461\pi\)
\(18\) 116.381 1.52396
\(19\) 27.9876 0.337937 0.168968 0.985621i \(-0.445956\pi\)
0.168968 + 0.985621i \(0.445956\pi\)
\(20\) 49.1664 0.549698
\(21\) 0 0
\(22\) −16.8579 −0.163368
\(23\) 87.2055 0.790592 0.395296 0.918554i \(-0.370642\pi\)
0.395296 + 0.918554i \(0.370642\pi\)
\(24\) 212.265 1.80535
\(25\) −49.3108 −0.394486
\(26\) 117.020 0.882673
\(27\) −496.545 −3.53926
\(28\) 0 0
\(29\) −38.3019 −0.245258 −0.122629 0.992453i \(-0.539133\pi\)
−0.122629 + 0.992453i \(0.539133\pi\)
\(30\) 135.275 0.823260
\(31\) 186.071 1.07804 0.539021 0.842292i \(-0.318794\pi\)
0.539021 + 0.842292i \(0.318794\pi\)
\(32\) 187.519 1.03591
\(33\) 111.605 0.588728
\(34\) −60.8842 −0.307105
\(35\) 0 0
\(36\) −429.164 −1.98687
\(37\) −218.781 −0.972090 −0.486045 0.873934i \(-0.661561\pi\)
−0.486045 + 0.873934i \(0.661561\pi\)
\(38\) 42.8919 0.183105
\(39\) −774.716 −3.18087
\(40\) 182.013 0.719469
\(41\) −80.1687 −0.305372 −0.152686 0.988275i \(-0.548792\pi\)
−0.152686 + 0.988275i \(0.548792\pi\)
\(42\) 0 0
\(43\) −35.1155 −0.124536 −0.0622681 0.998059i \(-0.519833\pi\)
−0.0622681 + 0.998059i \(0.519833\pi\)
\(44\) 62.1648 0.212993
\(45\) −660.676 −2.18862
\(46\) 133.645 0.428368
\(47\) 282.620 0.877116 0.438558 0.898703i \(-0.355489\pi\)
0.438558 + 0.898703i \(0.355489\pi\)
\(48\) −133.404 −0.401149
\(49\) 0 0
\(50\) −75.5704 −0.213745
\(51\) 403.077 1.10671
\(52\) −431.521 −1.15079
\(53\) 145.296 0.376566 0.188283 0.982115i \(-0.439708\pi\)
0.188283 + 0.982115i \(0.439708\pi\)
\(54\) −760.971 −1.91769
\(55\) 95.6995 0.234620
\(56\) 0 0
\(57\) −283.961 −0.659851
\(58\) −58.6989 −0.132889
\(59\) −91.0461 −0.200901 −0.100451 0.994942i \(-0.532028\pi\)
−0.100451 + 0.994942i \(0.532028\pi\)
\(60\) −498.840 −1.07333
\(61\) −808.142 −1.69626 −0.848131 0.529787i \(-0.822272\pi\)
−0.848131 + 0.529787i \(0.822272\pi\)
\(62\) 285.160 0.584118
\(63\) 0 0
\(64\) 182.192 0.355843
\(65\) −664.304 −1.26764
\(66\) 171.039 0.318991
\(67\) 794.222 1.44820 0.724102 0.689693i \(-0.242255\pi\)
0.724102 + 0.689693i \(0.242255\pi\)
\(68\) 224.516 0.400390
\(69\) −884.783 −1.54370
\(70\) 0 0
\(71\) 946.901 1.58277 0.791384 0.611319i \(-0.209361\pi\)
0.791384 + 0.611319i \(0.209361\pi\)
\(72\) −1588.75 −2.60051
\(73\) −801.324 −1.28477 −0.642383 0.766384i \(-0.722054\pi\)
−0.642383 + 0.766384i \(0.722054\pi\)
\(74\) −335.288 −0.526709
\(75\) 500.305 0.770270
\(76\) −158.168 −0.238725
\(77\) 0 0
\(78\) −1187.28 −1.72350
\(79\) −890.737 −1.26855 −0.634277 0.773106i \(-0.718702\pi\)
−0.634277 + 0.773106i \(0.718702\pi\)
\(80\) −114.391 −0.159866
\(81\) 2987.53 4.09812
\(82\) −122.861 −0.165460
\(83\) 559.333 0.739696 0.369848 0.929092i \(-0.379410\pi\)
0.369848 + 0.929092i \(0.379410\pi\)
\(84\) 0 0
\(85\) 345.630 0.441046
\(86\) −53.8156 −0.0674777
\(87\) 388.609 0.478888
\(88\) 230.132 0.278775
\(89\) 1523.75 1.81480 0.907401 0.420265i \(-0.138063\pi\)
0.907401 + 0.420265i \(0.138063\pi\)
\(90\) −1012.51 −1.18586
\(91\) 0 0
\(92\) −492.829 −0.558488
\(93\) −1887.87 −2.10497
\(94\) 433.125 0.475249
\(95\) −243.491 −0.262965
\(96\) −1902.56 −2.02270
\(97\) −664.651 −0.695723 −0.347861 0.937546i \(-0.613092\pi\)
−0.347861 + 0.937546i \(0.613092\pi\)
\(98\) 0 0
\(99\) −835.342 −0.848031
\(100\) 278.672 0.278672
\(101\) −1495.68 −1.47352 −0.736761 0.676153i \(-0.763646\pi\)
−0.736761 + 0.676153i \(0.763646\pi\)
\(102\) 617.728 0.599649
\(103\) −874.379 −0.836457 −0.418229 0.908342i \(-0.637349\pi\)
−0.418229 + 0.908342i \(0.637349\pi\)
\(104\) −1597.48 −1.50621
\(105\) 0 0
\(106\) 222.671 0.204035
\(107\) 783.854 0.708205 0.354103 0.935207i \(-0.384786\pi\)
0.354103 + 0.935207i \(0.384786\pi\)
\(108\) 2806.15 2.50020
\(109\) −1351.08 −1.18725 −0.593623 0.804743i \(-0.702303\pi\)
−0.593623 + 0.804743i \(0.702303\pi\)
\(110\) 146.663 0.127125
\(111\) 2219.74 1.89809
\(112\) 0 0
\(113\) −188.362 −0.156811 −0.0784055 0.996922i \(-0.524983\pi\)
−0.0784055 + 0.996922i \(0.524983\pi\)
\(114\) −435.179 −0.357529
\(115\) −758.684 −0.615197
\(116\) 216.457 0.173255
\(117\) 5798.58 4.58187
\(118\) −139.531 −0.108855
\(119\) 0 0
\(120\) −1846.69 −1.40483
\(121\) 121.000 0.0909091
\(122\) −1238.50 −0.919089
\(123\) 813.388 0.596266
\(124\) −1051.55 −0.761549
\(125\) 1516.50 1.08512
\(126\) 0 0
\(127\) 586.957 0.410110 0.205055 0.978750i \(-0.434263\pi\)
0.205055 + 0.978750i \(0.434263\pi\)
\(128\) −1220.94 −0.843101
\(129\) 356.280 0.243168
\(130\) −1018.07 −0.686850
\(131\) −623.054 −0.415546 −0.207773 0.978177i \(-0.566621\pi\)
−0.207773 + 0.978177i \(0.566621\pi\)
\(132\) −630.721 −0.415888
\(133\) 0 0
\(134\) 1217.17 0.784683
\(135\) 4319.92 2.75407
\(136\) 831.151 0.524049
\(137\) −954.859 −0.595468 −0.297734 0.954649i \(-0.596231\pi\)
−0.297734 + 0.954649i \(0.596231\pi\)
\(138\) −1355.96 −0.836426
\(139\) −1590.62 −0.970610 −0.485305 0.874345i \(-0.661291\pi\)
−0.485305 + 0.874345i \(0.661291\pi\)
\(140\) 0 0
\(141\) −2867.45 −1.71265
\(142\) 1451.16 0.857594
\(143\) −839.929 −0.491178
\(144\) 998.498 0.577834
\(145\) 333.225 0.190847
\(146\) −1228.05 −0.696127
\(147\) 0 0
\(148\) 1236.41 0.686702
\(149\) −1415.84 −0.778459 −0.389229 0.921141i \(-0.627259\pi\)
−0.389229 + 0.921141i \(0.627259\pi\)
\(150\) 766.733 0.417357
\(151\) 411.564 0.221806 0.110903 0.993831i \(-0.464626\pi\)
0.110903 + 0.993831i \(0.464626\pi\)
\(152\) −585.532 −0.312454
\(153\) −3016.94 −1.59415
\(154\) 0 0
\(155\) −1618.81 −0.838876
\(156\) 4378.19 2.24702
\(157\) 1417.29 0.720460 0.360230 0.932864i \(-0.382698\pi\)
0.360230 + 0.932864i \(0.382698\pi\)
\(158\) −1365.08 −0.687343
\(159\) −1474.17 −0.735278
\(160\) −1631.41 −0.806090
\(161\) 0 0
\(162\) 4578.49 2.22049
\(163\) −441.401 −0.212105 −0.106053 0.994361i \(-0.533821\pi\)
−0.106053 + 0.994361i \(0.533821\pi\)
\(164\) 453.061 0.215720
\(165\) −970.962 −0.458117
\(166\) 857.196 0.400791
\(167\) 1486.39 0.688742 0.344371 0.938834i \(-0.388092\pi\)
0.344371 + 0.938834i \(0.388092\pi\)
\(168\) 0 0
\(169\) 3633.43 1.65381
\(170\) 529.690 0.238973
\(171\) 2125.39 0.950481
\(172\) 198.450 0.0879747
\(173\) 2957.39 1.29969 0.649844 0.760068i \(-0.274834\pi\)
0.649844 + 0.760068i \(0.274834\pi\)
\(174\) 595.555 0.259477
\(175\) 0 0
\(176\) −144.633 −0.0619439
\(177\) 923.748 0.392278
\(178\) 2335.20 0.983318
\(179\) −24.4424 −0.0102062 −0.00510310 0.999987i \(-0.501624\pi\)
−0.00510310 + 0.999987i \(0.501624\pi\)
\(180\) 3733.71 1.54608
\(181\) 120.126 0.0493308 0.0246654 0.999696i \(-0.492148\pi\)
0.0246654 + 0.999696i \(0.492148\pi\)
\(182\) 0 0
\(183\) 8199.37 3.31210
\(184\) −1824.44 −0.730975
\(185\) 1903.38 0.756429
\(186\) −2893.22 −1.14054
\(187\) 437.006 0.170893
\(188\) −1597.19 −0.619610
\(189\) 0 0
\(190\) −373.158 −0.142483
\(191\) −2059.27 −0.780123 −0.390061 0.920789i \(-0.627546\pi\)
−0.390061 + 0.920789i \(0.627546\pi\)
\(192\) −1848.51 −0.694816
\(193\) −4371.31 −1.63033 −0.815165 0.579229i \(-0.803354\pi\)
−0.815165 + 0.579229i \(0.803354\pi\)
\(194\) −1018.60 −0.376965
\(195\) 6740.00 2.47519
\(196\) 0 0
\(197\) −2185.70 −0.790479 −0.395240 0.918578i \(-0.629338\pi\)
−0.395240 + 0.918578i \(0.629338\pi\)
\(198\) −1280.19 −0.459490
\(199\) 2420.84 0.862356 0.431178 0.902267i \(-0.358098\pi\)
0.431178 + 0.902267i \(0.358098\pi\)
\(200\) 1031.64 0.364739
\(201\) −8058.13 −2.82774
\(202\) −2292.18 −0.798401
\(203\) 0 0
\(204\) −2277.93 −0.781797
\(205\) 697.464 0.237624
\(206\) −1340.01 −0.453219
\(207\) 6622.41 2.22362
\(208\) 1003.98 0.334680
\(209\) −307.864 −0.101892
\(210\) 0 0
\(211\) −3888.39 −1.26866 −0.634331 0.773062i \(-0.718724\pi\)
−0.634331 + 0.773062i \(0.718724\pi\)
\(212\) −821.120 −0.266013
\(213\) −9607.21 −3.09049
\(214\) 1201.28 0.383728
\(215\) 305.503 0.0969076
\(216\) 10388.3 3.27237
\(217\) 0 0
\(218\) −2070.57 −0.643288
\(219\) 8130.19 2.50862
\(220\) −540.831 −0.165740
\(221\) −3033.51 −0.923330
\(222\) 3401.82 1.02845
\(223\) −641.467 −0.192627 −0.0963135 0.995351i \(-0.530705\pi\)
−0.0963135 + 0.995351i \(0.530705\pi\)
\(224\) 0 0
\(225\) −3744.67 −1.10953
\(226\) −288.672 −0.0849652
\(227\) −3619.11 −1.05819 −0.529094 0.848563i \(-0.677468\pi\)
−0.529094 + 0.848563i \(0.677468\pi\)
\(228\) 1604.76 0.466131
\(229\) −2518.14 −0.726652 −0.363326 0.931662i \(-0.618359\pi\)
−0.363326 + 0.931662i \(0.618359\pi\)
\(230\) −1162.71 −0.333333
\(231\) 0 0
\(232\) 801.318 0.226763
\(233\) −4187.89 −1.17750 −0.588751 0.808315i \(-0.700380\pi\)
−0.588751 + 0.808315i \(0.700380\pi\)
\(234\) 8886.52 2.48261
\(235\) −2458.79 −0.682525
\(236\) 514.533 0.141920
\(237\) 9037.37 2.47696
\(238\) 0 0
\(239\) 2582.63 0.698981 0.349490 0.936940i \(-0.386355\pi\)
0.349490 + 0.936940i \(0.386355\pi\)
\(240\) 1160.61 0.312153
\(241\) −1522.09 −0.406832 −0.203416 0.979092i \(-0.565204\pi\)
−0.203416 + 0.979092i \(0.565204\pi\)
\(242\) 185.436 0.0492574
\(243\) −16904.6 −4.46268
\(244\) 4567.09 1.19827
\(245\) 0 0
\(246\) 1246.54 0.323076
\(247\) 2137.06 0.550517
\(248\) −3892.81 −0.996750
\(249\) −5674.96 −1.44432
\(250\) 2324.08 0.587951
\(251\) −1463.19 −0.367952 −0.183976 0.982931i \(-0.558897\pi\)
−0.183976 + 0.982931i \(0.558897\pi\)
\(252\) 0 0
\(253\) −959.261 −0.238372
\(254\) 899.531 0.222211
\(255\) −3506.75 −0.861181
\(256\) −3328.67 −0.812662
\(257\) 1183.89 0.287350 0.143675 0.989625i \(-0.454108\pi\)
0.143675 + 0.989625i \(0.454108\pi\)
\(258\) 546.010 0.131756
\(259\) 0 0
\(260\) 3754.21 0.895486
\(261\) −2908.65 −0.689813
\(262\) −954.850 −0.225156
\(263\) 151.973 0.0356315 0.0178158 0.999841i \(-0.494329\pi\)
0.0178158 + 0.999841i \(0.494329\pi\)
\(264\) −2334.91 −0.544333
\(265\) −1264.07 −0.293024
\(266\) 0 0
\(267\) −15459.9 −3.54356
\(268\) −4488.42 −1.02304
\(269\) 255.543 0.0579209 0.0289604 0.999581i \(-0.490780\pi\)
0.0289604 + 0.999581i \(0.490780\pi\)
\(270\) 6620.41 1.49224
\(271\) −2589.73 −0.580497 −0.290248 0.956951i \(-0.593738\pi\)
−0.290248 + 0.956951i \(0.593738\pi\)
\(272\) −522.360 −0.116444
\(273\) 0 0
\(274\) −1463.35 −0.322644
\(275\) 542.419 0.118942
\(276\) 5000.21 1.09050
\(277\) −4441.49 −0.963404 −0.481702 0.876335i \(-0.659981\pi\)
−0.481702 + 0.876335i \(0.659981\pi\)
\(278\) −2437.68 −0.525907
\(279\) 14130.3 3.03210
\(280\) 0 0
\(281\) 1577.34 0.334861 0.167431 0.985884i \(-0.446453\pi\)
0.167431 + 0.985884i \(0.446453\pi\)
\(282\) −4394.46 −0.927966
\(283\) −3429.29 −0.720317 −0.360159 0.932891i \(-0.617277\pi\)
−0.360159 + 0.932891i \(0.617277\pi\)
\(284\) −5351.27 −1.11810
\(285\) 2470.45 0.513462
\(286\) −1287.22 −0.266136
\(287\) 0 0
\(288\) 14240.3 2.91360
\(289\) −3334.70 −0.678750
\(290\) 510.677 0.103407
\(291\) 6743.51 1.35846
\(292\) 4528.56 0.907581
\(293\) −4601.37 −0.917458 −0.458729 0.888576i \(-0.651695\pi\)
−0.458729 + 0.888576i \(0.651695\pi\)
\(294\) 0 0
\(295\) 792.096 0.156331
\(296\) 4577.14 0.898786
\(297\) 5461.99 1.06713
\(298\) −2169.82 −0.421794
\(299\) 6658.77 1.28792
\(300\) −2827.40 −0.544132
\(301\) 0 0
\(302\) 630.736 0.120181
\(303\) 15175.1 2.87718
\(304\) 367.994 0.0694274
\(305\) 7030.80 1.31994
\(306\) −4623.56 −0.863762
\(307\) −4990.18 −0.927702 −0.463851 0.885913i \(-0.653533\pi\)
−0.463851 + 0.885913i \(0.653533\pi\)
\(308\) 0 0
\(309\) 8871.40 1.63326
\(310\) −2480.88 −0.454530
\(311\) −3139.78 −0.572478 −0.286239 0.958158i \(-0.592405\pi\)
−0.286239 + 0.958158i \(0.592405\pi\)
\(312\) 16207.9 2.94101
\(313\) 4723.12 0.852929 0.426464 0.904504i \(-0.359759\pi\)
0.426464 + 0.904504i \(0.359759\pi\)
\(314\) 2172.04 0.390368
\(315\) 0 0
\(316\) 5033.86 0.896130
\(317\) 5935.83 1.05170 0.525851 0.850577i \(-0.323747\pi\)
0.525851 + 0.850577i \(0.323747\pi\)
\(318\) −2259.21 −0.398397
\(319\) 421.321 0.0739481
\(320\) −1585.06 −0.276899
\(321\) −7952.94 −1.38283
\(322\) 0 0
\(323\) −1111.89 −0.191539
\(324\) −16883.6 −2.89499
\(325\) −3765.24 −0.642639
\(326\) −676.461 −0.114925
\(327\) 13708.0 2.31820
\(328\) 1677.22 0.282344
\(329\) 0 0
\(330\) −1488.03 −0.248222
\(331\) −6390.75 −1.06123 −0.530615 0.847613i \(-0.678039\pi\)
−0.530615 + 0.847613i \(0.678039\pi\)
\(332\) −3160.98 −0.522535
\(333\) −16614.3 −2.73410
\(334\) 2277.93 0.373183
\(335\) −6909.69 −1.12692
\(336\) 0 0
\(337\) 8916.41 1.44127 0.720635 0.693315i \(-0.243851\pi\)
0.720635 + 0.693315i \(0.243851\pi\)
\(338\) 5568.34 0.896088
\(339\) 1911.12 0.306187
\(340\) −1953.28 −0.311563
\(341\) −2046.78 −0.325042
\(342\) 3257.22 0.515001
\(343\) 0 0
\(344\) 734.655 0.115145
\(345\) 7697.57 1.20123
\(346\) 4532.29 0.704212
\(347\) 1400.52 0.216668 0.108334 0.994115i \(-0.465448\pi\)
0.108334 + 0.994115i \(0.465448\pi\)
\(348\) −2196.16 −0.338295
\(349\) 8985.39 1.37816 0.689079 0.724686i \(-0.258015\pi\)
0.689079 + 0.724686i \(0.258015\pi\)
\(350\) 0 0
\(351\) −37914.8 −5.76565
\(352\) −2062.71 −0.312338
\(353\) −1767.91 −0.266562 −0.133281 0.991078i \(-0.542551\pi\)
−0.133281 + 0.991078i \(0.542551\pi\)
\(354\) 1415.67 0.212549
\(355\) −8238.00 −1.23163
\(356\) −8611.25 −1.28201
\(357\) 0 0
\(358\) −37.4587 −0.00553004
\(359\) −1110.48 −0.163256 −0.0816278 0.996663i \(-0.526012\pi\)
−0.0816278 + 0.996663i \(0.526012\pi\)
\(360\) 13822.1 2.02358
\(361\) −6075.69 −0.885799
\(362\) 184.096 0.0267290
\(363\) −1227.66 −0.177508
\(364\) 0 0
\(365\) 6971.48 0.999737
\(366\) 12565.8 1.79460
\(367\) 5342.61 0.759896 0.379948 0.925008i \(-0.375942\pi\)
0.379948 + 0.925008i \(0.375942\pi\)
\(368\) 1146.62 0.162423
\(369\) −6088.03 −0.858890
\(370\) 2916.99 0.409858
\(371\) 0 0
\(372\) 10669.0 1.48699
\(373\) 6829.95 0.948101 0.474050 0.880498i \(-0.342791\pi\)
0.474050 + 0.880498i \(0.342791\pi\)
\(374\) 669.726 0.0925955
\(375\) −15386.3 −2.11879
\(376\) −5912.74 −0.810974
\(377\) −2924.63 −0.399538
\(378\) 0 0
\(379\) 7826.62 1.06076 0.530378 0.847761i \(-0.322050\pi\)
0.530378 + 0.847761i \(0.322050\pi\)
\(380\) 1376.05 0.185763
\(381\) −5955.24 −0.800777
\(382\) −3155.90 −0.422695
\(383\) 7534.69 1.00523 0.502617 0.864509i \(-0.332371\pi\)
0.502617 + 0.864509i \(0.332371\pi\)
\(384\) 12387.6 1.64623
\(385\) 0 0
\(386\) −6699.17 −0.883364
\(387\) −2666.68 −0.350271
\(388\) 3756.17 0.491471
\(389\) −13071.8 −1.70376 −0.851882 0.523734i \(-0.824539\pi\)
−0.851882 + 0.523734i \(0.824539\pi\)
\(390\) 10329.3 1.34113
\(391\) −3464.49 −0.448099
\(392\) 0 0
\(393\) 6321.47 0.811390
\(394\) −3349.65 −0.428307
\(395\) 7749.37 0.987122
\(396\) 4720.81 0.599065
\(397\) 3692.51 0.466806 0.233403 0.972380i \(-0.425014\pi\)
0.233403 + 0.972380i \(0.425014\pi\)
\(398\) 3710.02 0.467252
\(399\) 0 0
\(400\) −648.362 −0.0810452
\(401\) 8223.85 1.02414 0.512069 0.858944i \(-0.328879\pi\)
0.512069 + 0.858944i \(0.328879\pi\)
\(402\) −12349.3 −1.53216
\(403\) 14207.9 1.75619
\(404\) 8452.61 1.04092
\(405\) −25991.4 −3.18894
\(406\) 0 0
\(407\) 2406.59 0.293096
\(408\) −8432.82 −1.02325
\(409\) −3689.61 −0.446062 −0.223031 0.974811i \(-0.571595\pi\)
−0.223031 + 0.974811i \(0.571595\pi\)
\(410\) 1068.89 0.128753
\(411\) 9687.95 1.16270
\(412\) 4941.42 0.590889
\(413\) 0 0
\(414\) 10149.1 1.20483
\(415\) −4866.17 −0.575593
\(416\) 14318.5 1.68755
\(417\) 16138.4 1.89520
\(418\) −471.811 −0.0552082
\(419\) −15657.0 −1.82552 −0.912762 0.408492i \(-0.866055\pi\)
−0.912762 + 0.408492i \(0.866055\pi\)
\(420\) 0 0
\(421\) −6007.30 −0.695435 −0.347717 0.937599i \(-0.613043\pi\)
−0.347717 + 0.937599i \(0.613043\pi\)
\(422\) −5959.08 −0.687402
\(423\) 21462.3 2.46698
\(424\) −3039.76 −0.348170
\(425\) 1959.01 0.223591
\(426\) −14723.4 −1.67453
\(427\) 0 0
\(428\) −4429.83 −0.500289
\(429\) 8521.88 0.959068
\(430\) 468.193 0.0525076
\(431\) 13139.0 1.46841 0.734203 0.678931i \(-0.237556\pi\)
0.734203 + 0.678931i \(0.237556\pi\)
\(432\) −6528.81 −0.727123
\(433\) 4392.47 0.487502 0.243751 0.969838i \(-0.421622\pi\)
0.243751 + 0.969838i \(0.421622\pi\)
\(434\) 0 0
\(435\) −3380.88 −0.372645
\(436\) 7635.41 0.838692
\(437\) 2440.67 0.267170
\(438\) 12459.8 1.35925
\(439\) −12676.2 −1.37813 −0.689066 0.724699i \(-0.741979\pi\)
−0.689066 + 0.724699i \(0.741979\pi\)
\(440\) −2002.14 −0.216928
\(441\) 0 0
\(442\) −4648.95 −0.500289
\(443\) −17489.2 −1.87571 −0.937855 0.347028i \(-0.887191\pi\)
−0.937855 + 0.347028i \(0.887191\pi\)
\(444\) −12544.5 −1.34085
\(445\) −13256.6 −1.41218
\(446\) −983.069 −0.104371
\(447\) 14365.1 1.52001
\(448\) 0 0
\(449\) −15491.8 −1.62830 −0.814148 0.580658i \(-0.802796\pi\)
−0.814148 + 0.580658i \(0.802796\pi\)
\(450\) −5738.83 −0.601180
\(451\) 881.856 0.0920731
\(452\) 1064.50 0.110774
\(453\) −4175.71 −0.433095
\(454\) −5546.40 −0.573360
\(455\) 0 0
\(456\) 5940.78 0.610093
\(457\) −7789.99 −0.797375 −0.398688 0.917087i \(-0.630534\pi\)
−0.398688 + 0.917087i \(0.630534\pi\)
\(458\) −3859.13 −0.393723
\(459\) 19726.7 2.00602
\(460\) 4287.59 0.434586
\(461\) 8497.44 0.858493 0.429247 0.903187i \(-0.358779\pi\)
0.429247 + 0.903187i \(0.358779\pi\)
\(462\) 0 0
\(463\) 875.113 0.0878401 0.0439200 0.999035i \(-0.486015\pi\)
0.0439200 + 0.999035i \(0.486015\pi\)
\(464\) −503.611 −0.0503870
\(465\) 16424.3 1.63798
\(466\) −6418.08 −0.638008
\(467\) −17652.5 −1.74917 −0.874584 0.484874i \(-0.838866\pi\)
−0.874584 + 0.484874i \(0.838866\pi\)
\(468\) −32769.8 −3.23672
\(469\) 0 0
\(470\) −3768.17 −0.369814
\(471\) −14379.8 −1.40676
\(472\) 1904.79 0.185752
\(473\) 386.270 0.0375491
\(474\) 13850.1 1.34210
\(475\) −1380.09 −0.133311
\(476\) 0 0
\(477\) 11033.8 1.05913
\(478\) 3957.96 0.378730
\(479\) −3129.76 −0.298544 −0.149272 0.988796i \(-0.547693\pi\)
−0.149272 + 0.988796i \(0.547693\pi\)
\(480\) 16552.2 1.57396
\(481\) −16705.5 −1.58359
\(482\) −2332.66 −0.220435
\(483\) 0 0
\(484\) −683.813 −0.0642198
\(485\) 5782.43 0.541375
\(486\) −25906.9 −2.41802
\(487\) −366.055 −0.0340606 −0.0170303 0.999855i \(-0.505421\pi\)
−0.0170303 + 0.999855i \(0.505421\pi\)
\(488\) 16907.2 1.56835
\(489\) 4478.43 0.414154
\(490\) 0 0
\(491\) −14577.2 −1.33984 −0.669919 0.742434i \(-0.733671\pi\)
−0.669919 + 0.742434i \(0.733671\pi\)
\(492\) −4596.73 −0.421213
\(493\) 1521.65 0.139010
\(494\) 3275.11 0.298288
\(495\) 7267.44 0.659893
\(496\) 2446.55 0.221478
\(497\) 0 0
\(498\) −8697.06 −0.782580
\(499\) 9504.05 0.852624 0.426312 0.904576i \(-0.359813\pi\)
0.426312 + 0.904576i \(0.359813\pi\)
\(500\) −8570.24 −0.766546
\(501\) −15080.8 −1.34483
\(502\) −2242.39 −0.199368
\(503\) 6149.90 0.545150 0.272575 0.962134i \(-0.412125\pi\)
0.272575 + 0.962134i \(0.412125\pi\)
\(504\) 0 0
\(505\) 13012.3 1.14662
\(506\) −1470.10 −0.129158
\(507\) −36864.5 −3.22921
\(508\) −3317.10 −0.289709
\(509\) 16132.0 1.40479 0.702396 0.711787i \(-0.252114\pi\)
0.702396 + 0.711787i \(0.252114\pi\)
\(510\) −5374.20 −0.466615
\(511\) 0 0
\(512\) 4666.24 0.402775
\(513\) −13897.1 −1.19605
\(514\) 1814.35 0.155695
\(515\) 7607.06 0.650887
\(516\) −2013.46 −0.171778
\(517\) −3108.83 −0.264460
\(518\) 0 0
\(519\) −30005.5 −2.53775
\(520\) 13898.0 1.17205
\(521\) −7654.31 −0.643650 −0.321825 0.946799i \(-0.604296\pi\)
−0.321825 + 0.946799i \(0.604296\pi\)
\(522\) −4457.60 −0.373763
\(523\) −21493.7 −1.79705 −0.898523 0.438926i \(-0.855359\pi\)
−0.898523 + 0.438926i \(0.855359\pi\)
\(524\) 3521.09 0.293549
\(525\) 0 0
\(526\) 232.904 0.0193063
\(527\) −7392.20 −0.611023
\(528\) 1467.44 0.120951
\(529\) −4562.20 −0.374965
\(530\) −1937.23 −0.158770
\(531\) −6914.06 −0.565056
\(532\) 0 0
\(533\) −6121.46 −0.497467
\(534\) −23692.8 −1.92001
\(535\) −6819.49 −0.551088
\(536\) −16616.0 −1.33900
\(537\) 247.991 0.0199285
\(538\) 391.628 0.0313834
\(539\) 0 0
\(540\) −24413.3 −1.94552
\(541\) −8661.03 −0.688293 −0.344147 0.938916i \(-0.611832\pi\)
−0.344147 + 0.938916i \(0.611832\pi\)
\(542\) −3968.84 −0.314532
\(543\) −1218.79 −0.0963227
\(544\) −7449.74 −0.587142
\(545\) 11754.3 0.923853
\(546\) 0 0
\(547\) 21372.9 1.67064 0.835321 0.549763i \(-0.185282\pi\)
0.835321 + 0.549763i \(0.185282\pi\)
\(548\) 5396.24 0.420650
\(549\) −61370.5 −4.77091
\(550\) 831.274 0.0644466
\(551\) −1071.98 −0.0828817
\(552\) 18510.6 1.42729
\(553\) 0 0
\(554\) −6806.72 −0.522003
\(555\) −19311.6 −1.47700
\(556\) 8989.15 0.685656
\(557\) 18062.1 1.37399 0.686997 0.726660i \(-0.258929\pi\)
0.686997 + 0.726660i \(0.258929\pi\)
\(558\) 21655.1 1.64289
\(559\) −2681.32 −0.202876
\(560\) 0 0
\(561\) −4433.84 −0.333684
\(562\) 2417.32 0.181438
\(563\) −962.299 −0.0720356 −0.0360178 0.999351i \(-0.511467\pi\)
−0.0360178 + 0.999351i \(0.511467\pi\)
\(564\) 16205.0 1.20984
\(565\) 1638.74 0.122022
\(566\) −5255.49 −0.390291
\(567\) 0 0
\(568\) −19810.2 −1.46341
\(569\) −25409.7 −1.87211 −0.936055 0.351853i \(-0.885552\pi\)
−0.936055 + 0.351853i \(0.885552\pi\)
\(570\) 3786.04 0.278210
\(571\) −5211.13 −0.381925 −0.190962 0.981597i \(-0.561161\pi\)
−0.190962 + 0.981597i \(0.561161\pi\)
\(572\) 4746.73 0.346977
\(573\) 20893.2 1.52326
\(574\) 0 0
\(575\) −4300.17 −0.311878
\(576\) 13835.7 1.00085
\(577\) −409.463 −0.0295428 −0.0147714 0.999891i \(-0.504702\pi\)
−0.0147714 + 0.999891i \(0.504702\pi\)
\(578\) −5110.53 −0.367768
\(579\) 44351.0 3.18336
\(580\) −1883.17 −0.134818
\(581\) 0 0
\(582\) 10334.7 0.736057
\(583\) −1598.26 −0.113539
\(584\) 16764.6 1.18788
\(585\) −50447.4 −3.56537
\(586\) −7051.75 −0.497108
\(587\) 11756.7 0.826661 0.413331 0.910581i \(-0.364365\pi\)
0.413331 + 0.910581i \(0.364365\pi\)
\(588\) 0 0
\(589\) 5207.68 0.364310
\(590\) 1213.91 0.0847051
\(591\) 22176.0 1.54348
\(592\) −2876.63 −0.199711
\(593\) 312.172 0.0216178 0.0108089 0.999942i \(-0.496559\pi\)
0.0108089 + 0.999942i \(0.496559\pi\)
\(594\) 8370.68 0.578204
\(595\) 0 0
\(596\) 8001.42 0.549918
\(597\) −24561.7 −1.68383
\(598\) 10204.8 0.697834
\(599\) 22486.4 1.53384 0.766918 0.641745i \(-0.221789\pi\)
0.766918 + 0.641745i \(0.221789\pi\)
\(600\) −10466.9 −0.712185
\(601\) −25019.6 −1.69812 −0.849061 0.528295i \(-0.822832\pi\)
−0.849061 + 0.528295i \(0.822832\pi\)
\(602\) 0 0
\(603\) 60313.4 4.07322
\(604\) −2325.89 −0.156687
\(605\) −1052.69 −0.0707407
\(606\) 23256.3 1.55895
\(607\) −7074.22 −0.473037 −0.236519 0.971627i \(-0.576006\pi\)
−0.236519 + 0.971627i \(0.576006\pi\)
\(608\) 5248.22 0.350072
\(609\) 0 0
\(610\) 10774.9 0.715187
\(611\) 21580.1 1.42887
\(612\) 17049.8 1.12614
\(613\) 4934.94 0.325155 0.162578 0.986696i \(-0.448019\pi\)
0.162578 + 0.986696i \(0.448019\pi\)
\(614\) −7647.61 −0.502658
\(615\) −7076.43 −0.463983
\(616\) 0 0
\(617\) 2125.51 0.138687 0.0693434 0.997593i \(-0.477910\pi\)
0.0693434 + 0.997593i \(0.477910\pi\)
\(618\) 13595.7 0.884951
\(619\) −8168.09 −0.530377 −0.265188 0.964197i \(-0.585434\pi\)
−0.265188 + 0.964197i \(0.585434\pi\)
\(620\) 9148.45 0.592598
\(621\) −43301.5 −2.79811
\(622\) −4811.81 −0.310187
\(623\) 0 0
\(624\) −10186.3 −0.653493
\(625\) −7029.59 −0.449894
\(626\) 7238.34 0.462144
\(627\) 3123.57 0.198953
\(628\) −8009.60 −0.508946
\(629\) 8691.69 0.550970
\(630\) 0 0
\(631\) −8419.88 −0.531205 −0.265602 0.964083i \(-0.585571\pi\)
−0.265602 + 0.964083i \(0.585571\pi\)
\(632\) 18635.2 1.17289
\(633\) 39451.4 2.47717
\(634\) 9096.85 0.569846
\(635\) −5106.50 −0.319126
\(636\) 8331.04 0.519414
\(637\) 0 0
\(638\) 645.687 0.0400674
\(639\) 71907.9 4.45169
\(640\) 10622.1 0.656057
\(641\) 27238.9 1.67843 0.839213 0.543803i \(-0.183016\pi\)
0.839213 + 0.543803i \(0.183016\pi\)
\(642\) −12188.1 −0.749263
\(643\) 12438.7 0.762882 0.381441 0.924393i \(-0.375428\pi\)
0.381441 + 0.924393i \(0.375428\pi\)
\(644\) 0 0
\(645\) −3099.62 −0.189221
\(646\) −1704.00 −0.103782
\(647\) 9788.76 0.594801 0.297400 0.954753i \(-0.403880\pi\)
0.297400 + 0.954753i \(0.403880\pi\)
\(648\) −62502.5 −3.78909
\(649\) 1001.51 0.0605741
\(650\) −5770.35 −0.348202
\(651\) 0 0
\(652\) 2494.51 0.149835
\(653\) 5539.90 0.331996 0.165998 0.986126i \(-0.446916\pi\)
0.165998 + 0.986126i \(0.446916\pi\)
\(654\) 21007.9 1.25608
\(655\) 5420.54 0.323356
\(656\) −1054.10 −0.0627371
\(657\) −60852.7 −3.61353
\(658\) 0 0
\(659\) −18751.7 −1.10844 −0.554221 0.832370i \(-0.686984\pi\)
−0.554221 + 0.832370i \(0.686984\pi\)
\(660\) 5487.24 0.323622
\(661\) −24849.3 −1.46222 −0.731108 0.682262i \(-0.760996\pi\)
−0.731108 + 0.682262i \(0.760996\pi\)
\(662\) −9794.03 −0.575009
\(663\) 30777.8 1.80288
\(664\) −11701.9 −0.683917
\(665\) 0 0
\(666\) −25461.9 −1.48142
\(667\) −3340.14 −0.193899
\(668\) −8400.08 −0.486540
\(669\) 6508.29 0.376121
\(670\) −10589.3 −0.610599
\(671\) 8889.56 0.511442
\(672\) 0 0
\(673\) −9532.72 −0.546002 −0.273001 0.962014i \(-0.588016\pi\)
−0.273001 + 0.962014i \(0.588016\pi\)
\(674\) 13664.7 0.780926
\(675\) 24485.0 1.39619
\(676\) −20533.7 −1.16828
\(677\) 6544.90 0.371552 0.185776 0.982592i \(-0.440520\pi\)
0.185776 + 0.982592i \(0.440520\pi\)
\(678\) 2928.85 0.165902
\(679\) 0 0
\(680\) −7230.98 −0.407787
\(681\) 36719.3 2.06621
\(682\) −3136.76 −0.176118
\(683\) 8438.16 0.472734 0.236367 0.971664i \(-0.424043\pi\)
0.236367 + 0.971664i \(0.424043\pi\)
\(684\) −12011.3 −0.671437
\(685\) 8307.23 0.463362
\(686\) 0 0
\(687\) 25548.9 1.41885
\(688\) −461.715 −0.0255853
\(689\) 11094.4 0.613446
\(690\) 11796.8 0.650863
\(691\) 8196.16 0.451225 0.225613 0.974217i \(-0.427562\pi\)
0.225613 + 0.974217i \(0.427562\pi\)
\(692\) −16713.2 −0.918123
\(693\) 0 0
\(694\) 2146.34 0.117398
\(695\) 13838.3 0.755278
\(696\) −8130.13 −0.442776
\(697\) 3184.93 0.173082
\(698\) 13770.4 0.746730
\(699\) 42490.1 2.29918
\(700\) 0 0
\(701\) −7172.05 −0.386426 −0.193213 0.981157i \(-0.561891\pi\)
−0.193213 + 0.981157i \(0.561891\pi\)
\(702\) −58105.6 −3.12401
\(703\) −6123.15 −0.328505
\(704\) −2004.11 −0.107291
\(705\) 24946.7 1.33269
\(706\) −2709.38 −0.144432
\(707\) 0 0
\(708\) −5220.42 −0.277112
\(709\) −16766.6 −0.888127 −0.444063 0.895995i \(-0.646464\pi\)
−0.444063 + 0.895995i \(0.646464\pi\)
\(710\) −12625.0 −0.667335
\(711\) −67642.8 −3.56794
\(712\) −31878.6 −1.67795
\(713\) 16226.4 0.852292
\(714\) 0 0
\(715\) 7307.35 0.382209
\(716\) 138.132 0.00720984
\(717\) −26203.2 −1.36482
\(718\) −1701.84 −0.0884571
\(719\) 5923.31 0.307235 0.153618 0.988130i \(-0.450908\pi\)
0.153618 + 0.988130i \(0.450908\pi\)
\(720\) −8686.88 −0.449640
\(721\) 0 0
\(722\) −9311.20 −0.479954
\(723\) 15443.1 0.794376
\(724\) −678.872 −0.0348482
\(725\) 1888.70 0.0967509
\(726\) −1881.43 −0.0961795
\(727\) 4256.80 0.217161 0.108581 0.994088i \(-0.465369\pi\)
0.108581 + 0.994088i \(0.465369\pi\)
\(728\) 0 0
\(729\) 90850.1 4.61566
\(730\) 10684.0 0.541689
\(731\) 1395.06 0.0705858
\(732\) −46337.4 −2.33973
\(733\) −24556.4 −1.23740 −0.618698 0.785629i \(-0.712340\pi\)
−0.618698 + 0.785629i \(0.712340\pi\)
\(734\) 8187.72 0.411736
\(735\) 0 0
\(736\) 16352.7 0.818981
\(737\) −8736.44 −0.436650
\(738\) −9330.10 −0.465374
\(739\) 27603.8 1.37405 0.687025 0.726634i \(-0.258916\pi\)
0.687025 + 0.726634i \(0.258916\pi\)
\(740\) −10756.7 −0.534355
\(741\) −21682.5 −1.07493
\(742\) 0 0
\(743\) 19808.8 0.978082 0.489041 0.872261i \(-0.337347\pi\)
0.489041 + 0.872261i \(0.337347\pi\)
\(744\) 39496.3 1.94624
\(745\) 12317.8 0.605756
\(746\) 10467.1 0.513711
\(747\) 42475.9 2.08047
\(748\) −2469.67 −0.120722
\(749\) 0 0
\(750\) −23580.0 −1.14803
\(751\) 596.125 0.0289653 0.0144826 0.999895i \(-0.495390\pi\)
0.0144826 + 0.999895i \(0.495390\pi\)
\(752\) 3716.03 0.180199
\(753\) 14845.5 0.718459
\(754\) −4482.08 −0.216482
\(755\) −3580.59 −0.172597
\(756\) 0 0
\(757\) −1845.87 −0.0886253 −0.0443127 0.999018i \(-0.514110\pi\)
−0.0443127 + 0.999018i \(0.514110\pi\)
\(758\) 11994.6 0.574752
\(759\) 9732.61 0.465443
\(760\) 5094.10 0.243135
\(761\) 13034.2 0.620877 0.310439 0.950593i \(-0.399524\pi\)
0.310439 + 0.950593i \(0.399524\pi\)
\(762\) −9126.59 −0.433886
\(763\) 0 0
\(764\) 11637.6 0.551093
\(765\) 26247.3 1.24049
\(766\) 11547.2 0.544668
\(767\) −6952.02 −0.327279
\(768\) 33772.5 1.58680
\(769\) 38530.6 1.80683 0.903413 0.428770i \(-0.141053\pi\)
0.903413 + 0.428770i \(0.141053\pi\)
\(770\) 0 0
\(771\) −12011.7 −0.561076
\(772\) 24703.8 1.15169
\(773\) −13835.1 −0.643745 −0.321873 0.946783i \(-0.604312\pi\)
−0.321873 + 0.946783i \(0.604312\pi\)
\(774\) −4086.77 −0.189788
\(775\) −9175.31 −0.425273
\(776\) 13905.2 0.643259
\(777\) 0 0
\(778\) −20032.9 −0.923154
\(779\) −2243.73 −0.103196
\(780\) −38090.0 −1.74852
\(781\) −10415.9 −0.477222
\(782\) −5309.44 −0.242794
\(783\) 19018.6 0.868032
\(784\) 0 0
\(785\) −12330.4 −0.560624
\(786\) 9687.86 0.439637
\(787\) −11704.2 −0.530125 −0.265062 0.964231i \(-0.585393\pi\)
−0.265062 + 0.964231i \(0.585393\pi\)
\(788\) 12352.1 0.558409
\(789\) −1541.91 −0.0695737
\(790\) 11876.2 0.534854
\(791\) 0 0
\(792\) 17476.3 0.784083
\(793\) −61707.5 −2.76330
\(794\) 5658.89 0.252930
\(795\) 12825.2 0.572155
\(796\) −13681.0 −0.609184
\(797\) 3367.27 0.149655 0.0748274 0.997196i \(-0.476159\pi\)
0.0748274 + 0.997196i \(0.476159\pi\)
\(798\) 0 0
\(799\) −11227.9 −0.497140
\(800\) −9246.73 −0.408652
\(801\) 115714. 5.10432
\(802\) 12603.3 0.554911
\(803\) 8814.56 0.387371
\(804\) 45539.3 1.99757
\(805\) 0 0
\(806\) 21774.0 0.951559
\(807\) −2592.72 −0.113096
\(808\) 31291.3 1.36241
\(809\) 20869.5 0.906961 0.453481 0.891266i \(-0.350182\pi\)
0.453481 + 0.891266i \(0.350182\pi\)
\(810\) −39832.6 −1.72787
\(811\) 22445.9 0.971863 0.485931 0.873997i \(-0.338480\pi\)
0.485931 + 0.873997i \(0.338480\pi\)
\(812\) 0 0
\(813\) 26275.2 1.13347
\(814\) 3688.17 0.158809
\(815\) 3840.17 0.165049
\(816\) 5299.84 0.227367
\(817\) −982.798 −0.0420854
\(818\) −5654.45 −0.241691
\(819\) 0 0
\(820\) −3941.61 −0.167862
\(821\) −25516.4 −1.08469 −0.542343 0.840157i \(-0.682463\pi\)
−0.542343 + 0.840157i \(0.682463\pi\)
\(822\) 14847.1 0.629990
\(823\) 36376.7 1.54072 0.770360 0.637609i \(-0.220076\pi\)
0.770360 + 0.637609i \(0.220076\pi\)
\(824\) 18293.0 0.773382
\(825\) −5503.35 −0.232245
\(826\) 0 0
\(827\) 25520.1 1.07306 0.536530 0.843881i \(-0.319735\pi\)
0.536530 + 0.843881i \(0.319735\pi\)
\(828\) −37425.5 −1.57080
\(829\) −23202.5 −0.972084 −0.486042 0.873936i \(-0.661560\pi\)
−0.486042 + 0.873936i \(0.661560\pi\)
\(830\) −7457.56 −0.311875
\(831\) 45063.1 1.88113
\(832\) 13911.7 0.579688
\(833\) 0 0
\(834\) 24732.6 1.02688
\(835\) −12931.5 −0.535943
\(836\) 1739.84 0.0719782
\(837\) −92392.6 −3.81548
\(838\) −23994.9 −0.989127
\(839\) 10538.6 0.433649 0.216824 0.976211i \(-0.430430\pi\)
0.216824 + 0.976211i \(0.430430\pi\)
\(840\) 0 0
\(841\) −22922.0 −0.939849
\(842\) −9206.38 −0.376809
\(843\) −16003.6 −0.653846
\(844\) 21974.6 0.896206
\(845\) −31610.6 −1.28691
\(846\) 32891.6 1.33669
\(847\) 0 0
\(848\) 1910.42 0.0773635
\(849\) 34793.3 1.40648
\(850\) 3002.25 0.121149
\(851\) −19078.9 −0.768526
\(852\) 54293.7 2.18318
\(853\) −40061.0 −1.60805 −0.804023 0.594598i \(-0.797311\pi\)
−0.804023 + 0.594598i \(0.797311\pi\)
\(854\) 0 0
\(855\) −18490.8 −0.739615
\(856\) −16399.1 −0.654801
\(857\) −775.719 −0.0309195 −0.0154598 0.999880i \(-0.504921\pi\)
−0.0154598 + 0.999880i \(0.504921\pi\)
\(858\) 13060.1 0.519654
\(859\) 10241.5 0.406792 0.203396 0.979097i \(-0.434802\pi\)
0.203396 + 0.979097i \(0.434802\pi\)
\(860\) −1726.50 −0.0684573
\(861\) 0 0
\(862\) 20135.9 0.795629
\(863\) −1268.51 −0.0500356 −0.0250178 0.999687i \(-0.507964\pi\)
−0.0250178 + 0.999687i \(0.507964\pi\)
\(864\) −93111.8 −3.66635
\(865\) −25729.1 −1.01135
\(866\) 6731.60 0.264144
\(867\) 33833.7 1.32532
\(868\) 0 0
\(869\) 9798.11 0.382483
\(870\) −5181.30 −0.201911
\(871\) 60644.6 2.35920
\(872\) 28266.1 1.09772
\(873\) −50473.8 −1.95679
\(874\) 3740.41 0.144761
\(875\) 0 0
\(876\) −45946.5 −1.77213
\(877\) 6691.33 0.257640 0.128820 0.991668i \(-0.458881\pi\)
0.128820 + 0.991668i \(0.458881\pi\)
\(878\) −19426.6 −0.746716
\(879\) 46685.3 1.79142
\(880\) 1258.30 0.0482015
\(881\) −14514.6 −0.555063 −0.277531 0.960717i \(-0.589516\pi\)
−0.277531 + 0.960717i \(0.589516\pi\)
\(882\) 0 0
\(883\) 10335.2 0.393891 0.196946 0.980414i \(-0.436898\pi\)
0.196946 + 0.980414i \(0.436898\pi\)
\(884\) 17143.4 0.652257
\(885\) −8036.57 −0.305250
\(886\) −26802.8 −1.01632
\(887\) −42946.3 −1.62570 −0.812851 0.582472i \(-0.802086\pi\)
−0.812851 + 0.582472i \(0.802086\pi\)
\(888\) −46439.4 −1.75496
\(889\) 0 0
\(890\) −20316.1 −0.765166
\(891\) −32862.8 −1.23563
\(892\) 3625.15 0.136075
\(893\) 7909.87 0.296410
\(894\) 22014.9 0.823590
\(895\) 212.648 0.00794193
\(896\) 0 0
\(897\) −67559.5 −2.51477
\(898\) −23741.7 −0.882263
\(899\) −7126.87 −0.264399
\(900\) 21162.4 0.783794
\(901\) −5772.31 −0.213434
\(902\) 1351.47 0.0498882
\(903\) 0 0
\(904\) 3940.75 0.144986
\(905\) −1045.09 −0.0383866
\(906\) −6399.41 −0.234665
\(907\) 8376.30 0.306649 0.153324 0.988176i \(-0.451002\pi\)
0.153324 + 0.988176i \(0.451002\pi\)
\(908\) 20452.8 0.747524
\(909\) −113582. −4.14443
\(910\) 0 0
\(911\) 17335.4 0.630460 0.315230 0.949015i \(-0.397918\pi\)
0.315230 + 0.949015i \(0.397918\pi\)
\(912\) −3733.65 −0.135563
\(913\) −6152.66 −0.223027
\(914\) −11938.4 −0.432043
\(915\) −71334.1 −2.57730
\(916\) 14230.9 0.513321
\(917\) 0 0
\(918\) 30231.7 1.08692
\(919\) −34995.3 −1.25613 −0.628067 0.778159i \(-0.716154\pi\)
−0.628067 + 0.778159i \(0.716154\pi\)
\(920\) 15872.5 0.568806
\(921\) 50630.1 1.81142
\(922\) 13022.6 0.465159
\(923\) 72302.8 2.57841
\(924\) 0 0
\(925\) 10788.3 0.383476
\(926\) 1341.14 0.0475945
\(927\) −66400.5 −2.35262
\(928\) −7182.35 −0.254065
\(929\) 10671.6 0.376882 0.188441 0.982084i \(-0.439657\pi\)
0.188441 + 0.982084i \(0.439657\pi\)
\(930\) 25170.8 0.887510
\(931\) 0 0
\(932\) 23667.2 0.831808
\(933\) 31856.0 1.11781
\(934\) −27053.1 −0.947755
\(935\) −3801.93 −0.132980
\(936\) −121313. −4.23636
\(937\) 1855.85 0.0647045 0.0323522 0.999477i \(-0.489700\pi\)
0.0323522 + 0.999477i \(0.489700\pi\)
\(938\) 0 0
\(939\) −47920.6 −1.66542
\(940\) 13895.4 0.482148
\(941\) −15378.8 −0.532766 −0.266383 0.963867i \(-0.585829\pi\)
−0.266383 + 0.963867i \(0.585829\pi\)
\(942\) −22037.4 −0.762228
\(943\) −6991.16 −0.241425
\(944\) −1197.12 −0.0412742
\(945\) 0 0
\(946\) 591.972 0.0203453
\(947\) −14600.9 −0.501020 −0.250510 0.968114i \(-0.580598\pi\)
−0.250510 + 0.968114i \(0.580598\pi\)
\(948\) −51073.3 −1.74977
\(949\) −61186.9 −2.09295
\(950\) −2115.03 −0.0722324
\(951\) −60224.6 −2.05354
\(952\) 0 0
\(953\) −2114.27 −0.0718658 −0.0359329 0.999354i \(-0.511440\pi\)
−0.0359329 + 0.999354i \(0.511440\pi\)
\(954\) 16909.7 0.573870
\(955\) 17915.5 0.607051
\(956\) −14595.3 −0.493773
\(957\) −4274.70 −0.144390
\(958\) −4796.46 −0.161761
\(959\) 0 0
\(960\) 16081.9 0.540669
\(961\) 4831.40 0.162177
\(962\) −25601.7 −0.858037
\(963\) 59526.0 1.99190
\(964\) 8601.87 0.287394
\(965\) 38030.2 1.26864
\(966\) 0 0
\(967\) 7251.75 0.241159 0.120579 0.992704i \(-0.461525\pi\)
0.120579 + 0.992704i \(0.461525\pi\)
\(968\) −2531.46 −0.0840538
\(969\) 11281.2 0.373997
\(970\) 8861.77 0.293334
\(971\) −2742.57 −0.0906420 −0.0453210 0.998972i \(-0.514431\pi\)
−0.0453210 + 0.998972i \(0.514431\pi\)
\(972\) 95533.9 3.15252
\(973\) 0 0
\(974\) −560.991 −0.0184551
\(975\) 38201.9 1.25481
\(976\) −10625.8 −0.348488
\(977\) 23770.4 0.778384 0.389192 0.921157i \(-0.372754\pi\)
0.389192 + 0.921157i \(0.372754\pi\)
\(978\) 6863.34 0.224402
\(979\) −16761.3 −0.547184
\(980\) 0 0
\(981\) −102601. −3.33925
\(982\) −22340.1 −0.725967
\(983\) 49265.4 1.59850 0.799249 0.601000i \(-0.205231\pi\)
0.799249 + 0.601000i \(0.205231\pi\)
\(984\) −17017.0 −0.551302
\(985\) 19015.5 0.615109
\(986\) 2331.98 0.0753198
\(987\) 0 0
\(988\) −12077.2 −0.388895
\(989\) −3062.26 −0.0984574
\(990\) 11137.6 0.357551
\(991\) −17123.5 −0.548884 −0.274442 0.961604i \(-0.588493\pi\)
−0.274442 + 0.961604i \(0.588493\pi\)
\(992\) 34891.9 1.11675
\(993\) 64840.2 2.07215
\(994\) 0 0
\(995\) −21061.2 −0.671040
\(996\) 32071.2 1.02030
\(997\) 41275.5 1.31114 0.655571 0.755134i \(-0.272428\pi\)
0.655571 + 0.755134i \(0.272428\pi\)
\(998\) 14565.3 0.461979
\(999\) 108634. 3.44048
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.4.a.g.1.3 4
7.6 odd 2 77.4.a.d.1.3 4
21.20 even 2 693.4.a.l.1.2 4
28.27 even 2 1232.4.a.s.1.1 4
35.34 odd 2 1925.4.a.p.1.2 4
77.76 even 2 847.4.a.d.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.d.1.3 4 7.6 odd 2
539.4.a.g.1.3 4 1.1 even 1 trivial
693.4.a.l.1.2 4 21.20 even 2
847.4.a.d.1.2 4 77.76 even 2
1232.4.a.s.1.1 4 28.27 even 2
1925.4.a.p.1.2 4 35.34 odd 2